-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathspacetime-simulator.py
299 lines (247 loc) · 12.4 KB
/
spacetime-simulator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from matplotlib.animation import FuncAnimation, writers
from scipy.integrate import odeint
import cv2
import os
import tkinter as tk
from tkinter import ttk
from tkinter import messagebox
class SpacetimeSimulator:
def __init__(self, name, metric_tensor_func, dimensions=4):
self.name = name
self.metric_tensor_func = metric_tensor_func
self.dimensions = dimensions
self.dt = 0.1
def metric_tensor(self, coordinates):
return self.metric_tensor_func(coordinates)
def christoffel_symbols(self, coordinates):
h = 1e-5
gamma = np.zeros((self.dimensions, self.dimensions, self.dimensions))
try:
for mu in range(self.dimensions):
for nu in range(self.dimensions):
for sigma in range(self.dimensions):
dg_mu = (self.metric_tensor(coordinates + h*np.eye(self.dimensions)[mu])
- self.metric_tensor(coordinates - h*np.eye(self.dimensions)[mu])) / (2*h)
dg_nu = (self.metric_tensor(coordinates + h*np.eye(self.dimensions)[nu])
- self.metric_tensor(coordinates - h*np.eye(self.dimensions)[nu])) / (2*h)
dg_sigma = (self.metric_tensor(coordinates + h*np.eye(self.dimensions)[sigma])
- self.metric_tensor(coordinates - h*np.eye(self.dimensions)[sigma])) / (2*h)
g = self.metric_tensor(coordinates)
g_inv = np.linalg.inv(g)
for rho in range(self.dimensions):
gamma[mu][nu][sigma] += 0.5 * g_inv[mu][rho] * (dg_nu[rho][sigma] + dg_sigma[rho][nu] - dg_sigma[nu][rho])
except np.linalg.LinAlgError:
# Return zero Christoffel symbols if we encounter a singular matrix
pass
return gamma
def geodesic_equation(self, state, t):
x = state[:self.dimensions]
v = state[self.dimensions:]
dxdt = v
dvdt = -np.einsum('ijk,j,k->i', self.christoffel_symbols(x), v, v)
return np.concatenate([dxdt, dvdt])
def simulate_geodesic(self, initial_position, initial_velocity, num_steps):
initial_state = np.concatenate([initial_position, initial_velocity])
t = np.linspace(0, num_steps * self.dt, num_steps)
solution = odeint(self.geodesic_equation, initial_state, t)
return solution
def run_simulation(self, initial_positions, initial_velocities, num_steps, output_file):
fig = plt.figure(figsize=(15, 10))
ax1 = fig.add_subplot(121, projection='3d')
ax2 = fig.add_subplot(122)
geodesics = [self.simulate_geodesic(pos, vel, num_steps) for pos, vel in zip(initial_positions, initial_velocities)]
def update(frame):
ax1.clear()
ax1.set_xlim(-10, 10)
ax1.set_ylim(-10, 10)
ax1.set_zlim(-10, 10)
ax1.set_xlabel('X')
ax1.set_ylabel('Y')
ax1.set_zlabel('Z')
ax1.set_title(f'{self.name} Spacetime (t={frame*self.dt:.2f})')
for geodesic in geodesics:
ax1.plot(geodesic[:frame, 1], geodesic[:frame, 2], geodesic[:frame, 3])
ax1.scatter(geodesic[frame, 1], geodesic[frame, 2], geodesic[frame, 3], s=50)
ax2.clear()
ax2.set_title('Metric Tensor Components')
coords = geodesics[0][frame, :4]
metric = self.metric_tensor(coords)
im = ax2.imshow(metric, cmap='coolwarm', interpolation='nearest')
plt.colorbar(im, ax=ax2)
anim = FuncAnimation(fig, update, frames=num_steps, interval=50, blit=False)
writer = writers['ffmpeg'](fps=15, metadata=dict(artist='SpacetimeSimulator'), bitrate=1800)
anim.save(output_file, writer=writer)
class SpacetimeDefinitionGUI:
def __init__(self, master, callback):
self.master = master
self.callback = callback
master.title("Define New Spacetime")
self.name_label = ttk.Label(master, text="Spacetime Name:")
self.name_entry = ttk.Entry(master)
self.metric_label = ttk.Label(master, text="Metric Tensor Function:")
self.metric_text = tk.Text(master, height=10, width=50)
self.submit_button = ttk.Button(master, text="Create Spacetime", command=self.create_spacetime)
self.name_label.pack()
self.name_entry.pack()
self.metric_label.pack()
self.metric_text.pack()
self.submit_button.pack()
def create_spacetime(self):
name = self.name_entry.get()
if not name:
messagebox.showerror("Error", "Please enter a name for the spacetime.")
