-
Notifications
You must be signed in to change notification settings - Fork 35
/
Copy pathDrive.java
641 lines (539 loc) · 24.9 KB
/
Drive.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
package com.team254.frc2019.subsystems;
import com.ctre.phoenix.sensors.PigeonIMU;
import com.ctre.phoenix.sensors.PigeonIMU_StatusFrame;
import com.revrobotics.CANSparkMax;
import com.revrobotics.CANSparkMax.IdleMode;
import com.revrobotics.ControlType;
import com.team254.frc2019.Constants;
import com.team254.frc2019.Kinematics;
import com.team254.frc2019.RobotState;
import com.team254.frc2019.loops.ILooper;
import com.team254.frc2019.loops.Loop;
import com.team254.lib.control.Lookahead;
import com.team254.lib.control.Path;
import com.team254.lib.control.PathFollower;
import com.team254.lib.drivers.LazySparkMax;
import com.team254.lib.drivers.MotorChecker;
import com.team254.lib.drivers.SparkMaxChecker;
import com.team254.lib.drivers.SparkMaxFactory;
import com.team254.lib.geometry.*;
import com.team254.lib.util.*;
import com.team254.lib.vision.AimingParameters;
import edu.wpi.first.wpilibj.DriverStation;
import edu.wpi.first.wpilibj.Encoder;
import edu.wpi.first.wpilibj.Solenoid;
import edu.wpi.first.wpilibj.Timer;
import edu.wpi.first.wpilibj.smartdashboard.SmartDashboard;
import java.util.ArrayList;
public class Drive extends Subsystem {
private static Drive mInstance;
// hardware
private final LazySparkMax mLeftMaster, mRightMaster, mLeftSlave, mRightSlave;
private final Encoder mLeftEncoder, mRightEncoder;
// Controllers
private PathFollower mPathFollower;
private Path mCurrentPath = null;
private final Solenoid mShifter;
// control states
private DriveControlState mDriveControlState;
private DriveCurrentLimitState mDriveCurrentLimitState;
private PigeonIMU mPigeon;
// hardware states
private boolean mIsHighGear;
private boolean mIsBrakeMode;
private Rotation2d mGyroOffset = Rotation2d.identity();
private double mLastDriveCurrentSwitchTime = -1;
public synchronized static Drive getInstance() {
if (mInstance == null) {
mInstance = new Drive();
}
return mInstance;
}
private void configureSpark(LazySparkMax sparkMax, boolean left, boolean master) {
sparkMax.setInverted(!left);
sparkMax.enableVoltageCompensation(12.0);
sparkMax.setClosedLoopRampRate(Constants.kDriveVoltageRampRate);
}
private Drive() {
mPeriodicIO = new PeriodicIO();
// start all Talons in open loop mode
mLeftMaster = SparkMaxFactory.createDefaultSparkMax(Constants.kLeftDriveMasterId);
configureSpark(mLeftMaster, true, true);
mLeftSlave = SparkMaxFactory.createPermanentSlaveSparkMax(Constants.kLeftDriveSlaveId, mLeftMaster);
configureSpark(mLeftSlave, true, false);
mRightMaster = SparkMaxFactory.createDefaultSparkMax(Constants.kRightDriveMasterId);
configureSpark(mRightMaster, false, true);
mRightSlave = SparkMaxFactory.createPermanentSlaveSparkMax(Constants.kRightDriveSlaveId, mRightMaster);
configureSpark(mRightSlave, false, false);
// burn flash so that when spark resets they have the same config
// mLeftMaster.burnFlash();
// mLeftSlave.burnFlash();
// mRightMaster.burnFlash();
// mRightSlave.burnFlash();
mLeftEncoder = new Encoder(Constants.kLeftDriveEncoderA, Constants.kLeftDriveEncoderB, false);
mRightEncoder = new Encoder(Constants.kRightDriveEncoderA, Constants.kRightDriveEncoderB, true);
mLeftEncoder.setReverseDirection(true);
mRightEncoder.setReverseDirection(false);
mLeftEncoder.setDistancePerPulse(Constants.kDriveWheelDiameterInches * Math.PI / Constants.kDriveEncoderPPR);
