-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathoptimfuncMDCT.py
75 lines (66 loc) · 2.28 KB
/
optimfuncMDCT.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
# -*- coding: utf-8 -*-
"""
Created on Thu Feb 04 19:33:24 2016
from Matlab
@author: Tobias Heinl, Gerald Schuller
function for optimizing an MDCT type filter bank.
x: unknown matirx coefficients, x: 1-d vector!
"""
def optimfuncMDCT(x, N):
"""Computes the error function for the filter bank optimization
for coefficients x, a 1-d array, N: Number of subbands"""
import numpy as np
import scipy.signal as sig
from polmatmult import polmatmult
from Dmatrix import Dmatrix
from symFmatrix import symFmatrix
from Fa2h import Fa2h
#x = np.transpose(x)
Fa = symFmatrix(x)
D = Dmatrix(N)
Faz = polmatmult(Fa,D)
h = Fa2h(Faz)
h = np.hstack(h)
w, H = sig.freqz(h,1,1024)
pb = int(1024/N/2)
Hdes = np.concatenate((np.ones((pb,1)) , np.zeros(((1024-pb, 1)))), axis = 0)
tb = np.round(pb)
weights = np.concatenate((np.ones((pb,1)) , np.zeros((tb, 1)), 1000*np.ones((1024-pb-tb,1))), axis = 0)
err = np.sum(np.abs(H-Hdes)*weights)
return err
if __name__ == '__main__': #run the optimization
import numpy as np
import scipy as sp
import scipy.optimize
import scipy.signal
import matplotlib.pyplot as plt
from symFmatrix import symFmatrix
from polmatmult import polmatmult
from Dmatrix import Dmatrix
from Fa2h import Fa2h
N=4
#Start optimization with some starting point:
x0 = -np.random.rand(int(1.5*N))
print("starting error=", optimfuncMDCT(x0, N)) #test optim. function
xmin = sp.optimize.minimize(optimfuncMDCT, x0, args=(N,), options={'disp':True})
print("optimized coefficients=", xmin.x)
np.savetxt("MDCTcoeff.txt", xmin.x)
print("error after optim.=", optimfuncMDCT(xmin.x, N))
#Baseband Impulse Response:
Fa = symFmatrix(xmin.x)
Faz = polmatmult(Fa, Dmatrix(N))
h = Fa2h(Faz)
print("h=", h)
plt.plot(h)
plt.xlabel('Sample')
plt.ylabel('Value')
plt.title('Baseband Impulse Response of our Optimized MDCT Filter Bank')
plt.figure()
#Magnitude Response:
w,H=sp.signal.freqz(h)
plt.plot(w,20*np.log10(abs(H)))
plt.axis([0, 3.14, -60,20])
plt.xlabel('Normalized Frequency')
plt.ylabel('Magnitude (dB)')
plt.title('Mag. Frequency Response of the MDCT Filter Bank')
plt.show()