-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathlipschitz_constant.py
37 lines (30 loc) · 1.18 KB
/
lipschitz_constant.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
"""
From ChatGPT with "write a python program to estimate the Lipschitz constant of a function"
Adapted to multidimensional functions
Gerald Schuller, August 2023
"""
import numpy as np
def lipschitz_constant(f, x0, diameter=1e-3, num_samples=10):
"""
Estimate the Lipschitz constant of a function f over the area x+diameter, where x0 is a multidimensional point.
Parameters:
- f: The function for which to estimate the Lipschitz constant.
- x0, diameter: The region over which to estimate the Lipschitz constant.
- num_samples: The number of samples to use for the estimation.
Returns:
- L: The estimated Lipschitz constant.
"""
num_samples
L = 0
for i in range(num_samples):
dx = np.random.normal(scale= diameter*np.ones(x0.shape)) #normal distributed random sample
L_i = abs(f(x0+dx) - f(x0)) / np.linalg.norm(dx)
L = max(L, L_i)
return L
if __name__ == '__main__':
# Example usage:
f = lambda x: x**2
x0=np.array(1) #x0 needs to be a numpy array
diameter=1e-3
L = lipschitz_constant(f, x0, diameter=diameter)
print(f"Lipschitz constant of f over [{x0} +- {diameter}] is approximately {L:.2f}")