mRightEncoder.setDistancePerPulse(Constants.kDriveWheelDiameterInches * Math.PI / Constants.kDriveEncoderPPR);
mShifter = new Solenoid(Constants.kPCMId, Constants.kShifterSolenoidId);
mPigeon = new PigeonIMU(Constants.kPigeonIMUId);
mPigeon.setStatusFramePeriod(PigeonIMU_StatusFrame.CondStatus_9_SixDeg_YPR, 10, 10);
// force a solenoid message
mIsHighGear = false;
setHighGear(true);
setOpenLoop(DriveSignal.NEUTRAL);
// force a CAN message across
mIsBrakeMode = true;
setBrakeMode(false);
mDriveCurrentLimitState = DriveCurrentLimitState.UNTHROTTLED;
setDriveCurrentState(DriveCurrentLimitState.THROTTLED, 0.0);
}
private PeriodicIO mPeriodicIO;
private ReflectingCSVWriter<PeriodicIO> mCSVWriter = null;
public static class PeriodicIO {
// INPUTS
public double timestamp;
public double left_voltage;
public double right_voltage;
public int left_position_ticks;
public int right_position_ticks;
public double left_distance;
public double right_distance;
public int left_velocity_ticks_per_100ms;
public int right_velocity_ticks_per_100ms;
public Rotation2d gyro_heading = Rotation2d.identity();
public Pose2d error = Pose2d.identity();
// OUTPUTS
public double left_demand;
public double right_demand;
public double left_accel;
public double right_accel;
public double left_feedforward;
public double right_feedforward;
}
@Override
public synchronized void readPeriodicInputs() {
mPeriodicIO.timestamp = Timer.getFPGATimestamp();
double prevLeftTicks = mPeriodicIO.left_position_ticks;
double prevRightTicks = mPeriodicIO.right_position_ticks;
mPeriodicIO.left_voltage = mLeftMaster.getAppliedOutput() * mLeftMaster.getBusVoltage();
mPeriodicIO.right_voltage = mRightMaster.getAppliedOutput() * mRightMaster.getBusVoltage();
mPeriodicIO.left_position_ticks = mLeftEncoder.get();
mPeriodicIO.right_position_ticks = mRightEncoder.get();
mPeriodicIO.gyro_heading = Rotation2d.fromDegrees(mPigeon.getFusedHeading()).rotateBy(mGyroOffset);
double deltaLeftTicks = ((mPeriodicIO.left_position_ticks - prevLeftTicks) / Constants.kDriveEncoderPPR)
* Math.PI;
mPeriodicIO.left_distance += deltaLeftTicks * Constants.kDriveWheelDiameterInches;
double deltaRightTicks = ((mPeriodicIO.right_position_ticks - prevRightTicks) / Constants.kDriveEncoderPPR)
* Math.PI;
mPeriodicIO.right_distance += deltaRightTicks * Constants.kDriveWheelDiameterInches;
mPeriodicIO.left_velocity_ticks_per_100ms = (int) (mLeftEncoder.getRate()
/ (10 * mLeftEncoder.getDistancePerPulse()));
mPeriodicIO.right_velocity_ticks_per_100ms = (int) (mRightEncoder.getRate()
/ (10 * mRightEncoder.getDistancePerPulse()));
if (mCSVWriter != null) {
mCSVWriter.add(mPeriodicIO);
}
}
@Override
public synchronized void writePeriodicOutputs() {
if (mDriveControlState == DriveControlState.OPEN_LOOP) {
mLeftMaster.set(ControlType.kDutyCycle, mPeriodicIO.left_demand);
mRightMaster.set(ControlType.kDutyCycle, mPeriodicIO.right_demand);
} else {
mLeftMaster.set(ControlType.kDutyCycle, mPeriodicIO.left_demand);
mRightMaster.set(ControlType.kDutyCycle, mPeriodicIO.right_demand);
}
}
@Override
public void registerEnabledLoops(ILooper in) {
in.register(new Loop() {
@Override
public void onStart(double timestamp) {
synchronized (Drive.this) {
stop();
setBrakeMode(true);
}
}
@Override
public void onLoop(double timestamp) {
synchronized (Drive.this) {
handleFaults();
switch (mDriveControlState) {
case OPEN_LOOP:
break;
case PATH_FOLLOWING:
if (mPathFollower != null) {
