-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgsw_pot_enthalpy_ice_freezing_poly.m
141 lines (127 loc) · 4.68 KB
/
gsw_pot_enthalpy_ice_freezing_poly.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
function pot_enthalpy_ice_freezing = gsw_pot_enthalpy_ice_freezing_poly(SA,p)
% gsw_pot_enthalpy_ice_freezing_poly potential enthalpy of ice
% at which seawater freezes (poly)
%==========================================================================
%
% USAGE:
% pot_enthalpy_ice_freezing = gsw_pot_enthalpy_ice_freezing_poly(SA,p)
%
% DESCRIPTION:
% Calculates the potential enthalpy of ice at which seawater freezes.
% The error of this fit ranges between -2.5 and 1 J/kg with an rms of
% 1.07, between SA of 0 and 120 g/kg and p between 0 and 10,000 dbar (the
% error in the fit is between -0.7 and 0.7 with an rms of
% 0.3, between SA of 0 and 120 g/kg and p between 0 and 5,000 dbar) when
% compared with the potential enthalpy calculated from the exact in-situ
% freezing temperature which is found by a Newton-Raphson iteration of the
% equality of the chemical potentials of water in seawater and in ice.
% Note that the potential enthalpy at freezing can be found
% by this exact method using the function gsw_pot_enthalpy_ice_freezing.
%
% INPUT:
% SA = Absolute Salinity [ g/kg ]
% p = sea pressure [ dbar ]
% ( i.e. absolute pressure - 10.1325 dbar )
%
% p may have dimensions 1x1 or Mx1 or
% 1xN or MxN, where SA is MxN.
%
% OUTPUT:
% pot_enthalpy_ice_freezing = potential enthalpy of ice at freezing
% of seawater [ J/kg ]
%
% AUTHOR:
% Paul Barker and Trevor McDougall [ help@teos-10.org ]
%
% VERSION NUMBER: 3.05 (18th March 2015)
%
% REFERENCES:
% IOC, SCOR and IAPSO, 2010: The international thermodynamic equation of
% seawater - 2010: Calculation and use of thermodynamic properties.
% Intergovernmental Oceanographic Commission, Manuals and Guides No. 56,
% UNESCO (English), 196 pp. Available from http://www.TEOS-10.org.
% See sections 3.33 and 3.34 of this TEOS-10 Manual.
%
% McDougall, T.J., P.M. Barker, R. Feistel and B.K. Galton-Fenzi, 2014:
% Melting of Ice and Sea Ice into Seawater and Frazil Ice Formation.
% Journal of Physical Oceanography, 44, 1751-1775.
%
% The software is available from http://www.TEOS-10.org
%
%==========================================================================
%--------------------------------------------------------------------------
% Check variables and resize if necessary
%--------------------------------------------------------------------------
if ~(nargin == 2 )
error('gsw_pot_enthalpy_ice_freezing_poly: Requires two inputs')
end
[ms,ns] = size(SA);
[mp,np] = size(p);
if (mp == 1) & (np == 1)
p = p*ones(size(SA));
elseif (ns == np) & (mp == 1)
p = p(ones(1,ms), :);
elseif (ms == mp) & (np == 1)
p = p(:,ones(1,ns));
elseif (ns == mp) & (np == 1)
p = p.';
p = p(ones(1,ms), :);
elseif (ms == np) & (ns == mp)
p = p.';
elseif (ms == mp) & (ns == np)
% ok
else
error('gsw_pot_enthalpy_ice_freezing_poly: Inputs array dimensions arguments do not agree')
end
if ms == 1
SA = SA.';
p = p.';
transposed = 1;
else
transposed = 0;
end
%--------------------------------------------------------------------------
% Start of the calculation
%--------------------------------------------------------------------------
% This line ensures that SA is non-negative.
SA(SA<0) = 0;
c0 = -3.333548730778702e5;
%
c1 = -1.249490228128056e4;
c2 = 0.891189273859881e4;
c3 = -2.405994758887321e4;
c4 = 3.217945710496395e4;
c5 = -2.374817375023954e4;
c6 = 0.651630522289954e4;
%
c7 = -2.034535061416256e4;
c8 = -0.252580687014574e4;
c9 = 0.021290274388826e4;
%
c10 = 0.315423710959628e3;
c11 = -0.239518382138314e3;
c12 = 0.379377450285737e3;
c13 = 0.822414256564615e3;
c14 = -1.781443326566310e3;
c15 = -0.160245473297112e3;
c16 = -1.923856387576336e3;
c17 = 2.522158744711316e3;
c18 = 0.268604113069031e3;
c19 = 0.967023925992424e3;
c20 = -1.052684746354551e3;
c21 = -0.184147500983788e3;
c22 = -0.263384562367307e3;
SA_r = SA.*1e-2;
x = sqrt(SA_r);
p_r = p.*1e-4;
pot_enthalpy_ice_freezing = c0 + SA_r.*(c1 + x.*(c2 + x.*(c3 + x.*(c4 + x.*(c5 + c6.*x))))) ...
+ p_r.*(c7 + p_r.*(c8 + c9.*p_r)) + SA_r.*p_r.*(c10 + p_r.*(c12 ...
+ p_r.*(c15 + c21.*SA_r)) + SA_r.*(c13 + c17.*p_r + c19.*SA_r) ...
+ x.*(c11 + p_r.*(c14 + c18.*p_r) + SA_r.*(c16 + c20.*p_r + c22.*SA_r)));
% set any values that are out of range to be NaN.
pot_enthalpy_ice_freezing(p > 10000 | SA > 120 | ...
p + SA.*71.428571428571402 > 13571.42857142857) = NaN;
if transposed
pot_enthalpy_ice_freezing = pot_enthalpy_ice_freezing.';
end
end