-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgsw_sigma3.m
109 lines (95 loc) · 3.78 KB
/
gsw_sigma3.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
function sigma3 = gsw_sigma3(SA,CT)
% gsw_sigma3 potential density anomaly with reference
% sea pressure of 3000 dbar (75-term equation)
%==========================================================================
%
% USAGE:
% sigma3 = gsw_sigma3(SA,CT)
%
% DESCRIPTION:
% Calculates potential density anomaly with reference pressure of 3000
% dbar, this being this particular potential density minus 1000 kg/m^3.
% Temperature. This function uses the computationally-efficient
% expression for specific volume in terms of SA, CT and p (Roquet et al.,
% 2015).
%
% Note that this 75-term equation has been fitted in a restricted range of
% parameter space, and is most accurate inside the "oceanographic funnel"
% described in McDougall et al. (2003). The GSW library function
% "gsw_infunnel(SA,CT,p)" is avaialble to be used if one wants to test if
% some of one's data lies outside this "funnel".
%
% INPUT:
% SA = Absolute Salinity [ g/kg ]
% CT = Conservative Temperature (ITS-90) [ deg C ]
%
% SA & CT need to have the same dimensions.
%
% OUTPUT:
% sigma3 = potential density anomaly with [ kg/m^3 ]
% respect to a reference pressure of 3000 dbar,
% that is, this potential density - 1000 kg/m^3.
%
% AUTHOR:
% Paul Barker and Trevor McDougall [ help@teos-10.org ]
%
% VERSION NUMBER: 3.05 (27th January 2015)
%
% REFERENCES:
% IOC, SCOR and IAPSO, 2010: The international thermodynamic equation of
% seawater - 2010: Calculation and use of thermodynamic properties.
% Intergovernmental Oceanographic Commission, Manuals and Guides No. 56,
% UNESCO (English), 196 pp. Available from http://www.TEOS-10.org
% See Eqn. (A.30.1) of this TEOS-10 Manual.
%
% McDougall, T.J., D.R. Jackett, D.G. Wright and R. Feistel, 2003:
% Accurate and computationally efficient algorithms for potential
% temperature and density of seawater. J. Atmosph. Ocean. Tech., 20,
% pp. 730-741.
%
% Roquet, F., G. Madec, T.J. McDougall, P.M. Barker, 2015: Accurate
% polynomial expressions for the density and specifc volume of seawater
% using the TEOS-10 standard. Ocean Modelling.
%
% The software is available from http://www.TEOS-10.org
%
%==========================================================================
%--------------------------------------------------------------------------
% Check variables and resize if necessary
%--------------------------------------------------------------------------
if ~(nargin == 2)
error('gsw_sigma3: Requires two inputs')
end %if
[ms,ns] = size(SA);
[mt,nt] = size(CT);
if (mt ~= ms | nt ~= ns)
error('gsw_sigma3: SA and CT must have same dimensions')
end
if ms == 1
SA = SA.';
CT = CT.';
transposed = 1;
else
transposed = 0;
end
%--------------------------------------------------------------------------
% Start of the calculation
%--------------------------------------------------------------------------
pr3000 = 3000*ones(size(SA));
rho3 = gsw_rho(SA,CT,pr3000);
%--------------------------------------------------------------------------
% This function calculates rho using the computationally-efficient
% 75-term expression for specific volume in terms of SA, CT and p. If one
% wanted to compute rho with the full TEOS-10 Gibbs function expression for
% specific volume, the following lines of code will enable this.
%
% rho3 = gsw_rho_CT_exact(SA,CT,pr3000);
%
%---------------This is the end of the alternative code -------------------
sigma3 = rho3 - 1000;
if transposed
sigma3 = sigma3.';
end
% The output, being potential density anomaly, has units of kg/m^3 and is
% potential density with 1000 kg/m^3 subtracted from it.
end