This repository has been archived by the owner on Aug 10, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathevaluate_model.py
133 lines (101 loc) · 4.66 KB
/
evaluate_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import argparse
import base64
import csv
import time
from pathlib import Path
from typing import Generator, Tuple, List
import cv2
import seaborn as sns
from matplotlib import pyplot as plt
from pandas import DataFrame
from sklearn.metrics import confusion_matrix
from tqdm import tqdm
from evaluation import util
from evaluation.Evaluator import ModelEvaluator
from isplutils import split
from architectures.fornet import FeatureExtractor
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--testsets', type=str, help='Testing datasets', nargs='+', choices=split.available_datasets,
required=True)
parser.add_argument('--subject_df_path', type=str, action='store',
help='Path to the Pandas Dataframe obtained from extract_faces program ' +
' for TanguiS deepfacelab project '
'Required for training/validating on the SUBJECT dataset.')
parser.add_argument('--subject_root_dir', type=str, action='store',
help='Path to the subject root directory. '
'Required for training/validating on the SUBJECT dataset.')
parser.add_argument('--model_path', type=Path, help='Full path of the trained model', required=True)
args = parser.parse_args()
model_path: Path = args.model_path
test_sets = args.testsets
subject_df = args.subject_df_path
subject_root_dir = args.subject_root_dir
return model_path, subject_df, subject_root_dir, test_sets
def init_evaluation(model_path: Path, net_name: str, subject_df: str, subject_root_dir: str, test_sets: List[str]):
print('Loading model...')
net = util.load_model(model_path, net_name)
print('Model loaded!')
splits = split.make_splits(
dfdc_df="", ffpp_df="", dfdc_dir="", ffpp_dir="",
subject_df=subject_df, subject_dir=subject_root_dir,
dbs={'train': test_sets, 'val': test_sets, 'test': test_sets}
)
test_dfs = [splits['test'][db][0] for db in splits['test']][0]
return net, test_dfs
def frame_to_base64(frame_path: Path) -> str:
image = cv2.imread(str(frame_path))
_, buffer = cv2.imencode(".jpg", image)
base64_image = base64.b64encode(buffer).decode("utf-8")
return base64_image
def test_frames_iterator(df: DataFrame, root: Path) -> Generator[Tuple[str, bool], None, None]:
for frame_line in df.iterrows():
yield frame_to_base64(root.joinpath(frame_line[0])), frame_line[1]['label']
def evaluate(
model_path: str, net: FeatureExtractor, subject_root_dir: str, test_dfs: DataFrame
) -> Tuple[List[int], List[int], float, List[float], List[float]]:
evaluator = ModelEvaluator(net, Path(model_path))
count = 0
sum_time = 0
y_true = []
y_pred = []
yhat_0 = []
yhat_1 = []
print("Evaluating...")
for frame, label in tqdm(test_frames_iterator(test_dfs, Path(subject_root_dir))):
start = time.time()
yhat = evaluator.evaluate(frame)
end = time.time()
count += 1
sum_time += (end - start)
y_true.append(int(label))
y_pred.append(int(yhat[0] > 0.5))
yhat_0.append(yhat[0])
yhat_1.append(yhat[1])
return y_true, y_pred, sum_time / count, yhat_0, yhat_1
def save_yhat(yhat_0: List[float], yhat_1: List[float], sum_time: float, csv_path: Path) -> None:
data = list(zip(yhat_0, yhat_1))
with open(csv_path, 'w', newline='') as csvfile:
csv_writer = csv.writer(csvfile, delimiter=';')
csv_writer.writerow(['Yhat Fake', 'Yhat Real'])
csv_writer.writerows(data)
csv_writer.writerow(['', '', 'Sum Time', sum_time])
def plot_confusion_matrix(y_true: list, y_pred: list, arch: str, shape: Tuple[int, int, int]) -> None:
conf_matrix = confusion_matrix(y_true, y_pred)
plt.figure(figsize=(6, 4))
sns.heatmap(conf_matrix, annot=True, fmt='d', cmap='Blues', xticklabels=['Fake', 'Real'],
yticklabels=['Fake', 'Real'])
plt.xlabel('Predicted Label')
plt.ylabel('True Label')
plt.title(f'Confusion Matrix: {arch} - {shape}')
plt.show()
def main():
model_path, subject_df, subject_root_dir, test_sets = parse_args()
csv_path = model_path.with_name('yhat.csv')
face_policy, patch_size, net_name, model_name = util.read_models_information(model_path)
net, test_dfs = init_evaluation(model_path, net_name, subject_df, subject_root_dir, test_sets)
y_true, y_pred, avg_time, yhat_0, yhat_1 = evaluate(str(model_path), net, subject_root_dir, test_dfs)
plot_confusion_matrix(y_true, y_pred, net_name, (256, 256, 3))
save_yhat(yhat_0, yhat_1, avg_time, csv_path)
if __name__ == "__main__":
main()