-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgsw_ntp_pt_vs_CT_ratio.m
133 lines (119 loc) · 5.14 KB
/
gsw_ntp_pt_vs_CT_ratio.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
function ntp_pt_vs_CT_ratio = gsw_ntp_pt_vs_CT_ratio(SA,CT,p)
% gsw_ntp_pt_vs_CT_ratio ratio of gradients of potential
% temperature and Conservative Temperature in a
% neutral tangent plane (in a locally-referenced
% potential density surface)(75-term equation)
% =========================================================================
%
% USAGE:
% ntp_pt_vs_CT_ratio = gsw_ntp_pt_vs_CT_ratio(SA,CT,p)
%
% DESCRIPTION:
% Calculates the ratio of the two-dimensional gradient of potential
% temperature versus that of Conservative Temperature, CT, along the
% neutral tangent plane. The potential temperature is the regular one
% which has a reference sea pressure of 0 dbar. Part of the calculation
% uses the computationally-efficient 75-term expression for specific
% volume in terms of SA, CT and p (Roquet et al., 2015).
%
% Note that this 75-term equation has been fitted in a restricted range of
% parameter space, and is most accurate inside the "oceanographic funnel"
% described in McDougall et al. (2003). The GSW library function
% "gsw_infunnel(SA,CT,p)" is avaialble to be used if one wants to test if
% some of one's data lies outside this "funnel".
%
% INPUT:
% SA = Absolute Salinity [ g/kg ]
% CT = Conservative Temperature (ITS-90) [ deg C ]
% p = sea pressure [ dbar ]
% ( i.e. absolute pressure - 10.1325 dbar )
%
% SA & CT need to have the same dimensions.
% p may have dimensions 1x1 or Mx1 or 1xN or MxN, where SA & CT are MxN.
%
% OUTPUT:
% ntp_pt_vs_CT_ratio = The ratio of the spatial gradient of
% potential temperature versus that of
% Conservative Temperature in the
% neutral tangent plane (ntp). [ unitless ]
%
% AUTHOR:
% Trevor McDougall and Paul Barker [ help@teos-10.org ]
%
% VERSION NUMBER: 3.05 (27th January 2015)
%
% REFERENCES:
% IOC, SCOR and IAPSO, 2010: The international thermodynamic equation of
% seawater - 2010: Calculation and use of thermodynamic properties.
% Intergovernmental Oceanographic Commission, Manuals and Guides No. 56,
% UNESCO (English), 196 pp. Available from http://www.TEOS-10.org.
% See Eqn. (A.14.5) of this TEOS-10 Manual.
%
% McDougall, T.J., D.R. Jackett, D.G. Wright and R. Feistel, 2003:
% Accurate and computationally efficient algorithms for potential
% temperature and density of seawater. J. Atmosph. Ocean. Tech., 20,
% pp. 730-741.
%
% Roquet, F., G. Madec, T.J. McDougall, P.M. Barker, 2015: Accurate
% polynomial expressions for the density and specifc volume of seawater
% using the TEOS-10 standard. Ocean Modelling.
%
% This software is available from http://www.TEOS-10.org
%
%==========================================================================
%--------------------------------------------------------------------------
% Check variables and resize if necessary
%--------------------------------------------------------------------------
if ~(nargin == 3)
error('gsw_ntp_pt_vs_CT_ratio: Requires three inputs')
end
[ms,ns] = size(SA);
[mt,nt] = size(CT);
[mp,np] = size(p);
if (mt ~= ms | nt ~= ns)
error('gsw_ntp_pt_vs_CT_ratio: SA and CT must have same dimensions')
end
if (mp == 1) & (np == 1) % p scalar - fill to size of SA
p = p*ones(size(SA));
elseif (ns == np) & (mp == 1) % p is row vector,
p = p(ones(1,ms), :); % copy down each column.
elseif (ms == mp) & (np == 1) % p is column vector,
p = p(:,ones(1,ns)); % copy across each row.
elseif (ns == mp) & (np == 1) % p is a transposed row vector,
p = p.'; % transposed then
p = p(ones(1,ms), :); % copy down each column.
elseif (ms == mp) & (ns == np)
% ok
else
error('gsw_ntp_pt_vs_CT_ratio: Inputs array dimensions arguments do not agree')
end
if ms == 1
SA = SA.';
CT = CT.';
p = p.';
transposed = 1;
else
transposed = 0;
end
%--------------------------------------------------------------------------
% Start of the calculation
%--------------------------------------------------------------------------
[dummy, alpha, beta] = gsw_specvol_alpha_beta(SA,CT,p);
%--------------------------------------------------------------------------
% This function calculates the ntp_pt_vs_CT_ratio using the computationally
% efficient 75-term expression for specific volume in terms of SA, CT and
% p. If one wanted to compute this with the full TEOS-10 Gibbs function
% expression for specific volume, the following lines of code will enable
% this.
%
% t = gsw_t_from_CT(SA,CT,p);
% beta = gsw_beta_const_CT_t_exact(SA,t,p);
% alpha = gsw_alpha_wrt_CT_t_exact(SA,t,p);
%
%--------- This is the end of the alternative code-------------------------
[pt_SA, pt_CT] = gsw_pt_first_derivatives(SA,CT);
ntp_pt_vs_CT_ratio = pt_CT + pt_SA.*(alpha./beta);
if transposed
ntp_pt_vs_CT_ratio = ntp_pt_vs_CT_ratio.';
end
end