-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmean_std.py
77 lines (58 loc) · 1.9 KB
/
mean_std.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import torch
import numpy as np
BATCH_SIZE = 64
# DIR = 'trypanosome_data/experiment_5/set5/train'
# DIR2 = 'trypanosome_data/experiment_5/set5/valid'
# DIR3 = 'trypanosome_data/experiment_5/set5/train'
DIR = 'Sharpened/set5/train'
DIR2 = 'Sharpened/set5/valid'
DIR3 = 'Sharpened/set5/train'
# adjusted into a range [0, 1]
transforms = transforms.Compose([transforms.ToTensor()])
train_data = datasets.ImageFolder(DIR, transforms)
valid_data = datasets.ImageFolder(DIR2, transforms)
test_data = datasets.ImageFolder(DIR3, transforms)
train_iterator = torch.utils.data.DataLoader(train_data, batch_size=BATCH_SIZE)
valid_iterator = torch.utils.data.DataLoader(valid_data, batch_size=BATCH_SIZE)
test_iterator = torch.utils.data.DataLoader(test_data, batch_size=BATCH_SIZE)
imgs = []
for (x, _) in train_iterator:
for i in range(x.shape[0]):
imgs.append(x[i])
for (x, _) in valid_iterator:
for i in range(x.shape[0]):
imgs.append(x[i])
for (x, _) in test_iterator:
for i in range(x.shape[0]):
imgs.append(x[i])
imgs = torch.stack(imgs).numpy()
print(imgs.shape)
# Find mean and standard deviation for each color channel
print(np.mean(imgs, axis=(0, 2, 3)))
print(np.std(imgs, axis=(0, 2, 3)))
'''
Without sharpening
# T1
mean_1 = [0.55619025, 0.54442054, 0.5668326]
std_1 = [0.15338533, 0.14782225, 0.15213947]
# T2
mean_2 = [0.55744743, 0.5457371, 0.5683189]
std_2 = [0.15367888, 0.14802714, 0.15239693]
# T3
mean_3 = [0.55702317, 0.54563445, 0.5682874]
std_3 = [0.15336181, 0.14766185, 0.15203352]
# T4
mean_4 = [0.55669624, 0.5450452, 0.56758934]
std_4 = [0.1546661, 0.14899929, 0.15342303]
# T5
mean_5 = [0.55679774, 0.54509205, 0.56761116]
std_5 = [0.15356685, 0.14808999, 0.15250486]
'''
'''
Sharpened
# T5
mean_5 = [0.5554702 0.5442094 0.56618005]
std_5 = [0.17949283 0.17575373 0.17836432]
'''