-
Notifications
You must be signed in to change notification settings - Fork 35
/
Copy pathfr-cnn.py
37 lines (29 loc) · 1.02 KB
/
fr-cnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
from __future__ import print_function
import face_recognition
import numpy as np
import cv2
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--with_draw', help='do draw?', default='True')
args = parser.parse_args()
bgr_img = cv2.imread('./test.jpg', 1)
print (bgr_img.shape)
### detection
list_time = []
for idx in range(10):
rgb_img = cv2.cvtColor(bgr_img, cv2.COLOR_BGR2RGB)
start = cv2.getTickCount()
rgb_img = cv2.resize(rgb_img, None, fx=0.5, fy=0.5)
bbs = face_recognition.face_locations(rgb_img, model='cnn')
time = (cv2.getTickCount() - start) / cv2.getTickFrequency() * 1000
list_time.append(time)
# print ('elapsed time: %.3fms'%time)
print ('fr cnn average time: %.3f ms'%np.array(list_time[1:]).mean())
### draw rectangle bbox
if args.with_draw == 'True':
for bb in bbs:
(t, r, b, l) = np.array(bb, dtype='int')*2
cv2.rectangle(bgr_img, (l, t), (r, b), (0, 255, 0), 2)
cv2.namedWindow('show', 0)
cv2.imshow('show', bgr_img)
cv2.waitKey()