-
Notifications
You must be signed in to change notification settings - Fork 38
/
Copy pathevaluate.py
124 lines (112 loc) · 6.31 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import os
import pathlib
from CoT.task import CoT_Task
from ToT.task import ToT_Task
from MCTS.task import MCTS_Task
import argparse
from utils.visualize import visualize
from utils.json_operator import *
from utils.verify_answer import *
from utils.self_consistency import get_consistency_output_scibench
def run(arguments):
print('-'*30, 'Begin testing', '-'*30, '\n')
file = f'data/{arguments.task_name}/{arguments.file}.json'
try:
data_list = read_json(file)
data_len = len(data_list)
except Exception as e:
print(f'File must be standardized json!\nError type:{e}\n')
return
assert data_len > 0, "Data list is empty!\n"
assert 'content' in data_list[0].keys() and 'answer' in data_list[0].keys(), "Key error, Make sure json object contain correct keys!\n"
output_list = []
correct_count = 0
for i in range(data_len):
# solve
print(f'Begin to solve the problem {i+1}...\n')
data = data_list[i]['content']
answer = data_list[i]['answer']
if arguments.mode == 'cot':
Task = CoT_Task(data, arguments.propose_method, arguments.value_method, arguments.temperature, evaluate=arguments.evaluate)
if arguments.consistency:
outputs = []
for cnt in range(3):
output = Task.run()
outputs.append(output)
output = get_consistency_output_scibench(outputs)
else:
output = Task.run()
elif arguments.mode == 'tot':
Task = ToT_Task(data, arguments.propose_method, arguments.value_method, arguments.algorithm,
arguments.branch, arguments.select_branch, arguments.max_depth, arguments.end_gate,
arguments.select_method, arguments.temperature, use_case_prompt=arguments.use_case_prompt,
low=arguments.low, high=arguments.high, evaluate=arguments.evaluate)
output, root = Task.run()
if arguments.visualize:
visualize(root, Task, arguments.task_name, arguments.file, i + 1)
else:
Task = MCTS_Task(data, arguments.propose_method, arguments.value_method, arguments.branch, arguments.end_gate,
arguments.roll_policy, arguments.roll_branch, arguments.roll_forward_steps, arguments.time_limit,
arguments.iteration_limit, arguments.exploration_constant, arguments.alpha, arguments.inf,
arguments.temperature, use_case_prompt=arguments.use_case_prompt, use_reflection=arguments.use_reflection,
low=arguments.low, high=arguments.high, evaluate=arguments.evaluate)
output, root = Task.run()
if arguments.visualize:
visualize(root, Task, arguments.task_name, arguments.file, i + 1)
# evaluate metrics
if arguments.evaluate:
result = verify_float(answer, output['summary'])
output.update({'answer': answer, 'accurate': result})
if result:
print(f'The answer of problem {i+1} is correct.\n')
correct_count += 1
else:
print(f'The answer of problem {i+1} is wrong.\n')
print(f'The solution to problem {i+1} is complete.\n')
# output
base_dir = os.getcwd()
output_dir = pathlib.Path(f'{base_dir}/outputs/{arguments.task_name}/{arguments.file}/{Task.mode}')
output_file = f'{base_dir}/outputs/{arguments.task_name}/{arguments.file}/{Task.mode}/{Task.propose_method}_{Task.value_method}.json'
output_list.append(output)
pathlib.Path.mkdir(output_dir, exist_ok=True, parents=True)
dump_json(output_file, output_list)
print('_' * 60)
# accuracy
if args.evaluate:
print(f'Test accuracy:{correct_count / data_len}\n')
print(f'Correct number of problems:{correct_count}\nTotal number of questions:{data_len}\n')
print('_' * 60)
def parse_args():
base_args = argparse.ArgumentParser()
base_args.add_argument('--task_name', type=str, default='scibench')
base_args.add_argument('--file', type=str, default='thermo_standardized') # json
base_args.add_argument('--propose_method', type=str, choices=['gpt', 'glm', 'llama', 'local'], default='glm')
base_args.add_argument('--value_method', type=str, choices=['gpt', 'glm', 'local'], default='local')
base_args.add_argument('--mode', type=str, choices=['cot', 'tot', 'mcts'], default='tot')
base_args.add_argument('--temperature', type=float, default=0.7)
base_args.add_argument('--time_limit', type=int, default=None)
base_args.add_argument('--iteration_limit', type=int, default=100)
base_args.add_argument('--roll_policy', type=str, choices=['random', 'greedy'], default='greedy')
base_args.add_argument('--exploration_constant', type=float, default=0.4)
base_args.add_argument('--roll_forward_steps', type=int, default=2)
base_args.add_argument('--end_gate', type=float, default=0.9) # End threshold
base_args.add_argument('--branch', type=int, default=3)
base_args.add_argument('--roll_branch', type=int, default=1)
base_args.add_argument('--inf', type=float, default=0.8)
base_args.add_argument('--evaluate', type=str, default='scibench') # Whether to evaluate (empty means no evaluation)
base_args.add_argument('--alpha', type=float, default=0.5)
base_args.add_argument('--visualize', type=bool, default=False) # visualization
base_args.add_argument('--use_case_prompt', type=bool, default=False) # Use sample prompts
base_args.add_argument('--use_reflection', type=str, choices=['simple', 'common'], default='simple') # Use reflective mode
base_args.add_argument('--low', type=float, default=0)
base_args.add_argument('--high', type=float, default=1)
base_args.add_argument('--algorithm', type=str, choices=['dfs', 'bfs'], default='dfs')
base_args.add_argument('--select_branch', type=int, default=2)
base_args.add_argument('--max_depth', type=int, default=8)
base_args.add_argument('--select_method', type=str, choices=['greedy', 'sample'], default='greedy')
base_args.add_argument('--consistency', type=bool, default=True)
arguments = base_args.parse_args()
return arguments
if __name__ == '__main__':
args = parse_args()
run(args)