updatePathFollower(timestamp);
}
break;
default:
System.out.println("unexpected drive control state: " + mDriveControlState);
break;
}
if (Superstructure.getInstance().isAtDesiredState()) {
setDriveCurrentState(DriveCurrentLimitState.UNTHROTTLED, timestamp);
} else {
setDriveCurrentState(DriveCurrentLimitState.THROTTLED, timestamp);
}
}
}
@Override
public void onStop(double timestamp) {
stop();
stopLogging();
}
});
}
private void handleFaults() {
if (mRightSlave.getStickyFault(CANSparkMax.FaultID.kHasReset)) {
System.out.println("Right Slave Reset!");
mRightSlave.follow(mRightMaster);
mRightSlave.clearFaults();
}
if (mLeftSlave.getStickyFault(CANSparkMax.FaultID.kHasReset)) {
System.out.println("Left Slave Reset!");
mLeftSlave.follow(mLeftMaster);
mLeftSlave.clearFaults();
}
}
private static double rotationsToInches(double rotations) {
return rotations * (Constants.kDriveWheelDiameterInches * Math.PI);
}
private static double rpmToInchesPerSecond(double rpm) {
return rotationsToInches(rpm) / 60;
}
private static double inchesToRotations(double inches) {
return inches / (Constants.kDriveWheelDiameterInches * Math.PI);
}
private static double inchesPerSecondToRpm(double inches_per_second) {
return inchesToRotations(inches_per_second) * 60;
}
private static double radiansPerSecondToTicksPer100ms(double rad_s) {
return rad_s / (Math.PI * 2.0) * Constants.kDriveEncoderPPR / 10.0;
}
/**
* Configure talons for open loop control
*/
public synchronized void setOpenLoop(DriveSignal signal) {
if (mDriveControlState != DriveControlState.OPEN_LOOP) {
setBrakeMode(true);
System.out.println("switching to open loop");
System.out.println(signal);
mDriveControlState = DriveControlState.OPEN_LOOP;
}
mPeriodicIO.left_demand = signal.getLeft();
mPeriodicIO.right_demand = signal.getRight();
mPeriodicIO.left_feedforward = 0.0;
mPeriodicIO.right_feedforward = 0.0;
}
public synchronized void setCheesyishDrive(double throttle, double wheel, boolean quickTurn) {
if (Util.epsilonEquals(throttle, 0.0, 0.04)) {
throttle = 0.0;
}
if (Util.epsilonEquals(wheel, 0.0, 0.035)) {
wheel = 0.0;
}
final double kWheelGain = 0.05;
final double kWheelNonlinearity = 0.05;
final double denominator = Math.sin(Math.PI / 2.0 * kWheelNonlinearity);
// Apply a sin function that's scaled to make it feel better.
if (!quickTurn) {
wheel = Math.sin(Math.PI / 2.0 * kWheelNonlinearity * wheel);
wheel = Math.sin(Math.PI / 2.0 * kWheelNonlinearity * wheel);
wheel = wheel / (denominator * denominator) * Math.abs(throttle);
}
wheel *= kWheelGain;
DriveSignal signal = Kinematics.inverseKinematics(new Twist2d(throttle, 0.0, wheel));
double scaling_factor = Math.max(1.0, Math.max(Math.abs(signal.getLeft()), Math.abs(signal.getRight())));
setOpenLoop(new DriveSignal(signal.getLeft() / scaling_factor, signal.getRight() / scaling_factor));
}
public synchronized void autoSteer(double throttle, AimingParameters aim_params) {
double timestamp = Timer.getFPGATimestamp();
final double kAutosteerAlignmentPointOffset = 15.0; // Distance from wall
boolean reverse = throttle < 0.0;
boolean towards_goal = reverse == (Math.abs(aim_params.getRobotToGoalRotation().getDegrees()) > 90.0);
Pose2d field_to_vision_target = aim_params.getFieldToGoal();
final Pose2d vision_target_to_alignment_point = Pose2d.fromTranslation(new Translation2d(Math.min(kAutosteerAlignmentPointOffset, aim_params.getRange() - kAutosteerAlignmentPointOffset), 0.0));
Pose2d field_to_alignment_point = field_to_vision_target.transformBy(vision_target_to_alignment_point);
