-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathcollision.go
252 lines (229 loc) · 6.79 KB
/
collision.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
package collision2d
import (
"math"
)
//PointInCircle returns true if the point is inside the circle.
func PointInCircle(point Vector, circle Circle) bool {
differenceV := NewVector(point.X, point.Y).Sub(circle.Pos)
radiusSqr := circle.R * circle.R
distanceSqr := differenceV.Len2()
return distanceSqr <= radiusSqr
}
//PointInPolygon returns true if the point is inside a polygon.
func PointInPolygon(point Vector, polygon Polygon) bool {
pointAsPolygon := NewBox(point.Clone(), 1, 1).ToPolygon()
isInside, _ := TestPolygonPolygon(pointAsPolygon, polygon)
return isInside
}
//TestCircleCircle returns true if the circles collide with each other.
func TestCircleCircle(circleA, circleB Circle) (isColliding bool, response Response) {
response = NewResponse()
differenceV := NewVector(circleB.Pos.X, circleB.Pos.Y).Sub(circleA.Pos)
totalRadius := circleA.R + circleB.R
totalRadiusSqr := totalRadius * totalRadius
distanceSqr := differenceV.Len2()
if distanceSqr > totalRadiusSqr {
return false, response.NotColliding()
}
dist := math.Sqrt(distanceSqr)
response.A = circleA
response.B = circleB
response.Overlap = totalRadius - dist
response.OverlapN = response.OverlapN.Copy(differenceV.Normalize())
response.OverlapV = response.OverlapV.Copy(differenceV.Normalize()).Scale(response.Overlap)
response.AInB = circleA.R <= circleB.R && dist <= circleB.R-circleA.R
response.BInA = circleB.R <= circleA.R && dist <= circleA.R-circleB.R
return true, response
}
//TestPolygonCircle returns true if the polygon collides with the circle.
func TestPolygonCircle(polygon Polygon, circle Circle) (isColliding bool, response Response) {
response = NewResponse()
circlePos := NewVector(circle.Pos.X, circle.Pos.Y).Sub(polygon.Pos)
radius := circle.R
radius2 := radius * radius
calcPoints := polygon.CalcPoints
edge := NewVector(0, 0)
point := NewVector(0, 0)
for i := 0; i < len(calcPoints); i++ {
var next int
var prev int
if i == len(calcPoints)-1 {
next = 0
} else {
next = i + 1
}
if i == 0 {
prev = len(calcPoints) - 1
} else {
prev = i - 1
}
overlap := 0.0
overlapN := NewVector(0, 0)
changedOverlapN := false
edge = edge.Copy(polygon.Edges[i])
point = point.Copy(circlePos).Sub(calcPoints[i])
if point.Len2() > radius2 {
response.AInB = false
}
region := voronoiRegion(edge, point)
if region == leftVoronoiRegion {
edge = edge.Copy(polygon.Edges[prev])
point2 := NewVector(circlePos.X, circlePos.Y).Sub(calcPoints[prev])
region2 := voronoiRegion(edge, point2)
if region2 == rightVoronoiRegion {
dist := point.Len()
if dist > radius {
return false, response.NotColliding()
}
response.BInA = false
overlapN = overlapN.Copy(point.Normalize())
changedOverlapN = true
overlap = radius - dist
}
} else if region == rightVoronoiRegion {
edge = edge.Copy(polygon.Edges[next])
point = point.Copy(circlePos).Sub(calcPoints[next])
region2 := voronoiRegion(edge, point)
if region2 == leftVoronoiRegion {
dist := point.Len()
if dist > radius {
return false, response.NotColliding()
}
response.BInA = false
overlapN = overlapN.Copy(point.Normalize())
changedOverlapN = true
overlap = radius - dist
}
} else {
normal := edge.Perp().Normalize()
dist := point.Dot(normal)
distAbs := math.Abs(dist)
if dist > 0 && distAbs > radius {
return false, response.NotColliding()
}
overlapN = overlapN.Copy(normal)
changedOverlapN = true
overlap = radius - dist
if dist >= 0 || overlap < 2*radius {
response.BInA = false
}
}
if changedOverlapN && math.Abs(overlap) < math.Abs(response.Overlap) {
response.Overlap = overlap
response.OverlapN = response.OverlapN.Copy(overlapN)
}
}
response.A = polygon
response.B = circle
response.OverlapV = response.OverlapV.Copy(response.OverlapN).Scale(response.Overlap)
return true, response
}
//TestCirclePolygon returns true if the circle collides with the polygon.
