-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTP_resnet18_5.py
160 lines (123 loc) · 6.16 KB
/
TP_resnet18_5.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import os
import torchvision.models as models
import csv
from TP_resnet18 import train, test, ImageFolderWithPaths, save_samples
'''
Source code for experiment 5 (No edge sharpening)
********************************* Updates 2020/05/12 *********************************
1. Different mean and standard deviation for each set
'''
# T1
mean_1 = [0.55619025, 0.54442054, 0.5668326]
std_1 = [0.15338533, 0.14782225, 0.15213947]
# T2
mean_2 = [0.55744743, 0.5457371, 0.5683189]
std_2 = [0.15367888, 0.14802714, 0.15239693]
# T3
mean_3 = [0.55702317, 0.54563445, 0.5682874]
std_3 = [0.15336181, 0.14766185, 0.15203352]
# T4
mean_4 = [0.55669624, 0.5450452, 0.56758934]
std_4 = [0.1546661, 0.14899929, 0.15342303]
# T5
mean_5 = [0.55679774, 0.54509205, 0.56761116]
std_5 = [0.15356685, 0.14808999, 0.15250486]
train_transforms = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=mean_1, std=std_1)
])
test_transforms = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=mean_1, std=std_1)
])
# Controllers
x = 1 # T1 = 1, T2 =2 , ..., T5 = 5
BATCH_SIZE = 128
EPOCHS = 200
istrain = False
istest = False
Set = 'set{}'.format(x)
SAVE_DIR = 'models/resnet18_TP5/{}'.format(Set)
MODEL_SAVE_DIR = 'models/resnet18_TP5/{}'.format(Set)
TRAIN_LOG = "resnet18_TP5.csv"
TEST_LOG = "resnet18_TP5_test.csv"
# if directory 'models' does not exist, create a new directory called 'models'
if not os.path.isdir(f'{SAVE_DIR}'):
os.makedirs(f'{SAVE_DIR}')
device = torch.device('cuda')
print('Running on GPU')
TRAIN_DIR = 'trypanosome_data/experiment_5/{}/train'.format(Set)
VALID_DIR = 'trypanosome_data/experiment_5/{}/valid'.format(Set)
TEST_DIR = 'trypanosome_data/experiment_5/{}/test'.format(Set)
train_data = datasets.ImageFolder(TRAIN_DIR, train_transforms)
valid_data = datasets.ImageFolder(VALID_DIR, test_transforms)
test_data = ImageFolderWithPaths(TEST_DIR, test_transforms)
print('Number of training examples: {}'.format(len(train_data)))
print('Number of validation examples: {}'.format(len(valid_data)))
print('Number of testing examples: {}\n'.format(len(test_data)))
train_iterator = torch.utils.data.DataLoader(train_data, shuffle=True, batch_size=BATCH_SIZE)
valid_iterator = torch.utils.data.DataLoader(valid_data, batch_size=BATCH_SIZE)
test_iterator = torch.utils.data.DataLoader(test_data, batch_size=BATCH_SIZE)
model = models.resnet18(pretrained=False).to(device)
for param in model.parameters():
param.requires_grad = False
# out_features = number of classes in the dataset
model.fc = nn.Linear(in_features=512, out_features=2).to(device)
criterion = nn.CrossEntropyLoss()
def run_train(model, istrain, SAVE_DIR, TRAIN_LOG, Set):
if istrain:
best_valid_acc = 0
# For SGD with adaptive lr
# lr = 0.1
# optimizer = optim.SGD(model.parameters(), lr=lr, momentum=0.9, weight_decay=1e-4)
# scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min', verbose=True)
# For Adam optimizer with lr=0.001, batch=128
lr = 0.001
optimizer = optim.Adam(model.parameters(), lr=lr)
with open(TRAIN_LOG, "w", newline='') as csv_file:
write = csv.writer(csv_file)
write.writerow(['Epoch', 'Train_loss', 'Train_acc', 'Valid_loss', 'Valid_acc'])
for epoch in range(EPOCHS):
train_loss, train_acc, valid_loss, valid_acc = train(model, device, train_iterator, valid_iterator, optimizer, criterion)
MODEL_SAVE_PATH = os.path.join(SAVE_DIR, 'resnet18_TP5_epoch{0:03d}.pt'.format(epoch+1))
# scheduler.step(valid_loss)
if valid_acc > best_valid_acc:
best_valid_acc = valid_acc
torch.save(model.state_dict(), MODEL_SAVE_PATH)
print(
'{0} - Epoch: {1:0>2}, Train Loss: {2:0.4f}, Train Acc: {3:0.4f}, '
'Val. Loss: {4:0.4f}, Val. Acc: {5:0.4f}'.format(Set, epoch + 1, train_loss,
train_acc, valid_loss, valid_acc))
write.writerow([epoch+1, train_loss, train_acc, valid_loss, valid_acc])
csv_file.close()
def run_test(model, istest, MODEL_SAVE_DIR, TEST_LOG, sample=False):
if not istest:
return
model_names = sorted(os.listdir(MODEL_SAVE_DIR))
with open(TEST_LOG, "a") as j:
for model_name in model_names:
model.load_state_dict(torch.load(os.path.join(MODEL_SAVE_DIR, model_name)))
test_loss, test_acc, sensitivity, specificity, PPV, NPV, samples = test(model, device, test_iterator, criterion)
print('{0}, Test Loss: {1:0.4f}, Test Acc: {2:0.4f}, Sensitivity: {3:0.4f},'
' Specificity: {4:0.4f}, PPV: {5:0.4f}, NPV: {6:0.4f}'
.format(model_name, test_loss, test_acc, sensitivity, specificity, PPV, NPV))
j.write('{0}, Test Loss: {1:0.4f}, Test Acc: {2:0.4f}, Sensitivity: {3:0.4f},'
' Specificity: {4:0.4f}, PPV: {5:0.4f}, NPV: {6:0.4f}\n'
.format(model_name, test_loss, test_acc, sensitivity, specificity, PPV, NPV))
if sample:
sample_dir = os.path.join('sample', '{}_{}'.format(Set, model_name))
os.mkdir(sample_dir)
# samples = [(path of an image, 'TP' or 'TN' or 'FP' or 'FN', probability), ...]
p = [0.7, 0.99] # set lower and upper bound
# sorted([i for i in samples if i[-1] > p[0] and i[-1] < p[1] and i[1] == 'FP'], key=lambda x: x[2])
organized_samples = [i for i in samples if i[-1] > p[0] and i[-1] < p[1] and i[1] == 'FP']
# 'sample/model_name' is a directory to save samples
save_samples(organized_samples, sample_dir)
# Train and test a models
run_train(model, istrain, SAVE_DIR, TRAIN_LOG, Set)
run_test(model, istest, MODEL_SAVE_DIR, TEST_LOG, True)