Pose2d vehicle_to_alignment_point = RobotState.getInstance().getFieldToVehicle(timestamp).inverse().transformBy(field_to_alignment_point);
Rotation2d vehicle_to_alignment_point_bearing = vehicle_to_alignment_point.getTranslation().direction();
if (reverse) {
vehicle_to_alignment_point_bearing = vehicle_to_alignment_point_bearing.rotateBy(Rotation2d.fromDegrees(180.0));
}
double heading_error_rad = vehicle_to_alignment_point_bearing.getRadians();
final double kAutosteerKp = 0.05;
double curvature = (towards_goal ? 1.0 : 0.0) * heading_error_rad * kAutosteerKp;
setOpenLoop(Kinematics.inverseKinematics(new Twist2d(throttle, 0.0, curvature * throttle * (reverse ? -1.0 : 1.0))));
setBrakeMode(true);
}
/**
* Configure talons for velocity control
*/
public synchronized void setVelocity(DriveSignal signal, DriveSignal feedforward) {
if (mDriveControlState != DriveControlState.PATH_FOLLOWING) {
setBrakeMode(true);
System.out.println("switching to path following");
mDriveControlState = DriveControlState.PATH_FOLLOWING;
// mLeftMaster.selectProfileSlot(kLowGearVelocityControlSlot, 0);
// mRightMaster.selectProfileSlot(kLowGearVelocityControlSlot, 0);
// mLeftMaster.configNeutralDeadband(0.0, 0);
// mRightMaster.configNeutralDeadband(0.0, 0);
}
mPeriodicIO.left_demand = signal.getLeft();
mPeriodicIO.right_demand = signal.getRight();
mPeriodicIO.left_feedforward = feedforward.getLeft();
mPeriodicIO.right_feedforward = feedforward.getRight();
}
public boolean isHighGear() {
return mIsHighGear;
}
public synchronized void setHighGear(boolean wantsHighGear) {
if (wantsHighGear != mIsHighGear) {
mIsHighGear = wantsHighGear;
// Plumbed default high.
mShifter.set(!wantsHighGear);
}
}
public boolean isBrakeMode() {
return mIsBrakeMode;
}
public synchronized void setBrakeMode(boolean shouldEnable) {
if (mIsBrakeMode != shouldEnable) {
mIsBrakeMode = shouldEnable;
IdleMode mode = shouldEnable ? IdleMode.kBrake : IdleMode.kCoast;
mRightMaster.setIdleMode(mode);
mRightSlave.setIdleMode(mode);
mLeftMaster.setIdleMode(mode);
mLeftSlave.setIdleMode(mode);
}
}
public synchronized Rotation2d getHeading() {
return mPeriodicIO.gyro_heading;
}
public synchronized void setHeading(Rotation2d heading) {
System.out.println("set heading: " + heading.getDegrees());
mGyroOffset = heading.rotateBy(Rotation2d.fromDegrees(mPigeon.getFusedHeading()).inverse());
System.out.println("gyro offset: " + mGyroOffset.getDegrees());
mPeriodicIO.gyro_heading = heading;
}
public synchronized void resetEncoders() {
mLeftEncoder.reset();
mRightEncoder.reset();
mPeriodicIO = new PeriodicIO();
}
public double getLeftEncoderRotations() {
return mPeriodicIO.left_position_ticks / Constants.kDriveEncoderPPR;
}
public double getRightEncoderRotations() {
return mPeriodicIO.right_position_ticks / Constants.kDriveEncoderPPR;
}
public double getLeftEncoderDistance() {
return rotationsToInches(getLeftEncoderRotations());
}
public double getRightEncoderDistance() {
return rotationsToInches(getRightEncoderRotations());
}
public double getRightVelocityNativeUnits() {
return mPeriodicIO.right_velocity_ticks_per_100ms;
}
public double getRightLinearVelocity() {
return rotationsToInches(getRightVelocityNativeUnits() * 10.0 / Constants.kDriveEncoderPPR);
}
public double getLeftVelocityNativeUnits() {
return mPeriodicIO.left_velocity_ticks_per_100ms;
}
public double getLeftLinearVelocity() {
return rotationsToInches(getLeftVelocityNativeUnits() * 10.0 / Constants.kDriveEncoderPPR);
}
public double getLinearVelocity() {
return (getLeftLinearVelocity() + getRightLinearVelocity()) / 2.0;
}
public double getAverageDriveVelocityMagnitude() {
return Math.abs(getLeftLinearVelocity()) + Math.abs(getRightLinearVelocity()) / 2.0;
}
public double getAngularVelocity() {
return (getRightLinearVelocity() - getLeftLinearVelocity()) / Constants.kDriveWheelTrackWidthInches;
}
/**
* Configures the drivebase to drive a path. Used for autonomous driving
*
* @see Path
*/
public synchronized void setWantDrivePath(Path path, boolean reversed) {
if (mCurrentPath != path || mDriveControlState != DriveControlState.PATH_FOLLOWING) {
RobotState.getInstance().resetDistanceDriven();
mPathFollower = new PathFollower(path, reversed, new PathFollower.Parameters(
new Lookahead(Constants.kMinLookAhead, Constants.kMaxLookAhead, Constants.kMinLookAheadSpeed,
Constants.kMaxLookAheadSpeed),
Constants.kInertiaSteeringGain, Constants.kPathFollowingProfileKp,
Constants.kPathFollowingProfileKi, Constants.kPathFollowingProfileKv,
Constants.kPathFollowingProfileKffv, Constants.kPathFollowingProfileKffa,
Constants.kPathFollowingProfileKs, Constants.kPathFollowingMaxVel,
Constants.kPathFollowingMaxAccel, Constants.kPathFollowingGoalPosTolerance,
Constants.kPathFollowingGoalVelTolerance, Constants.kPathStopSteeringDistance));
mDriveControlState = DriveControlState.PATH_FOLLOWING;
mCurrentPath = path;
} else {
setVelocity(new DriveSignal(0, 0), new DriveSignal(0, 0));
}
}
public synchronized boolean isDoneWithPath() {
if (mDriveControlState == DriveControlState.PATH_FOLLOWING && mPathFollower != null) {
return mPathFollower.isFinished();
} else {
System.out.println("Robot is not in path following mode");
return true;
}
}
public synchronized void forceDoneWithPath() {
if (mDriveControlState == DriveControlState.PATH_FOLLOWING && mPathFollower != null) {
mPathFollower.forceFinish();
} else {
System.out.println("Robot is not in path following mode");
}
}
private void updatePathFollower(double timestamp) {
if (mDriveControlState == DriveControlState.PATH_FOLLOWING) {
RobotState robot_state = RobotState.getInstance();
Pose2d field_to_vehicle = robot_state.getLatestFieldToVehicle().getValue();
Twist2d command = mPathFollower.update(timestamp, field_to_vehicle, robot_state.getDistanceDriven(),
robot_state.getPredictedVelocity().dx);
if (!mPathFollower.isFinished()) {
DriveSignal setpoint = Kinematics.inverseKinematics(command);
setVelocity(setpoint, new DriveSignal(0, 0));
} else {
if (!mPathFollower.isForceFinished()) {
setVelocity(new DriveSignal(0, 0), new DriveSignal(0, 0));
}
}
} else {
DriverStation.reportError("drive is not in path following state", false);
}
}
public synchronized boolean hasPassedMarker(String marker) {
if (mDriveControlState == DriveControlState.PATH_FOLLOWING && mPathFollower != null) {
return mPathFollower.hasPassedMarker(marker);
} else {
System.out.println("Robot is not in path following mode");
return false;
}
}
private void setDriveLimits(int amps) {
mRightMaster.setSmartCurrentLimit(amps);
mRightSlave.setSmartCurrentLimit(amps);
mLeftMaster.setSmartCurrentLimit(amps);
mLeftSlave.setSmartCurrentLimit(amps);
}
private void setDriveCurrentState(DriveCurrentLimitState desiredState, double timestamp) {
if (desiredState != mDriveCurrentLimitState && (timestamp - mLastDriveCurrentSwitchTime > 1.0)) {
mLastDriveCurrentSwitchTime = timestamp;
System.out.println("Switching drive current limit state: " + desiredState);
