Skip to content

Commit da53c86

Browse files
feat: add Meeting Rooms explanation
- Sorting + check algorithm approach - Comprehensive problem analysis - Multiple approaches and optimizations - Edge cases and applications
1 parent af9ef9e commit da53c86

File tree

1 file changed

+74
-0
lines changed

1 file changed

+74
-0
lines changed
Lines changed: 74 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,74 @@
1+
# Meeting Rooms
2+
3+
## Problem Statement
4+
5+
Given an array of meeting time intervals `intervals` where `intervals[i] = [starti, endi]`, determine if a person could attend all meetings.
6+
7+
## Examples
8+
9+
**Example 1:**
10+
```
11+
Input: intervals = [[0,30],[5,10],[15,20]]
12+
Output: false
13+
```
14+
15+
## Approach
16+
17+
### Method 1: Sorting + Check (Recommended)
18+
1. Sort intervals by start time
19+
2. Check if any interval overlaps with the next
20+
3. Most efficient approach
21+
22+
**Time Complexity:** O(n log n) - Sorting
23+
**Space Complexity:** O(1) - In-place modification
24+
25+
### Method 2: Brute Force
26+
1. Check all pairs of intervals for overlap
27+
2. Less efficient than sorting approach
28+
29+
**Time Complexity:** O(n²) - Nested loops
30+
**Space Complexity:** O(1) - No extra space
31+
32+
## Algorithm
33+
34+
```
35+
1. Sort intervals by start time
36+
2. For i from 0 to n-2:
37+
a. If intervals[i][1] > intervals[i+1][0]: return false
38+
3. Return true
39+
```
40+
41+
## Key Insights
42+
43+
- **Sorting**: Sort by start time for efficient checking
44+
- **Local Optimum**: Check adjacent intervals for overlap
45+
- **Global Optimum**: No overlapping intervals
46+
- **Space Optimization**: Use only necessary space
47+
48+
## Alternative Approaches
49+
50+
1. **Brute Force**: Check all pairs
51+
2. **Sweep Line**: Use sweep line algorithm
52+
3. **Hash Set**: Use hash set for time slots
53+
54+
## Edge Cases
55+
56+
- Empty intervals: Return true
57+
- Single interval: Return true
58+
- No overlaps: Return true
59+
- All overlaps: Return false
60+
61+
## Applications
62+
63+
- Interval algorithms
64+
- Scheduling problems
65+
- Algorithm design patterns
66+
- Interview preparation
67+
- System design
68+
69+
## Optimization Opportunities
70+
71+
- **Sorting Algorithm**: Most efficient approach
72+
- **Space Optimization**: O(1) space complexity
73+
- **Logarithmic Time**: O(n log n) time complexity
74+
- **No Extra Space**: Use only necessary space

0 commit comments

Comments
 (0)