-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgsw_pt_first_derivatives.m
98 lines (83 loc) · 3.12 KB
/
gsw_pt_first_derivatives.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
function [pt_SA, pt_CT] = gsw_pt_first_derivatives(SA,CT)
% gsw_pt_first_derivatives first derivatives of potential temperature
% =========================================================================
%
% USAGE:
% [pt_SA, pt_CT] = gsw_pt_first_derivatives(SA,CT)
%
% DESCRIPTION:
% Calculates the following two partial derivatives of potential
% temperature (the regular potential temperature whose reference sea
% pressure is 0 dbar)
% (1) pt_SA, the derivative with respect to Absolute Salinity at
% constant Conservative Temperature, and
% (2) pt_CT, the derivative with respect to Conservative Temperature at
% constant Absolute Salinity.
%
% INPUT:
% SA = Absolute Salinity [ g/kg ]
% CT = Conservative Temperature (ITS-90) [ deg C ]
%
% SA & CT need to have the same dimensions.
%
% OUTPUT:
% pt_SA = The derivative of potential temperature with respect to
% Absolute Salinity at constant Conservative Temperature.
% [ K/(g/kg)]
% pt_CT = The derivative of potential temperature with respect to
% Conservative Temperature at constant Absolute Salinity.
% pt_CT is dimensionless. [ unitless ]
%
% AUTHOR:
% Trevor McDougall and Paul Barker [ help@teos-10.org ]
%
% VERSION NUMBER: 3.05 (27th January 2015)
%
% REFERENCES:
% IOC, SCOR and IAPSO, 2010: The international thermodynamic equation of
% seawater - 2010: Calculation and use of thermodynamic properties.
% Intergovernmental Oceanographic Commission, Manuals and Guides No. 56,
% UNESCO (English), 196 pp. Available from http://www.TEOS-10.org.
% See Eqns. (A.12.6), (A.12.3), (P.6) and (P.8) of this TEOS-10 Manual.
%
% This software is available from http://www.TEOS-10.org
%
%==========================================================================
%--------------------------------------------------------------------------
% Check variables and resize if necessary
%--------------------------------------------------------------------------
if (nargin == 3)
error('gsw_pt_first_derivatives: Requires three inputs')
end %if
if ~(nargout == 2)
error('gsw_pt_first_derivatives: Requires two outputs')
end %if
[ms,ns] = size(SA);
[mt,nt] = size(CT);
if (mt ~= ms | nt ~= ns)
error('gsw_pt_first_derivatives: SA and CT must have same dimensions')
end
if ms == 1
SA = SA.';
CT = CT.';
transposed = 1;
else
transposed = 0;
end
%--------------------------------------------------------------------------
% Start of the calculation
%--------------------------------------------------------------------------
cp0 = gsw_cp0; % from Eqn. (3.3.3) of IOC et al. (2010).
pr0 = zeros(size(SA));
pt = gsw_pt_from_CT(SA,CT);
abs_pt = (gsw_T0 + pt);
CT_SA = (gsw_gibbs(1,0,0,SA,pt,pr0) ...
- abs_pt.*gsw_gibbs(1,1,0,SA,pt,pr0))./cp0;
CT_pt = -(abs_pt.*gsw_gibbs(0,2,0,SA,pt,pr0))./cp0;
pt_SA = -CT_SA./CT_pt;
pt_CT = ones(size(CT_pt))./CT_pt;
if transposed
pt_SA = pt_SA.';
pt_CT = pt_CT.';
end
end