diff --git a/mlsauce-docs/search.js b/mlsauce-docs/search.js index 1195586..e4c1fe4 100644 --- a/mlsauce-docs/search.js +++ b/mlsauce-docs/search.js @@ -1,6 +1,6 @@ window.pdocSearch = (function(){ /** elasticlunr - http://weixsong.github.io * Copyright (C) 2017 Oliver Nightingale * Copyright (C) 2017 Wei Song * MIT Licensed */!function(){function e(e){if(null===e||"object"!=typeof e)return e;var t=e.constructor();for(var n in e)e.hasOwnProperty(n)&&(t[n]=e[n]);return t}var t=function(e){var n=new t.Index;return n.pipeline.add(t.trimmer,t.stopWordFilter,t.stemmer),e&&e.call(n,n),n};t.version="0.9.5",lunr=t,t.utils={},t.utils.warn=function(e){return function(t){e.console&&console.warn&&console.warn(t)}}(this),t.utils.toString=function(e){return void 0===e||null===e?"":e.toString()},t.EventEmitter=function(){this.events={}},t.EventEmitter.prototype.addListener=function(){var e=Array.prototype.slice.call(arguments),t=e.pop(),n=e;if("function"!=typeof t)throw new TypeError("last argument must be a function");n.forEach(function(e){this.hasHandler(e)||(this.events[e]=[]),this.events[e].push(t)},this)},t.EventEmitter.prototype.removeListener=function(e,t){if(this.hasHandler(e)){var n=this.events[e].indexOf(t);-1!==n&&(this.events[e].splice(n,1),0==this.events[e].length&&delete this.events[e])}},t.EventEmitter.prototype.emit=function(e){if(this.hasHandler(e)){var t=Array.prototype.slice.call(arguments,1);this.events[e].forEach(function(e){e.apply(void 0,t)},this)}},t.EventEmitter.prototype.hasHandler=function(e){return e in this.events},t.tokenizer=function(e){if(!arguments.length||null===e||void 0===e)return[];if(Array.isArray(e)){var n=e.filter(function(e){return null===e||void 0===e?!1:!0});n=n.map(function(e){return t.utils.toString(e).toLowerCase()});var i=[];return n.forEach(function(e){var n=e.split(t.tokenizer.seperator);i=i.concat(n)},this),i}return e.toString().trim().toLowerCase().split(t.tokenizer.seperator)},t.tokenizer.defaultSeperator=/[\s\-]+/,t.tokenizer.seperator=t.tokenizer.defaultSeperator,t.tokenizer.setSeperator=function(e){null!==e&&void 0!==e&&"object"==typeof e&&(t.tokenizer.seperator=e)},t.tokenizer.resetSeperator=function(){t.tokenizer.seperator=t.tokenizer.defaultSeperator},t.tokenizer.getSeperator=function(){return t.tokenizer.seperator},t.Pipeline=function(){this._queue=[]},t.Pipeline.registeredFunctions={},t.Pipeline.registerFunction=function(e,n){n in t.Pipeline.registeredFunctions&&t.utils.warn("Overwriting existing registered function: "+n),e.label=n,t.Pipeline.registeredFunctions[n]=e},t.Pipeline.getRegisteredFunction=function(e){return e in t.Pipeline.registeredFunctions!=!0?null:t.Pipeline.registeredFunctions[e]},t.Pipeline.warnIfFunctionNotRegistered=function(e){var n=e.label&&e.label in this.registeredFunctions;n||t.utils.warn("Function is not registered with pipeline. This may cause problems when serialising the index.\n",e)},t.Pipeline.load=function(e){var n=new t.Pipeline;return e.forEach(function(e){var i=t.Pipeline.getRegisteredFunction(e);if(!i)throw new Error("Cannot load un-registered function: "+e);n.add(i)}),n},t.Pipeline.prototype.add=function(){var e=Array.prototype.slice.call(arguments);e.forEach(function(e){t.Pipeline.warnIfFunctionNotRegistered(e),this._queue.push(e)},this)},t.Pipeline.prototype.after=function(e,n){t.Pipeline.warnIfFunctionNotRegistered(n);var i=this._queue.indexOf(e);if(-1===i)throw new Error("Cannot find existingFn");this._queue.splice(i+1,0,n)},t.Pipeline.prototype.before=function(e,n){t.Pipeline.warnIfFunctionNotRegistered(n);var i=this._queue.indexOf(e);if(-1===i)throw new Error("Cannot find existingFn");this._queue.splice(i,0,n)},t.Pipeline.prototype.remove=function(e){var t=this._queue.indexOf(e);-1!==t&&this._queue.splice(t,1)},t.Pipeline.prototype.run=function(e){for(var t=[],n=e.length,i=this._queue.length,o=0;n>o;o++){for(var r=e[o],s=0;i>s&&(r=this._queue[s](r,o,e),void 0!==r&&null!==r);s++);void 0!==r&&null!==r&&t.push(r)}return t},t.Pipeline.prototype.reset=function(){this._queue=[]},t.Pipeline.prototype.get=function(){return this._queue},t.Pipeline.prototype.toJSON=function(){return this._queue.map(function(e){return t.Pipeline.warnIfFunctionNotRegistered(e),e.label})},t.Index=function(){this._fields=[],this._ref="id",this.pipeline=new t.Pipeline,this.documentStore=new t.DocumentStore,this.index={},this.eventEmitter=new t.EventEmitter,this._idfCache={},this.on("add","remove","update",function(){this._idfCache={}}.bind(this))},t.Index.prototype.on=function(){var e=Array.prototype.slice.call(arguments);return this.eventEmitter.addListener.apply(this.eventEmitter,e)},t.Index.prototype.off=function(e,t){return this.eventEmitter.removeListener(e,t)},t.Index.load=function(e){e.version!