You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
|-------------------------------------------------------------------------------------------------------|
*** Running (`tmp_data.pt`, `unsup_graphsage`, `node_classification_dw`, `unsup_graphsage_mw`)
|-------------------------------------------------------------------------------------------------------|
Model Parameters: 1568
0%| | 0/500 [00:00<?, ?it/s]OMP: Info #276: omp_set_nested routine deprecated, please use omp_set_max_active_levels instead.
0%| | 0/500 [00:47<?, ?it/s]
Traceback (most recent call last):
File "generate_emb.py", line 12, in <module>
outputs = generator(edge_index, x=x)
File "/home/chiliu/miniconda3/envs/cogdl/lib/python3.7/site-packages/cogdl/pipelines.py", line 204, in __call__
model = train(self.args)
File "/home/chiliu/miniconda3/envs/cogdl/lib/python3.7/site-packages/cogdl/experiments.py", line 216, in train
result = trainer.run(model_wrapper, dataset_wrapper)
File "/home/chiliu/miniconda3/envs/cogdl/lib/python3.7/site-packages/cogdl/trainer/trainer.py", line 188, in run
self.train(self.devices[0], model_w, dataset_w)
File "/home/chiliu/miniconda3/envs/cogdl/lib/python3.7/site-packages/cogdl/trainer/trainer.py", line 334, in train
training_loss = self.train_step(model_w, train_loader, optimizers, lr_schedulers, rank, scaler)
File "/home/chiliu/miniconda3/envs/cogdl/lib/python3.7/site-packages/cogdl/trainer/trainer.py", line 468, in train_step
loss = model_w.on_train_step(batch)
File "/home/chiliu/miniconda3/envs/cogdl/lib/python3.7/site-packages/cogdl/wrappers/model_wrapper/base_model_wrapper.py", line 73, in on_train_step
return self.train_step(*args, **kwargs)
File "/home/chiliu/miniconda3/envs/cogdl/lib/python3.7/site-packages/cogdl/wrappers/model_wrapper/node_classification/unsup_graphsage_mw.py", line 43, in train_step
neg_loss = -torch.log(torch.sigmoid(-torch.sum(x.unsqueeze(1).repeat(1, self.num_negative_samples, 1) * x[self.negative_samples], dim=-1))).mean()
RuntimeError: CUDA out of memory. Tried to allocate 11.02 GiB (GPU 0; 39.45 GiB total capacity; 29.23 GiB already allocated; 8.01 GiB free; 30.03 GiB reserved in total by PyTorch)
To Reproduce
Steps to reproduce the behavior:
from cogdl import pipeline
# build a pipeline for generating embeddings using unsupervised GNNs
# pass model name and num_features with its hyper-parameters to this API
import pandas as pd
graph = pd.read_csv("G1.weighted.edgelist", header=None, sep=' ')
edge_index = graph[[0,1]].to_numpy()
edge_weight = graph[[2]].to_numpy(dtype=np.float16)
e = pd.read_csv("vertex_embeddings.csv", header=None, sep=' ')
x = e.iloc[:, :32].to_numpy(dtype=np.float16)
generator = pipeline("generate-emb", model="unsup_graphsage", no_test=True, num_features=32, hidden_size=16, walk_length=2, sample_size=[4, 2], is_large=True)
outputs = generator(edge_index, x=x)
pd.DataFrame("embeddings.csv")
the graph is 6M nodes, 8M edges on A100 GPU 40Gb
Expected behavior
Environment
CogDL version: 0.5.3
OS (e.g., Linux): ubuntu
Python version: 3.7
PyTorch version: 1.9.1.post3
CUDA/cuDNN version (if applicable): 11.7
Any other relevant information:
Additional context
The text was updated successfully, but these errors were encountered:
🐛 Bug
To Reproduce
Steps to reproduce the behavior:
the graph is 6M nodes, 8M edges on A100 GPU 40Gb
Expected behavior
Environment
Additional context
The text was updated successfully, but these errors were encountered: