-
Notifications
You must be signed in to change notification settings - Fork 38
/
Copy patheval_vm.py
73 lines (62 loc) · 2.63 KB
/
eval_vm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import json
import re
import os
import pathlib
import argparse
from utils.json_operator import *
from utils.verify_MATH import extract_answer
def parse_args():
base_args = argparse.ArgumentParser()
base_args.add_argument('--task_name', type=str, default='gsm_8k')
base_args.add_argument('--file', type=str, default='gsm8k_all') # json
base_args.add_argument('--propose_method', type=str, choices=['gpt', 'glm', 'llama', 'mistral', 'local'],
default='mistral')
base_args.add_argument('--generate_num', type=int, default=256)
base_args.add_argument('--evaluate_method', type=str, choices=['best', 'weighted'], default='best')
arguments = base_args.parse_args()
return arguments
def eval_vm(arguments):
base_dir = os.getcwd()
out_file = f'{base_dir}/generation/vm/{arguments.task_name}/{arguments.file}/cot/{arguments.propose_method}_local_vm_critic_all.json'
datas = read_json(out_file)
idx = 0
corr_num = 0
total_num = 0
while idx < len(datas):
total_num += 1
cur_datas = datas[idx:idx + arguments.generate_num]
idx += arguments.generate_num
if arguments.evaluate_method == 'best':
sorted_cur_datas = sorted(cur_datas, key=lambda x: x['vm_critic'], reverse=True)
i = 0
while not sorted_cur_datas[i]['summary'] and i < len(sorted_cur_datas) - 1:
i += 1
selected_data = sorted_cur_datas[i]
if selected_data['accurate']:
corr_num += 1
elif arguments.evaluate_method == 'weighted':
all_answers = {} # {answer: [idx, summ, value]}
for i, data in enumerate(cur_datas):
summ = data['summary']
if not summ:
continue
extracted_answer = extract_answer(summ)
if extracted_answer in all_answers.keys():
all_answers[extracted_answer][2] += data['vm_critic']
else:
all_answers[extracted_answer] = [i, summ, data['vm_critic']]
if not all_answers:
continue
best_answer = max(all_answers.values(), key=lambda x: x[2])
best_id = best_answer[0]
if cur_datas[best_id]['accurate']:
corr_num += 1
else:
print('evaluate_method not implemented')
raise NotImplementedError
print(f'Test accuracy:{corr_num / total_num}')
print(f'Total number of samples tested:{total_num}')
print(f'Test the correct number of samples:{corr_num}')
if __name__ == '__main__':
args = parse_args()
eval_vm(args)