return
metric_func_str = self.metric_text.get("1.0", tk.END).strip()
if not metric_func_str:
messagebox.showerror("Error", "Please enter a metric tensor function.")
return
try:
metric_func = eval(f"lambda coordinates: {metric_func_str}")
new_spacetime = SpacetimeSimulator(name, metric_func)
self.callback(new_spacetime)
self.master.destroy()
except Exception as e:
messagebox.showerror("Error", f"Invalid metric tensor function: {str(e)}")
class ExperimentSetupGUI:
def __init__(self, master):
self.master = master
self.master.title("Spacetime Experiment Setup")
self.spacetimes = []
self.selected_spacetimes = []
self.create_widgets()
def create_widgets(self):
self.spacetime_frame = ttk.Frame(self.master)
self.spacetime_frame.pack(pady=10)
self.create_spacetime_button = ttk.Button(self.spacetime_frame, text="Create New Spacetime", command=self.open_spacetime_creator)
self.create_spacetime_button.pack(side=tk.LEFT, padx=5)
self.add_preset_button = ttk.Button(self.spacetime_frame, text="Add Preset Spacetime", command=self.add_preset_spacetime)
self.add_preset_button.pack(side=tk.LEFT, padx=5)
self.spacetime_listbox = tk.Listbox(self.master, selectmode=tk.MULTIPLE, width=50)
self.spacetime_listbox.pack(pady=10)
self.run_button = ttk.Button(self.master, text="Run Simulation", command=self.run_simulation)
self.run_button.pack(pady=10)
def open_spacetime_creator(self):
creator_window = tk.Toplevel(self.master)
SpacetimeDefinitionGUI(creator_window, self.add_spacetime)
def add_spacetime(self, spacetime):
self.spacetimes.append(spacetime)
self.spacetime_listbox.insert(tk.END, spacetime.name)
def add_preset_spacetime(self):
presets = {
"Schwarzschild": lambda coordinates: np.diag([-1, 1/(1 - 2/max(coordinates[1], 2)), coordinates[1]**2, coordinates[1]**2 * np.sin(coordinates[2])**2]),
"Anti-de Sitter": lambda coordinates: np.diag([-1, 1, np.cosh(coordinates[1])**2, np.cosh(coordinates[1])**2 * np.sin(coordinates[2])**2]),
"Gödel": lambda coordinates: np.array([[-1, 0, coordinates[1], 0], [0, 1, 0, 0], [coordinates[1], 0, coordinates[1]**2 - 1, 0], [0, 0, 0, 1]])
}
preset_window = tk.Toplevel(self.master)
preset_window.title("Add Preset Spacetime")
for name in presets:
ttk.Button(preset_window, text=name, command=lambda n=name: self.add_spacetime(SpacetimeSimulator(n, presets[n]))).pack()
def run_simulation(self):
selected_indices = self.spacetime_listbox.curselection()
self.selected_spacetimes = [self.spacetimes[i] for i in selected_indices]
if not self.selected_spacetimes:
messagebox.showwarning("No Selection", "Please select at least one spacetime for the simulation.")