==t.version&&t.utils.warn("version mismatch: current "+t.version+" importing "+e.version);var n=new this;n._fields=e.fields,n._ref=e.ref,n.documentStore=t.DocumentStore.load(e.documentStore),n.pipeline=t.Pipeline.load(e.pipeline),n.index={};for(var i in e.index)n.index[i]=t.InvertedIndex.load(e.index[i]);return n},t.Index.prototype.addField=function(e){return this._fields.push(e),this.index[e]=new t.InvertedIndex,this},t.Index.prototype.setRef=function(e){return this._ref=e,this},t.Index.prototype.saveDocument=function(e){return this.documentStore=new t.DocumentStore(e),this},t.Index.prototype.addDoc=function(e,n){if(e){var n=void 0===n?!0:n,i=e[this._ref];this.documentStore.addDoc(i,e),this._fields.forEach(function(n){var o=this.pipeline.run(t.tokenizer(e[n]));this.documentStore.addFieldLength(i,n,o.length);var r={};o.forEach(function(e){e in r?r[e]+=1:r[e]=1},this);for(var s in r){var u=r[s];u=Math.sqrt(u),this.index[n].addToken(s,{ref:i,tf:u})}},this),n&&this.eventEmitter.emit("add",e,this)}},t.Index.prototype.removeDocByRef=function(e){if(e&&this.documentStore.isDocStored()!==!1&&this.documentStore.hasDoc(e)){var t=this.documentStore.getDoc(e);this.removeDoc(t,!1)}},t.Index.prototype.removeDoc=function(e,n){if(e){var n=void 0===n?!0:n,i=e[this._ref];this.documentStore.hasDoc(i)&&(this.documentStore.removeDoc(i),this._fields.forEach(function(n){var o=this.pipeline.run(t.tokenizer(e[n]));o.forEach(function(e){this.index[n].removeToken(e,i)},this)},this),n&&this.eventEmitter.emit("remove",e,this))}},t.Index.prototype.updateDoc=function(e,t){var t=void 0===t?!0:t;this.removeDocByRef(e[this._ref],!1),this.addDoc(e,!1),t&&this.eventEmitter.emit("update",e,this)},t.Index.prototype.idf=function(e,t){var n="@"+t+"/"+e;if(Object.prototype.hasOwnProperty.call(this._idfCache,n))return this._idfCache[n];var i=this.index[t].getDocFreq(e),o=1+Math.log(this.documentStore.length/(i+1));return this._idfCache[n]=o,o},t.Index.prototype.getFields=function(){return this._fields.slice()},t.Index.prototype.search=function(e,n){if(!e)return[];e="string"==typeof e?{any:e}:JSON.parse(JSON.stringify(e));var i=null;null!=n&&(i=JSON.stringify(n));for(var o=new t.Configuration(i,this.getFields()).get(),r={},s=Object.keys(e),u=0;u0&&t.push(e);for(var i in n)"docs"!==i&&"df"!==i&&this.expandToken(e+i,t,n[i]);return t},t.InvertedIndex.prototype.toJSON=function(){return{root:this.root}},t.Configuration=function(e,n){var e=e||"";if(void 0==n||null==n)throw new Error("fields should not be null");this.config={};var i;try{i=JSON.parse(e),this.buildUserConfig(i,n)}catch(o){t.utils.warn("user configuration parse failed, will use default configuration"),this.buildDefaultConfig(n)}},t.Configuration.prototype.buildDefaultConfig=function(e){this.reset(),e.forEach(function(e){this.config[e]={boost:1,bool:"OR",expand:!1}},this)},t.Configuration.prototype.buildUserConfig=function(e,n){var i="OR",o=!1;if(this.reset(),"bool"in e&&(i=e.bool||i),"expand"in e&&(o=e.expand||o),"fields"in e)for(var r in e.fields)if(n.indexOf(r)>-1){var s=e.fields[r],u=o;void 0!=s.expand&&(u=s.expand),this.config[r]={boost:s.boost||0===s.boost?s.boost:1,bool:s.bool||i,expand:u}}else t.utils.warn("field name in user configuration not found in index instance fields");else this.addAllFields2UserConfig(i,o,n)},t.Configuration.prototype.addAllFields2UserConfig=function(e,t,n){n.forEach(function(n){this.config[n]={boost:1,bool:e,expand:t}},this)},t.Configuration.prototype.get=function(){return this.config},t.Configuration.prototype.reset=function(){this.config={}},lunr.SortedSet=function(){this.length=0,this.elements=[]},lunr.SortedSet.load=function(e){var t=new this;return t.elements=e,t.length=e.length,t},lunr.SortedSet.prototype.add=function(){var e,t;for(e=0;e1;){if(r===e)return o;e>r&&(t=o),r>e&&(n=o),i=n-t,o=t+Math.floor(i/2),r=this.elements[o]}return r===e?o:-1},lunr.SortedSet.prototype.locationFor=function(e){for(var t=0,n=this.elements.length,i=n-t,o=t+Math.floor(i/2),r=this.elements[o];i>1;)e>r&&(t=o),r>e&&(n=o),i=n-t,o=t+Math.floor(i/2),r=this.elements[o];return r>e?o:e>r?o+1:void 0},lunr.SortedSet.prototype.intersect=function(e){for(var t=new lunr.SortedSet,n=0,i=0,o=this.length,r=e.length,s=this.elements,u=e.elements;;){if(n>o-1||i>r-1)break;s[n]!==u[i]?s[n]u[i]&&i++:(t.add(s[n]),n++,i++)}return t},lunr.SortedSet.prototype.clone=function(){var e=new lunr.SortedSet;return e.elements=this.toArray(),e.length=e.elements.length,e},lunr.SortedSet.prototype.union=function(e){var t,n,i;this.length>=e.length?(t=this,n=e):(t=e,n=this),i=t.clone();for(var o=0,r=n.toArray();o

