-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathtrain.py
313 lines (253 loc) · 13.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
import os
import torch
torch.manual_seed(233)
from torch import nn
from torch import optim
from torch.optim.lr_scheduler import CosineAnnealingLR
from torch.autograd import Variable
from torch.utils.data import DataLoader
from tqdm import tqdm
import click
import numpy as np
np.random.seed(233)
import random
random.seed(233)
from model.bisenet import BiSeNetV1, OhemCELoss
from dataset.camvid import CamVid
from dataset.cityscapes import CityScapes
from evaluation import EvalConstRes
import torch.nn.functional as F
from model.warmup_scheduler import GradualWarmupScheduler
def seed_worker(worker_id):
worker_seed = torch.initial_seed() % 2**32
np.random.seed(worker_seed)
random.seed(worker_seed)
def build_network(models, snapshot, backend):
epoch = 0
backend = backend.lower()
net = models[backend]()
net = nn.DataParallel(net)
if snapshot is not None:
# _, epoch = os.path.basename(snapshot).split('_')
# epoch = int(epoch)
net.load_state_dict(torch.load(snapshot))
print("Snapshot loaded from {}".format(snapshot))
net = net.cuda()
return net, epoch
def load_decoder(net, path):
high_res_state = torch.load(path)
new_state = {}
new_state['weight'] = high_res_state['module.final_conv.weight']
new_state['bias'] = high_res_state['module.final_conv.bias']
# print(new_state['bias'])
net.module.final_conv.load_state_dict(new_state)
return net
@click.command()
@click.option('--data-path', type=str, help='Path to dataset folder')
@click.option('--models-path', type=str, help='Path for storing model snapshots')
@click.option('--backend', type=str, default='resnet34', help='Feature extractor')
@click.option('--snapshot', type=str, default=None, help='Path to pretrained weights')
@click.option('--batch-size', type=int, default=16)
@click.option('--alpha', type=float, default=1.0, help='Coefficient for classification loss term')
@click.option('--epochs', type=int, default=20, help='Number of training epochs to run')
@click.option('--gpu', type=str, default='0', help='List of GPUs for parallel training, e.g. 0,1,2,3')
@click.option('--start-lr', type=float, default=0.001)
@click.option('--scale', type=float, default=1.0, help='scale param for augmentation')
@click.option('--feat_loss', type=str, default=None, help='type of feature loss')
@click.option('--dataset', type=str, default='camvid', help='dataset')
@click.option('--model_type', type=str, default='pspnet', help='model that we apply')
def train(data_path, models_path, backend, snapshot, batch_size, alpha, epochs, start_lr, gpu, scale, feat_loss, dataset, model_type):
os.environ["CUDA_VISIBLE_DEVICES"] = gpu
# data_path = os.path.abspath(os.path.expanduser(data_path))
# models_path = os.path.abspath(os.path.expanduser(models_path))
os.makedirs(models_path, exist_ok=True)
'''
To follow this training routine you need a DataLoader that yields the tuples of the following format:
(Bx3xHxW FloatTensor x, BxHxW LongTensor y, BxN LongTensor y_cls) where
x - batch of input images,
y - batch of groung truth seg maps,
y_cls - batch of 1D tensors of dimensionality N: N total number of classes,
y_cls[i, T] = 1 if class T is present in image i, 0 otherwise
'''
train_loader, class_weights = None, None
if dataset == 'camvid':
cropsize = [960, 720]
randomscale = (0.5, 0.675, 0.75, 0.875, 1.0, 1.25, 1.5, 1.75, 2.0, 2.5)
# randomscale = (1.0,)
train_ds = CamVid(data_path, cropsize=cropsize, mode='train', randomscale=randomscale)
val_ds = CamVid(data_path, mode='val')
class_num = 12
train_workers = 8
val_workers = 4
elif dataset == 'cityscapes':
# cropsize = [1024, 512]
# cropsize = [1536, 768]
cropsize = [512, 1024]
randomscale = (0.5, 0.75, 0.875, 1.0, 1.25, 1.5, 1.75, 2.0)