func TestCirclePolygon(circle Circle, polygon Polygon) (isColliding bool, response Response) {
result, response := TestPolygonCircle(polygon, circle)
if result {
a := response.A
aInB := response.AInB
response.OverlapN = response.OverlapN.Reverse()
response.OverlapV = response.OverlapV.Reverse()
response.A = response.B
response.B = a
response.AInB = response.BInA
response.BInA = aInB
}
return result, response
}
//TestPolygonPolygon returns true if the polygons collide with each other.
func TestPolygonPolygon(polygonA, polygonB Polygon) (isColliding bool, response Response) {
response = NewResponse()
for i := 0; i < len(polygonA.CalcPoints); i++ {
if isSeparatingAxis(polygonA.Pos, polygonB.Pos, polygonA.CalcPoints, polygonB.CalcPoints, polygonA.Normals[i], &response) {
return false, response.NotColliding()
}
}
for i := 0; i < len(polygonB.CalcPoints); i++ {
if isSeparatingAxis(polygonA.Pos, polygonB.Pos, polygonA.CalcPoints, polygonB.CalcPoints, polygonB.Normals[i], &response) {
return false, response.NotColliding()
}
}
response.A = polygonA
response.B = polygonB
response.OverlapV = response.OverlapV.Copy(response.OverlapN).Scale(response.Overlap)
return true, response
}
func voronoiRegion(line, point Vector) int {
len2 := line.Len2()
dp := point.Dot(line)
if dp < 0 {
return leftVoronoiRegion
} else if dp > len2 {
return rightVoronoiRegion
} else {
return middleVoronoiRegion
}
}
func isSeparatingAxis(aPos, bPos Vector, aPoints, bPoints []Vector, axis Vector, response *Response) bool {
offsetV := NewVector(bPos.X, bPos.Y).Sub(aPos)
projectedOffset := offsetV.Dot(axis)
minA, maxA := flattenPointsOn(aPoints, axis)
minB, maxB := flattenPointsOn(bPoints, axis)
minB += projectedOffset
maxB += projectedOffset
if minA > maxB || minB > maxA {
return true
}
overlap := 0.0
if minA < minB {
response.AInB = false
if maxA < maxB {
overlap = maxA - minB
response.BInA = false
} else {
option1 := maxA - minB
option2 := maxB - minA
if option1 < option2 {
overlap = option1
} else {
overlap = -option2
}
}
} else {
response.BInA = false
if maxA > maxB {
overlap = minA - maxB
response.AInB = false
} else {
option1 := maxA - minB
option2 := maxB - minA
if option1 < option2 {
overlap = option1
} else {
overlap = -option2
}
}
}
absOverlap := math.Abs(overlap)
if absOverlap < response.Overlap {
response.Overlap = absOverlap
response.OverlapN = response.OverlapN.Copy(axis)
if overlap < 0 {
response.OverlapN = response.OverlapN.Reverse()
}
}
return false
}
func flattenPointsOn(points []Vector, normal Vector) (min, max float64) {
min = math.MaxFloat64
max = -math.MaxFloat64
length := len(points)
for i := 0; i < length; i++ {
dot := points[i].Dot(normal)
if dot < min {
min = dot
}
if dot > max {
max = dot
}
}
return min, max
}