\n"}, "mlsauce.AdaOpt": {"fullname": "mlsauce.AdaOpt", "modulename": "mlsauce", "qualname": "AdaOpt", "kind": "class", "doc": "

AdaOpt classifier.

\n\n

Attributes:

\n\n
n_iterations: int\n    number of iterations of the optimizer at training time.\n\nlearning_rate: float\n    controls the speed of the optimizer at training time.\n\nreg_lambda: float\n    L2 regularization parameter for successive errors in the optimizer\n    (at training time).\n\nreg_alpha: float\n    L1 regularization parameter for successive errors in the optimizer\n    (at training time).\n\neta: float\n    controls the slope in gradient descent (at training time).\n\ngamma: float\n    controls the step size in gradient descent (at training time).\n\nk: int\n    number of nearest neighbors selected at test time for classification.\n\ntolerance: float\n    controls early stopping in gradient descent (at training time).\n\nn_clusters: int\n    number of clusters, if MiniBatch k-means is used at test time\n    (for faster prediction).\n\nbatch_size: int\n    size of the batch, if MiniBatch k-means is used at test time\n    (for faster prediction).\n\nrow_sample: float\n    percentage of rows chosen from training set (by stratified subsampling,\n    for faster prediction).\n\ntype_dist: str\n    distance used for finding the nearest neighbors; currently `euclidean-f`\n    (euclidean distances calculated as whole), `euclidean` (euclidean distances\n    calculated row by row), `cosine` (cosine distance).\n\nn_jobs: int\n    number of cpus for parallel processing (default: None)\n\nverbose: int\n    progress bar for parallel processing (yes = 1) or not (no = 0)\n\ncache: boolean\n    if the nearest neighbors are cached or not, for faster retrieval in\n    subsequent calls.\n\nn_clusters_input: int\n    number of clusters (a priori) for clustering the features\n\nclustering_method: str\n    clustering method: currently 'kmeans', 'gmm'\n\ncluster_scaling: str\n    scaling method for clustering: currently 'standard', 'robust', 'minmax'\n\nseed: int\n    reproducibility seed for nodes_sim=='uniform', clustering and dropout.\n
\n", "bases": "sklearn.base.BaseEstimator, sklearn.base.ClassifierMixin"}, "mlsauce.AdaOpt.__init__": {"fullname": "mlsauce.AdaOpt.__init__", "modulename": "mlsauce", "qualname": "AdaOpt.__init__", "kind": "function", "doc": "

\n", "signature": "(\tn_iterations=50,\tlearning_rate=0.3,\treg_lambda=0.1,\treg_alpha=0.5,\teta=0.01,\tgamma=0.01,\tk=3,\ttolerance=0,\tn_clusters=0,\tbatch_size=100,\trow_sample=0.8,\ttype_dist='euclidean-f',\tn_jobs=None,\tverbose=0,\tcache=True,\tn_clusters_input=0,\tclustering_method='kmeans',\tcluster_scaling='standard',\tseed=123)"}, "mlsauce.AdaOpt.n_iterations": {"fullname": "mlsauce.AdaOpt.n_iterations", "modulename": "mlsauce", "qualname": "AdaOpt.n_iterations", "kind": "variable", "doc": "

\n"}, "mlsauce.AdaOpt.learning_rate": {"fullname": "mlsauce.AdaOpt.learning_rate", "modulename": "mlsauce", "qualname": "AdaOpt.learning_rate", "kind": "variable", "doc": "

\n"}, "mlsauce.AdaOpt.reg_lambda": {"fullname": "mlsauce.AdaOpt.reg_lambda", "modulename": "mlsauce", "qualname": "AdaOpt.reg_lambda", "kind": "variable", "doc": "

\n"}, "mlsauce.AdaOpt.reg_alpha": {"fullname": "mlsauce.AdaOpt.reg_alpha", "modulename": "mlsauce", "qualname": "AdaOpt.reg_alpha", "kind": "variable", "doc": "

\n"}, "mlsauce.AdaOpt.eta": {"fullname": "mlsauce.AdaOpt.eta", "modulename": "mlsauce", "qualname": "AdaOpt.eta", "kind": "variable", "doc": "

\n"}, "mlsauce.AdaOpt.gamma": {"fullname": "mlsauce.AdaOpt.gamma", "modulename": "mlsauce", "qualname": "AdaOpt.gamma", "kind": "variable", "doc": "

\n"}, "mlsauce.AdaOpt.k": {"fullname": "mlsauce.AdaOpt.k", "modulename": "mlsauce", "qualname": "AdaOpt.k", "kind": "variable", "doc": "

\n"}, "mlsauce.AdaOpt.tolerance": {"fullname": "mlsauce.AdaOpt.tolerance", "modulename": "mlsauce", "qualname": "AdaOpt.tolerance", "kind": "variable", "doc": "

\n"}, "mlsauce.AdaOpt.n_clusters": {"fullname": "mlsauce.AdaOpt.n_clusters", "modulename": "mlsauce", "qualname": "AdaOpt.n_clusters", "kind": "variable", "doc": "

\n"}, "mlsauce.AdaOpt.batch_size": {"fullname": "mlsauce.AdaOpt.batch_size", "modulename": "mlsauce", "qualname": "AdaOpt.batch_size", "kind": "variable", "doc": "

\n"}, "mlsauce.AdaOpt.row_sample": {"fullname": "mlsauce.AdaOpt.row_sample", "modulename": "mlsauce", "qualname": "AdaOpt.row_sample", "kind": "variable", "doc": "

\n"}, "mlsauce.AdaOpt.type_dist": {"fullname": "mlsauce.AdaOpt.type_dist", "modulename": "mlsauce", "qualname": "AdaOpt.type_dist", "kind": "variable", "doc": "

\n"}, "mlsauce.AdaOpt.n_jobs": {"fullname": "mlsauce.AdaOpt.n_jobs", "modulename": "mlsauce", "qualname": "AdaOpt.n_jobs", "kind": "variable", "doc": "

\n"}, "mlsauce.AdaOpt.cache": {"fullname": "mlsauce.AdaOpt.cache", "modulename": "mlsauce", "qualname": "AdaOpt.cache", "kind": "variable", "doc": "

\n"}, "mlsauce.AdaOpt.verbose": {"fullname": "mlsauce.AdaOpt.verbose", "modulename": "mlsauce", "qualname": "AdaOpt.verbose", "kind": "variable", "doc": "

\n"}, "mlsauce.AdaOpt.n_clusters_input": {"fullname": "mlsauce.AdaOpt.n_clusters_input", "modulename": "mlsauce", "qualname": "AdaOpt.n_clusters_input", "kind": "variable", "doc": "

\n"}, "mlsauce.AdaOpt.clustering_method": {"fullname": "mlsauce.AdaOpt.clustering_method", "modulename": "mlsauce", "qualname": "AdaOpt.clustering_method", "kind": "variable", "doc": "

\n"}, "mlsauce.AdaOpt.cluster_scaling": {"fullname": "mlsauce.AdaOpt.cluster_scaling", "modulename": "mlsauce", "qualname": "AdaOpt.cluster_scaling", "kind": "variable", "doc": "

\n"}, "mlsauce.AdaOpt.seed": {"fullname": "mlsauce.AdaOpt.seed", "modulename": "mlsauce", "qualname": "AdaOpt.seed", "kind": "variable", "doc": "

\n"}, "mlsauce.AdaOpt.fit": {"fullname": "mlsauce.AdaOpt.fit", "modulename": "mlsauce", "qualname": "AdaOpt.fit", "kind": "function", "doc": "

Fit AdaOpt to training data (X, y)

\n\n

Args:

\n\n
X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\ny: array-like, shape = [n_samples]\n    Target values.\n\n**kwargs: additional parameters to be passed to self.cook_training_set.\n
\n\n

Returns:

\n\n
self: object.\n
\n", "signature": "(self, X, y, **kwargs):", "funcdef": "def"}, "mlsauce.AdaOpt.predict": {"fullname": "mlsauce.AdaOpt.predict", "modulename": "mlsauce", "qualname": "AdaOpt.predict", "kind": "function", "doc": "

Predict test data X.

\n\n

Args:

\n\n
X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\n**kwargs: additional parameters to be passed to `predict_proba`\n
\n\n

Returns:

\n\n
model predictions: {array-like}\n
\n", "signature": "(self, X, **kwargs):", "funcdef": "def"}, "mlsauce.AdaOpt.predict_proba": {"fullname": "mlsauce.AdaOpt.predict_proba", "modulename": "mlsauce", "qualname": "AdaOpt.predict_proba", "kind": "function", "doc": "

Predict probabilities for test data X.

\n\n

Args:

\n\n
X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\n**kwargs: additional parameters to be passed to\n    self.cook_test_set\n
\n\n

Returns:

\n\n
probability estimates for test data: {array-like}\n
\n", "signature": "(self, X, **kwargs):", "funcdef": "def"}, "mlsauce.AdaOpt.set_score_request": {"fullname": "mlsauce.AdaOpt.set_score_request", "modulename": "mlsauce", "qualname": "AdaOpt.set_score_request", "kind": "function", "doc": "

A descriptor for request methods.

\n\n

New in version 1.3.

\n\n

Parameters

\n\n

name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

\n\n

keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

\n\n

validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

\n\n

Notes

\n\n

This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

\n\n

References

\n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.LSBoostClassifier": {"fullname": "mlsauce.LSBoostClassifier", "modulename": "mlsauce", "qualname": "LSBoostClassifier", "kind": "class", "doc": "

LSBoost classifier.

\n\n
Attributes:\n\n    n_estimators: int\n        number of boosting iterations.\n\n    learning_rate: float\n        controls the learning speed at training time.\n\n    n_hidden_features: int\n        number of nodes in successive hidden layers.\n\n    reg_lambda: float\n        L2 regularization parameter for successive errors in the optimizer\n        (at training time).\n\n    alpha: float\n        compromise between L1 and L2 regularization (must be in [0, 1]),\n        for `solver` == 'enet'.\n\n    row_sample: float\n        percentage of rows chosen from the training set.\n\n    col_sample: float\n        percentage of columns chosen from the training set.\n\n    dropout: float\n        percentage of nodes dropped from the training set.\n\n    tolerance: float\n        controls early stopping in gradient descent (at training time).\n\n    direct_link: bool\n        indicates whether the original features are included (True) in model's\n        fitting or not (False).\n\n    verbose: int\n        progress bar (yes = 1) or not (no = 0) (currently).\n\n    seed: int\n        reproducibility seed for nodes_sim=='uniform', clustering and dropout.\n\n    backend: str\n        type of backend; must be in ('cpu', 'gpu', 'tpu')\n\n    solver: str\n        type of 'weak' learner; currently in ('ridge', 'lasso', 'enet').\n        'enet' is a combination of 'ridge' and 'lasso' called Elastic Net.\n\n    activation: str\n        activation function: currently 'relu', 'relu6', 'sigmoid', 'tanh'\n\n    n_clusters: int\n        number of clusters for clustering the features\n\n    clustering_method: str\n        clustering method: currently 'kmeans', 'gmm'\n\n    cluster_scaling: str\n        scaling method for clustering: currently 'standard', 'robust', 'minmax'\n\n    degree: int\n        degree of features interactions to include in the model\n\n    weights_distr: str\n        distribution of weights for constructing the model's hidden layer;\n        currently 'uniform', 'gaussian'\n\nExamples:\n\n    ```python\n    import numpy as np\n    from sklearn.datasets import load_digits, load_breast_cancer, load_wine, load_iris\n    from sklearn.model_selection import train_test_split, GridSearchCV, cross_val_score\n    from sklearn.tree import DecisionTreeRegressor\n    from sklearn.kernel_ridge import KernelRidge\n    from time import time\n    from os import chdir\n    from sklearn import metrics\n    import os\n\n    import mlsauce as ms\n\n    print(\"\n
\n\n

\")\n print(\"GenericBoosting Decision tree -----\")\n print(\"\n\")

\n\n
    print(\"\n
\n\n

\")\n print(\"breast_cancer data -----\")

\n\n
    # data 1\n    breast_cancer = load_breast_cancer()\n    X = breast_cancer.data\n    y = breast_cancer.target\n    # split data into training test and test set\n    np.random.seed(15029)\n    X_train, X_test, y_train, y_test = train_test_split(X, y,\n                                                        test_size=0.2)\n\n    clf = DecisionTreeRegressor()\n    clf2 = KernelRidge()\n\n    obj = ms.GenericBoostingClassifier(clf, tolerance=1e-2)\n    print(obj.get_params())\n    start = time()\n    obj.fit(X_train, y_train)\n    print(time()-start)\n    start = time()\n    print(obj.score(X_test, y_test))\n    print(time()-start)\n\n    print(obj.obj['loss'])\n\n    obj = ms.GenericBoostingClassifier(clf, tolerance=1e-2, n_clusters=2)\n    print(obj.get_params())\n    start = time()\n    obj.fit(X_train, y_train)\n    print(time()-start)\n    start = time()\n    print(obj.score(X_test, y_test))\n    print(time()-start)\n\n    print(obj.obj['loss'])\n\n\n    # data 2\n    print(\"\n
\n\n

\")\n print(\"wine data -----\")

\n\n
    wine = load_wine()\n    Z = wine.data\n    t = wine.target\n    np.random.seed(879423)\n    X_train, X_test, y_train, y_test = train_test_split(Z, t,\n                                                        test_size=0.2)\n\n    obj = ms.GenericBoostingClassifier(clf)\n    print(obj.get_params())\n    start = time()\n    obj.fit(X_train, y_train)\n    print(time()-start)\n    start = time()\n    print(obj.score(X_test, y_test))\n    print(time()-start)\n\n    print(obj.obj['loss'])\n\n    obj = ms.GenericBoostingClassifier(clf, n_clusters=3)\n    print(obj.get_params())\n    start = time()\n    obj.fit(X_train, y_train)\n    print(time()-start)\n    start = time()\n    print(obj.score(X_test, y_test))\n    print(time()-start)\n\n    print(obj.obj['loss'])\n\n    # data 3\n    print(\"\n
\n\n

\")\n print(\"iris data -----\")

\n\n
    iris = load_iris()\n    Z = iris.data\n    t = iris.target\n    np.random.seed(734563)\n    X_train, X_test, y_train, y_test = train_test_split(Z, t,\n                                                        test_size=0.2)\n\n\n    obj = ms.GenericBoostingClassifier(clf)\n    print(obj.get_params())\n    start = time()\n    obj.fit(X_train, y_train)\n    print(time()-start)\n    start = time()\n    print(obj.score(X_test, y_test))\n    print(time()-start)\n\n    print(obj.obj['loss'])\n\n\n    print(\"\n
\n\n