# randomscale = (0.125, 0.25, 0.375, 0.5, 0.75, 1.0, 1.25, 1.5)
# Pretend that all images from the data loader are 0.75x images.
# In our experiment, we only train & test models with resolutions lower than 0.75
base_scale = 1.0
scale = scale/base_scale
# randomscale = (1.0,)
train_ds = CityScapes(data_path, model_type=model_type, cropsize=cropsize, mode='train', randomscale=randomscale)
val_ds = CityScapes(data_path, model_type=model_type, mode='val')
class_num = 19
train_workers = 16
val_workers = 4
train_loader = DataLoader(train_ds,
batch_size = batch_size,
shuffle = True,
num_workers = train_workers,
worker_init_fn=seed_worker,
pin_memory = False,
drop_last = True)
val_loader = DataLoader(val_ds,
batch_size = 1,
shuffle = False,
num_workers = val_workers,
worker_init_fn=seed_worker,
pin_memory = False,
drop_last = True)
if model_type == 'pspnet':
from model.pspnet import PSPNet
if dataset == 'camvid':
models = {
'squeezenet': lambda: PSPNet(sizes=(1, 2, 3, 6), n_classes=class_num, psp_size=512, deep_features_size=256, backend='squeezenet'),
'densenet': lambda: PSPNet(sizes=(1, 2, 3, 6), n_classes=class_num, psp_size=1024, deep_features_size=512, backend='densenet'),
'resnet18': lambda: PSPNet(sizes=(1, 2, 3, 6), n_classes=class_num, psp_size=512, deep_features_size=256, backend='resnet18'),
'resnet34': lambda: PSPNet(sizes=(1, 2, 3, 6), n_classes=class_num, psp_size=512, deep_features_size=256, backend='resnet34'),
'resnet50': lambda: PSPNet(sizes=(1, 2, 3, 6), n_classes=class_num, psp_size=2048, deep_features_size=1024, backend='resnet50'),
'resnet101': lambda: PSPNet(sizes=(1, 2, 3, 6), n_classes=class_num, psp_size=2048, deep_features_size=1024, backend='resnet101'),
'resnet152': lambda: PSPNet(sizes=(1, 2, 3, 6), n_classes=class_num, psp_size=2048, deep_features_size=1024, backend='resnet152')
}
net, starting_epoch = build_network(models, snapshot, backend)
elif dataset == 'cityscapes':
from model.pspnet_semseg import PSPNet
models = {
'resnet18': lambda: PSPNet(bins=(1, 2, 3, 6), classes=class_num, feat_dim=512, layers=18),
'resnet50': lambda: PSPNet(bins=(1, 2, 3, 6), classes=class_num, feat_dim=2048, layers=50),
}
net, starting_epoch = build_network(models, snapshot, backend)
elif model_type =='bisenet':
starting_epoch = 0
if backend == 'resnet18' or backend == 'resnet34':
net = BiSeNetV1(n_classes=class_num, backend=backend)
net = nn.DataParallel(net)
net = net.cuda()
else:
raise NotImplementedError
if feat_loss:
if dataset == 'camvid':
if model_type == 'pspnet':
net = load_decoder(net, "./exp/pspnet18-camvid/scale1.0_epoch100_pure/PSPNet_resnet18_1.0_92_.pth")
highres_net, _ = build_network(models, "./exp/pspnet18-camvid/scale1.0_epoch100_pure/PSPNet_resnet18_1.0_92_.pth", backend)
else:
raise NotImplementedError
if not snapshot:
# import pdb; pdb.set_trace()
if feat_loss:
if model_type == 'pspnet':
for param in net.module.final_conv.parameters():
param.requires_grad = False
else:
raise NotImplementedError
optimizer = optim.Adam(net.parameters(), lr=start_lr)
scheduler = CosineAnnealingLR(optimizer, T_max=epochs*(len(train_ds) // batch_size + 1))
if dataset=='cityscapes':
optimizer = optim.SGD(net.parameters(), lr=start_lr, momentum=0.9,weight_decay=5e-4)
scheduler = CosineAnnealingLR(optimizer, T_max=epochs*(len(train_ds) // batch_size + 1))
# scheduler = PolynomialLRDecay(optimizer, max_decay_steps=epochs*(len(train_ds) // batch_size + 1), end_learning_rate=0.0001, power=0.9)
else:
max_iter = epochs*(len(train_ds) // batch_size + 1)
warmup_start_lr = 1e-5
warmup_steps = 500
optimizer = optim.Adam(net.parameters(), lr=warmup_start_lr)
cosine_scheduler = CosineAnnealingLR(optimizer, T_max=max_iter)