if (desiredState == DriveCurrentLimitState.THROTTLED) {
setDriveLimits(Constants.kDriveCurrentThrottledLimit);
} else {
setDriveLimits(Constants.kDriveCurrentUnThrottledLimit);
}
mDriveCurrentLimitState = desiredState;
}
}
public synchronized void startLogging() {
if (mCSVWriter == null) {
mCSVWriter = new ReflectingCSVWriter<>("/home/lvuser/DRIVE-LOGS.csv", PeriodicIO.class);
}
}
public synchronized void stopLogging() {
if (mCSVWriter != null) {
mCSVWriter.flush();
mCSVWriter = null;
}
}
public enum DriveControlState {
OPEN_LOOP, // open loop voltage control
PATH_FOLLOWING, // velocity PID control
}
public enum DriveCurrentLimitState {
UNTHROTTLED, THROTTLED
}
public enum ShifterState {
FORCE_LOW_GEAR, FORCE_HIGH_GEAR
}
@Override
public void zeroSensors() {
setHeading(Rotation2d.identity());
resetEncoders();
}
@Override
public synchronized void stop() {
setOpenLoop(DriveSignal.NEUTRAL);
}
@Override
public boolean checkSystem() {
setBrakeMode(false);
setHighGear(true);
boolean leftSide = SparkMaxChecker.checkMotors(this,
new ArrayList<MotorChecker.MotorConfig<CANSparkMax>>() {
private static final long serialVersionUID = 3643247888353037677L;
{
add(new MotorChecker.MotorConfig<>("left_master", mLeftMaster));
add(new MotorChecker.MotorConfig<>("left_slave", mLeftSlave));
}
}, new MotorChecker.CheckerConfig() {
{
mCurrentFloor = 3;
mRPMFloor = 90;
mCurrentEpsilon = 2.0;
mRPMEpsilon = 200;
mRPMSupplier = mLeftEncoder::getRate;
}
});
boolean rightSide = SparkMaxChecker.checkMotors(this,
new ArrayList<MotorChecker.MotorConfig<CANSparkMax>>() {
private static final long serialVersionUID = -1212959188716158751L;
{
add(new MotorChecker.MotorConfig<>("right_master", mRightMaster));
add(new MotorChecker.MotorConfig<>("right_slave", mRightSlave));
}
}, new MotorChecker.CheckerConfig() {
{
mCurrentFloor = 5;
mRPMFloor = 90;
mCurrentEpsilon = 2.0;
mRPMEpsilon = 20;
mRPMSupplier = mRightEncoder::getRate;
}
});
return leftSide && rightSide;
}
@Override
public void outputTelemetry() {
SmartDashboard.putNumber("Right Drive Distance", mPeriodicIO.right_distance);
SmartDashboard.putNumber("Right Drive Ticks", mPeriodicIO.right_position_ticks);
SmartDashboard.putNumber("Left Drive Ticks", mPeriodicIO.left_position_ticks);
SmartDashboard.putNumber("Left Drive Distance", mPeriodicIO.left_distance);
// SmartDashboard.putNumber("Right Linear Velocity", getRightLinearVelocity());
// SmartDashboard.putNumber("Left Linear Velocity", getLeftLinearVelocity());
// SmartDashboard.putNumber("X Error", mPeriodicIO.error.getTranslation().x());
// SmartDashboard.putNumber("Y error", mPeriodicIO.error.getTranslation().y());
// SmartDashboard.putNumber("Theta Error", mPeriodicIO.error.getRotation().getDegrees());
// SmartDashboard.putNumber("Left Voltage Kf", mPeriodicIO.left_voltage / getLeftLinearVelocity());
// SmartDashboard.putNumber("Right Voltage Kf", mPeriodicIO.right_voltage / getRightLinearVelocity());
// if (mPathFollower != null) {
// SmartDashboard.putNumber("Drive LTE", mPathFollower.getAlongTrackError());
// SmartDashboard.putNumber("Drive CTE", mPathFollower.getCrossTrackError());
// } else {
// SmartDashboard.putNumber("Drive LTE", 0.0);
// SmartDashboard.putNumber("Drive CTE", 0.0);
// }
if (getHeading() != null) {
SmartDashboard.putNumber("Gyro Heading", getHeading().getDegrees());
}
if (mCSVWriter != null) {
mCSVWriter.write();
}
}
public synchronized double getTimestamp() {
return mPeriodicIO.timestamp;
}
}