return
self.master.quit()
def create_spacetimes():
def schwarzschild_metric(coordinates):
t, x, y, z = coordinates[:4]
r = np.sqrt(x**2 + y**2 + z**2)
Rs = 2 # Schwarzschild radius
factor = 1 - Rs / (r + Rs) # Avoid division by zero
return np.diag([-factor, 1/factor, r**2, r**2 * np.sin(np.arccos(z/(r+1e-10)))**2])
def ads_metric(coordinates):
t, x, y, z = coordinates[:4]
L = 1 # AdS radius
r2 = x**2 + y**2 + z**2
factor = L**2 / (L**2 + r2)
return np.diag([-1/factor, factor, factor, factor])
def godel_metric(coordinates):
t, x, y, z = coordinates[:4]
a = 1 # Gödel parameter
g00 = -1
g11 = g22 = 1
g33 = -1/2 * np.exp(2*a*x)
g03 = g30 = np.exp(a*x)
metric = np.diag([g00, g11, g22, g33])
metric[0, 3] = metric[3, 0] = g03
return metric
return [
SpacetimeSimulator("Schwarzschild", schwarzschild_metric),
SpacetimeSimulator("Anti-de Sitter", ads_metric),
SpacetimeSimulator("Gödel", godel_metric)
]
def analyze_geodesics(video_files):
def extract_trajectories(video_file):
cap = cv2.VideoCapture(video_file)
trajectories = []
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
_, thresh = cv2.threshold(gray, 200, 255, cv2.THRESH_BINARY)
contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
centers = [cv2.moments(c) for c in contours]
centers = [(int(m['m10']/m['m00']), int(m['m01']/m['m00'])) for m in centers if m['m00'] != 0]
trajectories.append(centers)
cap.release()
return trajectories
all_trajectories = [extract_trajectories(video) for video in video_files]
# Ensure all trajectories have the same number of particles
min_particles = min(min(len(frame) for frame in traj) for traj in all_trajectories)
all_trajectories = [[frame[:min_particles] for frame in traj] for traj in all_trajectories]
# Convert to numpy arrays for easier manipulation
all_trajectories = [np.array(traj) for traj in all_trajectories]
# Compute differences between trajectories
differences = []
for i in range(len(all_trajectories)):
for j in range(i+1, len(all_trajectories)):
# Compute MSE across all frames and particles
mse = np.mean((all_trajectories[i] - all_trajectories[j])**2)
differences.append((video_files[i], video_files[j], mse))
return differences
def create_summary_video(video_files, differences, output_file):
fig, axs = plt.subplots(2, 2, figsize=(20, 15))
plt.subplots_adjust(hspace=0.4)
def update(frame):
for ax in axs.flatten():
ax.clear()
for i, video_file in enumerate(video_files):
cap = cv2.VideoCapture(video_file)
cap.set(cv2.CAP_PROP_POS_FRAMES, frame)
ret, img = cap.read()
if ret:
axs[i//2, i%2].imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
axs[i//2, i%2].set_title(os.path.basename(video_file))
cap.release()
axs[1, 1].axis('off')
axs[1, 1].text(0.1, 0.9, "Geodesic Differences (MSE):", fontsize=12, fontweight='bold')
for i, (v1, v2, diff) in enumerate(differences):
axs[1, 1].text(0.1, 0.8-i*0.1, f"{os.path.basename(v1)} vs {os.path.basename(v2)}: {diff:.2f}", fontsize=10)
anim = FuncAnimation(fig, update, frames=200, interval=50)
writer = writers['ffmpeg'](fps=15, metadata=dict(artist='SpacetimeSimulator'), bitrate=1800)
anim.save(output_file, writer=writer)
def main():
root = tk.Tk()
experiment_setup = ExperimentSetupGUI(root)
root.mainloop()
if not experiment_setup.selected_spacetimes:
print("No spacetimes selected. Exiting.")
return
initial_positions = [np.array([0, 5, 0, 0]), np.array([0, -5, 0, 0]), np.array([0, 0, 5, 0])]
initial_velocities = [np.array([1, 0, 0.5, 0]), np.array([1, 0, -0.5, 0]), np.array([1, -0.5, 0, 0])]
video_files = []
for spacetime in experiment_setup.selected_spacetimes:
output_file = f"{spacetime.name}_simulation.mp4"
spacetime.run_simulation(initial_positions, initial_velocities, 200, output_file)
video_files.append(output_file)
print(f"Generated video for {spacetime.name}")
differences = analyze_geodesics(video_files)
create_summary_video(video_files, differences, "spacetime_comparison.mp4")
print("Generated summary video: spacetime_comparison.mp4")
if __name__ == "__main__":
main()