\")\n print(\"GenericBoosting KRR -----\")\n print(\"\n\")

\n\n
    obj = ms.GenericBoostingClassifier(clf2, tolerance=1e-2)\n    print(obj.get_params())\n    start = time()\n    obj.fit(X_train, y_train)\n    print(time()-start)\n    start = time()\n    print(obj.score(X_test, y_test))\n    print(time()-start)\n\n    print(obj.obj['loss'])\n\n    obj = ms.GenericBoostingClassifier(clf2, tolerance=1e-2, n_clusters=2)\n    print(obj.get_params())\n    start = time()\n    obj.fit(X_train, y_train)\n    print(time()-start)\n    start = time()\n    print(obj.score(X_test, y_test))\n    print(time()-start)\n\n    print(obj.obj['loss'])\n\n\n    # data 2\n    print(\"\n
\n\n

\")\n print(\"wine data -----\")

\n\n
    wine = load_wine()\n    Z = wine.data\n    t = wine.target\n    np.random.seed(879423)\n    X_train, X_test, y_train, y_test = train_test_split(Z, t,\n                                                        test_size=0.2)\n\n    obj = ms.GenericBoostingClassifier(clf2)\n    print(obj.get_params())\n    start = time()\n    obj.fit(X_train, y_train)\n    print(time()-start)\n    start = time()\n    print(obj.score(X_test, y_test))\n    print(time()-start)\n\n    print(obj.obj['loss'])\n\n    obj = ms.GenericBoostingClassifier(clf2, n_clusters=3)\n    print(obj.get_params())\n    start = time()\n    obj.fit(X_train, y_train)\n    print(time()-start)\n    start = time()\n    print(obj.score(X_test, y_test))\n    print(time()-start)\n\n    print(obj.obj['loss'])\n\n    # data 3\n    print(\"\n
\n\n

\")\n print(\"iris data -----\")

\n\n
    iris = load_iris()\n    Z = iris.data\n    t = iris.target\n    np.random.seed(734563)\n    X_train, X_test, y_train, y_test = train_test_split(Z, t,\n                                                        test_size=0.2)\n\n\n    obj = ms.GenericBoostingClassifier(clf2)\n    print(obj.get_params())\n    start = time()\n    obj.fit(X_train, y_train)\n    print(time()-start)\n    start = time()\n    print(obj.score(X_test, y_test))\n    print(time()-start)\n\n    print(obj.obj['loss'])\n```\n
\n", "bases": "sklearn.base.BaseEstimator, sklearn.base.ClassifierMixin"}, "mlsauce.LSBoostClassifier.__init__": {"fullname": "mlsauce.LSBoostClassifier.__init__", "modulename": "mlsauce", "qualname": "LSBoostClassifier.__init__", "kind": "function", "doc": "

\n", "signature": "(\tn_estimators=100,\tlearning_rate=0.1,\tn_hidden_features=5,\treg_lambda=0.1,\talpha=0.5,\trow_sample=1,\tcol_sample=1,\tdropout=0,\ttolerance=0.0001,\tdirect_link=1,\tverbose=1,\tseed=123,\tbackend='cpu',\tsolver='ridge',\tactivation='relu',\tn_clusters=0,\tclustering_method='kmeans',\tcluster_scaling='standard',\tdegree=None,\tweights_distr='uniform',\tbase_model=None)"}, "mlsauce.LSBoostClassifier.base_model": {"fullname": "mlsauce.LSBoostClassifier.base_model", "modulename": "mlsauce", "qualname": "LSBoostClassifier.base_model", "kind": "variable", "doc": "

\n"}, "mlsauce.LSBoostClassifier.n_estimators": {"fullname": "mlsauce.LSBoostClassifier.n_estimators", "modulename": "mlsauce", "qualname": "LSBoostClassifier.n_estimators", "kind": "variable", "doc": "

\n"}, "mlsauce.LSBoostClassifier.learning_rate": {"fullname": "mlsauce.LSBoostClassifier.learning_rate", "modulename": "mlsauce", "qualname": "LSBoostClassifier.learning_rate", "kind": "variable", "doc": "

\n"}, "mlsauce.LSBoostClassifier.n_hidden_features": {"fullname": "mlsauce.LSBoostClassifier.n_hidden_features", "modulename": "mlsauce", "qualname": "LSBoostClassifier.n_hidden_features", "kind": "variable", "doc": "

\n"}, "mlsauce.LSBoostClassifier.reg_lambda": {"fullname": "mlsauce.LSBoostClassifier.reg_lambda", "modulename": "mlsauce", "qualname": "LSBoostClassifier.reg_lambda", "kind": "variable", "doc": "

\n"}, "mlsauce.LSBoostClassifier.alpha": {"fullname": "mlsauce.LSBoostClassifier.alpha", "modulename": "mlsauce", "qualname": "LSBoostClassifier.alpha", "kind": "variable", "doc": "

\n"}, "mlsauce.LSBoostClassifier.row_sample": {"fullname": "mlsauce.LSBoostClassifier.row_sample", "modulename": "mlsauce", "qualname": "LSBoostClassifier.row_sample", "kind": "variable", "doc": "