scheduler = GradualWarmupScheduler(optimizer, start_lr/warmup_start_lr, warmup_steps, cosine_scheduler)
evaluator = EvalConstRes(scale=scale, ignore_label=255)
max_mIoU = 0.0
for epoch in range(starting_epoch, starting_epoch + epochs):
if model_type == 'pspnet':
seg_criterion = nn.NLLLoss(weight=class_weights, ignore_index=255)
cls_criterion = nn.BCEWithLogitsLoss(weight=class_weights)
if dataset == 'cityscapes':
seg_criterion = nn.CrossEntropyLoss(ignore_index=255)
elif model_type == 'bisenet':
seg_criterion = OhemCELoss(0.7, ignore_lb=255)
if feat_loss == 'mse':
feat_criterion = nn.MSELoss()
elif feat_loss == "KL":
feat_criterion = nn.KLDivLoss(log_target=True, reduction='mean')
epoch_losses = []
train_iterator = tqdm(train_loader, total=len(train_ds) // batch_size + 1)
net.train()
if feat_loss:
if model_type == 'pspnet':
highres_net.eval()
else:
raise NotImplementedError
steps = 0
for x, y, y_cls in train_iterator:
# import pdb; pdb.set_trace()
# print(net.module.final_conv.bias)
steps += batch_size
optimizer.zero_grad()
with torch.no_grad():
if feat_loss:
if model_type == 'pspnet':
_, _, highres_p = highres_net(Variable(x).cuda())
downsample_highres_p = F.interpolate(highres_p, [int(cropsize[1]*scale), int(cropsize[0]*scale)], mode='bilinear', align_corners=True)
else:
raise NotImplementedError
x = F.interpolate(x, [int(cropsize[1]*scale), int(cropsize[0]*scale)], mode='bilinear', align_corners=True)
x, y, y_cls = Variable(x).cuda(), Variable(y).cuda(), Variable(y_cls).cuda()
if model_type == 'pspnet':
if dataset=='camvid':
out, out_cls, out_p = net(x)
out = F.interpolate(out, [cropsize[1], cropsize[0]], mode='bilinear', align_corners=True)
seg_loss, cls_loss = seg_criterion(out, y), cls_criterion(out_cls, y_cls)
loss = seg_loss + alpha * cls_loss
elif dataset=='cityscapes':
out, aux = net(x)
# import pdb; pdb.set_trace()
out = F.interpolate(out, [cropsize[1], cropsize[0]], mode='bilinear', align_corners=True)
aux = F.interpolate(aux, [cropsize[1], cropsize[0]], mode='bilinear', align_corners=True)
loss = seg_criterion(out,y) + seg_criterion(aux,y)*0.4
elif model_type == 'bisenet':
out, out_feat16, out_feat32, out_p = net(x)
out = F.interpolate(out, [cropsize[1], cropsize[0]], mode='bilinear', align_corners=True)
out_feat16 = F.interpolate(out_feat16, [cropsize[1], cropsize[0]], mode='bilinear', align_corners=True)
out_feat32 = F.interpolate(out_feat32, [cropsize[1], cropsize[0]], mode='bilinear', align_corners=True)
seg_loss, seg_loss16, seg_loss32 = seg_criterion(out, y), seg_criterion(out_feat16, y), seg_criterion(out_feat32, y)
loss = seg_loss + seg_loss16 + seg_loss32
else:
raise NotImplementedError
if feat_loss == 'mse':
# import pdb; pdb.set_trace()
loss2 = feat_criterion(downsample_highres_p, out_p)
loss = loss2 + loss
elif feat_loss == 'KL':
loss2 = feat_criterion(downsample_highres_p, out_p)
loss = loss2 + loss
# epoch_losses.append(loss.data[0])
epoch_losses.append(loss.item())
if dataset=='cityscapes':
status = '[{0}] loss = {1:0.5f} avg = {2:0.5f}, LR = {3:0.7f}'.format(
epoch + 1, loss.item(), np.mean(epoch_losses), scheduler.get_lr()[0])
else:
status = '[{0}] loss = {1:0.5f} avg = {2:0.5f}, LR = {3:0.7f}'.format(
epoch + 1, loss.item(), np.mean(epoch_losses), scheduler.get_last_lr()[0])
train_iterator.set_description(status)
loss.backward()
optimizer.step()
scheduler.step()
net.eval()
mIOU = evaluator(net, val_loader, class_num)
print("epoch %d: val mIoU %.4f, max mIoU %.4f"%(epoch, mIOU, max_mIoU))
if mIOU > max_mIoU:
max_mIoU = mIOU
torch.save(net.state_dict(), os.path.join(models_path, '_'.join(["PSPNet", backend, str(scale), str(epoch + 1), '.pth'])))
train_loss = np.mean(epoch_losses)
if __name__ == '__main__':
train()