-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgsw_specvol_first_derivatives_CT_exact.m
138 lines (120 loc) · 4.74 KB
/
gsw_specvol_first_derivatives_CT_exact.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
function [v_SA, v_CT, v_P] = gsw_specvol_first_derivatives_CT_exact(SA,CT,p)
% gsw_specvol_first_derivatives_CT_exact first order derivatives
% of specific volume
% =========================================================================
%
% USAGE:
% [v_SA, v_CT, v_P] = gsw_specvol_first_derivatives_CT_exact(SA,CT,p)
%
% DESCRIPTION:
% Calculates the following three first-order derivatives of specific
% volume (v),
% (1) v_SA, first-order derivative with respect to Absolute Salinity
% at constant CT & p.
% (2) v_CT, first-order derivative with respect to SA & CT at
% constant p.
% (3) v_P, first-order derivative with respect to CT at constant SA
% and p.
%
% Note that this function uses the full Gibbs function. There is an
% alternative to calling this function, namely
% gsw_specvol_first_derivatives(SA,CT,p) which uses the computationally
% efficient 75 term expression for density in terms of SA, CT and p
% (Roquet et al., 2015).
%
% INPUT:
% SA = Absolute Salinity [ g/kg ]
% CT = Conservative Temperature (ITS-90) [ deg C ]
% p = sea pressure [ dbar ]
% ( i.e. absolute pressure - 10.1325 dbar )
%
% SA & CT need to have the same dimensions.
% p may have dimensions 1x1 or Mx1 or 1xN or MxN, where SA & CT are MxN.
%
% OUTPUT:
% v_SA = The first derivative of specific volume with respect to
% Absolute Salinity at constant CT & p. [ (m^3/kg)(g/kg)^-1 ]
% v_CT = The first derivative of specific volume with respect to
% CT at constant SA and p. [ m^3/(K kg) ]
% v_P = The first derivative of specific volume with respect to
% P at constant SA and CT. [ m^3/(Pa kg) ]
%
% AUTHOR:
% Trevor McDougall and Paul Barker. [ help@teos-10.org ]
%
% VERSION NUMBER: 3.05 (17th January, 2015)
%
% REFERENCES:
% IOC, SCOR and IAPSO, 2010: The international thermodynamic equation of
% seawater - 2010: Calculation and use of thermodynamic properties.
% Intergovernmental Oceanographic Commission, Manuals and Guides No. 56,
% UNESCO (English), 196 pp. Available from http://www.TEOS-10.org.
%
% Roquet, F., G. Madec, T.J. McDougall, P.M. Barker, 2015: Accurate
% polynomial expressions for the density and specifc volume of seawater
% using the TEOS-10 standard. Ocean Modelling.
%
% This software is available from http://www.TEOS-10.org
%
%==========================================================================
%--------------------------------------------------------------------------
% Check variables and resize if necessary
%--------------------------------------------------------------------------
if ~(nargin == 3)
error('gsw_specvol_first_derivatives_CT_exact: Requires three inputs')
end %if
if ~(nargout == 3)
error('gsw_specvol_first_derivatives_CT_exact: Requires three outputs')
end %if
[ms,ns] = size(SA);
[mt,nt] = size(CT);
[mp,np] = size(p);
if (ms ~= mt | ns ~= nt )
error('gsw_specvol_first_derivatives_CT_exact: SA and CT do not have the same dimensions')
end %if
if (mp == 1) & (np == 1) % p scalar - fill to size of SA
p = p*ones(size(SA));
elseif (ns == np) & (mp == 1) % p is row vector,
p = p(ones(1,ms), :); % copy down each column.
elseif (ms == mp) & (np == 1) % p is column vector,
p = p(:,ones(1,ns)); % copy across each row.
elseif (ns == mp) & (np == 1) % p is a transposed row vector,
p = p.'; % transposed then
p = p(ones(1,ms), :); % copy down each column.
elseif (ms == mp) & (ns == np)
% ok
else
error('gsw_specvol_first_derivatives_CT_exact: The dimensions of p do not agree')
end %if
if ms == 1
SA = SA.';
CT = CT.';
p = p.';
transposed = 1;
else
transposed = 0;
end
%--------------------------------------------------------------------------
% Start of the calculation
%--------------------------------------------------------------------------
% This line ensures that SA is non-negative.
SA(SA < 0) = 0;
pr0 = zeros(size(SA));
pt0 = gsw_pt_from_CT(SA,CT);
rec_abs_pt0 = 1./(gsw_T0 + pt0);
t = gsw_pt_from_t(SA,pt0,pr0,p);
rec_gTT = 1./gsw_gibbs(0,2,0,SA,t,p);
gSAP = gsw_gibbs(1,0,1,SA,t,p);
gTP = gsw_gibbs(0,1,1,SA,t,p);
gSAT = gsw_gibbs(1,1,0,SA,t,p);
gSA_pt0 = gsw_gibbs(1,0,0,SA,pt0,pr0);
gPP = gsw_gibbs(0,0,2,SA,t,p);
v_CT = -gsw_cp0.*gTP.*rec_abs_pt0.*rec_gTT;
v_SA = gSAP - gTP.*(gSAT - rec_abs_pt0.*gSA_pt0).*rec_gTT;
v_P = gPP - gTP.*gTP.*rec_gTT;
if transposed
v_SA = v_SA.';
v_CT = v_CT.';
v_P = v_P.';
end
end