\n"}, "mlsauce.LSBoostClassifier.col_sample": {"fullname": "mlsauce.LSBoostClassifier.col_sample", "modulename": "mlsauce", "qualname": "LSBoostClassifier.col_sample", "kind": "variable", "doc": "

\n"}, "mlsauce.LSBoostClassifier.dropout": {"fullname": "mlsauce.LSBoostClassifier.dropout", "modulename": "mlsauce", "qualname": "LSBoostClassifier.dropout", "kind": "variable", "doc": "

\n"}, "mlsauce.LSBoostClassifier.tolerance": {"fullname": "mlsauce.LSBoostClassifier.tolerance", "modulename": "mlsauce", "qualname": "LSBoostClassifier.tolerance", "kind": "variable", "doc": "

\n"}, "mlsauce.LSBoostClassifier.direct_link": {"fullname": "mlsauce.LSBoostClassifier.direct_link", "modulename": "mlsauce", "qualname": "LSBoostClassifier.direct_link", "kind": "variable", "doc": "

\n"}, "mlsauce.LSBoostClassifier.verbose": {"fullname": "mlsauce.LSBoostClassifier.verbose", "modulename": "mlsauce", "qualname": "LSBoostClassifier.verbose", "kind": "variable", "doc": "

\n"}, "mlsauce.LSBoostClassifier.seed": {"fullname": "mlsauce.LSBoostClassifier.seed", "modulename": "mlsauce", "qualname": "LSBoostClassifier.seed", "kind": "variable", "doc": "

\n"}, "mlsauce.LSBoostClassifier.backend": {"fullname": "mlsauce.LSBoostClassifier.backend", "modulename": "mlsauce", "qualname": "LSBoostClassifier.backend", "kind": "variable", "doc": "

\n"}, "mlsauce.LSBoostClassifier.obj": {"fullname": "mlsauce.LSBoostClassifier.obj", "modulename": "mlsauce", "qualname": "LSBoostClassifier.obj", "kind": "variable", "doc": "

\n"}, "mlsauce.LSBoostClassifier.solver": {"fullname": "mlsauce.LSBoostClassifier.solver", "modulename": "mlsauce", "qualname": "LSBoostClassifier.solver", "kind": "variable", "doc": "

\n"}, "mlsauce.LSBoostClassifier.activation": {"fullname": "mlsauce.LSBoostClassifier.activation", "modulename": "mlsauce", "qualname": "LSBoostClassifier.activation", "kind": "variable", "doc": "

\n"}, "mlsauce.LSBoostClassifier.n_clusters": {"fullname": "mlsauce.LSBoostClassifier.n_clusters", "modulename": "mlsauce", "qualname": "LSBoostClassifier.n_clusters", "kind": "variable", "doc": "

\n"}, "mlsauce.LSBoostClassifier.clustering_method": {"fullname": "mlsauce.LSBoostClassifier.clustering_method", "modulename": "mlsauce", "qualname": "LSBoostClassifier.clustering_method", "kind": "variable", "doc": "

\n"}, "mlsauce.LSBoostClassifier.cluster_scaling": {"fullname": "mlsauce.LSBoostClassifier.cluster_scaling", "modulename": "mlsauce", "qualname": "LSBoostClassifier.cluster_scaling", "kind": "variable", "doc": "

\n"}, "mlsauce.LSBoostClassifier.degree": {"fullname": "mlsauce.LSBoostClassifier.degree", "modulename": "mlsauce", "qualname": "LSBoostClassifier.degree", "kind": "variable", "doc": "

\n"}, "mlsauce.LSBoostClassifier.poly_": {"fullname": "mlsauce.LSBoostClassifier.poly_", "modulename": "mlsauce", "qualname": "LSBoostClassifier.poly_", "kind": "variable", "doc": "

\n"}, "mlsauce.LSBoostClassifier.weights_distr": {"fullname": "mlsauce.LSBoostClassifier.weights_distr", "modulename": "mlsauce", "qualname": "LSBoostClassifier.weights_distr", "kind": "variable", "doc": "

\n"}, "mlsauce.LSBoostClassifier.fit": {"fullname": "mlsauce.LSBoostClassifier.fit", "modulename": "mlsauce", "qualname": "LSBoostClassifier.fit", "kind": "function", "doc": "

Fit Booster (classifier) to training data (X, y)

\n\n

Args:

\n\n
X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\ny: array-like, shape = [n_samples]\n    Target values.\n\n**kwargs: additional parameters to be passed to self.cook_training_set.\n
\n\n

Returns:

\n\n
self: object.\n
\n", "signature": "(self, X, y, **kwargs):", "funcdef": "def"}, "mlsauce.LSBoostClassifier.predict": {"fullname": "mlsauce.LSBoostClassifier.predict", "modulename": "mlsauce", "qualname": "LSBoostClassifier.predict", "kind": "function", "doc": "

Predict test data X.

\n\n

Args:

\n\n
X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\n**kwargs: additional parameters to be passed to `predict_proba`\n
\n\n

Returns:

\n\n
model predictions: {array-like}\n
\n", "signature": "(self, X, **kwargs):", "funcdef": "def"}, "mlsauce.LSBoostClassifier.predict_proba": {"fullname": "mlsauce.LSBoostClassifier.predict_proba", "modulename": "mlsauce", "qualname": "LSBoostClassifier.predict_proba", "kind": "function", "doc": "

Predict probabilities for test data X.

\n\n

Args:

\n\n
X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\n**kwargs: additional parameters to be passed to\n    self.cook_test_set\n
\n\n

Returns:

\n\n
probability estimates for test data: {array-like}\n
\n", "signature": "(self, X, **kwargs):", "funcdef": "def"}, "mlsauce.LSBoostClassifier.set_score_request": {"fullname": "mlsauce.LSBoostClassifier.set_score_request", "modulename": "mlsauce", "qualname": "LSBoostClassifier.set_score_request", "kind": "function", "doc": "

A descriptor for request methods.

\n\n

New in version 1.3.

\n\n

Parameters

\n\n

name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

\n\n

keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

\n\n

validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

\n\n

Notes

\n\n

This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

\n\n

References

\n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.GenericBoostingClassifier": {"fullname": "mlsauce.GenericBoostingClassifier", "modulename": "mlsauce", "qualname": "GenericBoostingClassifier", "kind": "class", "doc": "

Generic Boosting classifier (using any classifier as base learner).

\n\n

Attributes:

\n\n
obj: object\n    model object.\n\nn_estimators: int\n    number of boosting iterations.\n\nlearning_rate: float\n    controls the learning speed at training time.\n\nn_hidden_features: int\n    number of nodes in successive hidden layers.\n\nreg_lambda: float\n    L2 regularization parameter for successive errors in the optimizer\n    (at training time).\n\nalpha: float\n    compromise between L1 and L2 regularization (must be in [0, 1]),\n    for `solver` == 'enet'.\n\nrow_sample: float\n    percentage of rows chosen from the training set.\n\ncol_sample: float\n    percentage of columns chosen from the training set.\n\ndropout: float\n    percentage of nodes dropped from the training set.\n\ntolerance: float\n    controls early stopping in gradient descent (at training time).\n\ndirect_link: bool\n    indicates whether the original features are included (True) in model's\n    fitting or not (False).\n\nverbose: int\n    progress bar (yes = 1) or not (no = 0) (currently).\n\nseed: int\n    reproducibility seed for nodes_sim=='uniform', clustering and dropout.\n\nbackend: str\n    type of backend; must be in ('cpu', 'gpu', 'tpu')\n\nsolver: str\n    type of 'weak' learner; currently in ('ridge', 'lasso', 'enet').\n    'enet' is a combination of 'ridge' and 'lasso' called Elastic Net.\n\nactivation: str\n    activation function: currently 'relu', 'relu6', 'sigmoid', 'tanh'\n\nn_clusters: int\n    number of clusters for clustering the features\n\nclustering_method: str\n    clustering method: currently 'kmeans', 'gmm'\n\ncluster_scaling: str\n    scaling method for clustering: currently 'standard', 'robust', 'minmax'\n\ndegree: int\n    degree of features interactions to include in the model\n\nweights_distr: str\n    distribution of weights for constructing the model's hidden layer;\n    currently 'uniform', 'gaussian'\n
\n", "bases": "mlsauce.booster._booster_classifier.LSBoostClassifier"}, "mlsauce.GenericBoostingClassifier.__init__": {"fullname": "mlsauce.GenericBoostingClassifier.__init__", "modulename": "mlsauce", "qualname": "GenericBoostingClassifier.__init__", "kind": "function", "doc": "

\n", "signature": "(\tobj,\tn_estimators=100,\tlearning_rate=0.1,\tn_hidden_features=5,\treg_lambda=0.1,\talpha=0.5,\trow_sample=1,\tcol_sample=1,\tdropout=0,\ttolerance=0.0001,\tdirect_link=1,\tverbose=1,\tseed=123,\tbackend='cpu',\tsolver='ridge',\tactivation='relu',\tn_clusters=0,\tclustering_method='kmeans',\tcluster_scaling='standard',\tdegree=None,\tweights_distr='uniform')"}, "mlsauce.GenericBoostingClassifier.base_model": {"fullname": "mlsauce.GenericBoostingClassifier.base_model", "modulename": "mlsauce", "qualname": "GenericBoostingClassifier.base_model", "kind": "variable", "doc": "

\n"}, "mlsauce.GenericBoostingClassifier.set_score_request": {"fullname": "mlsauce.GenericBoostingClassifier.set_score_request", "modulename": "mlsauce", "qualname": "GenericBoostingClassifier.set_score_request", "kind": "function", "doc": "

A descriptor for request methods.

\n\n

New in version 1.3.

\n\n

Parameters

\n\n

name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

\n\n

keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

\n\n

validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

\n\n

Notes

\n\n

This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

\n\n

References

\n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.GenericBoostingRegressor": {"fullname": "mlsauce.GenericBoostingRegressor", "modulename": "mlsauce", "qualname": "GenericBoostingRegressor", "kind": "class", "doc": "

LSBoost regressor.

\n\n

Attributes:

\n\n
n_estimators: int\n    number of boosting iterations.\n\nlearning_rate: float\n    controls the learning speed at training time.\n\nn_hidden_features: int\n    number of nodes in successive hidden layers.\n\nreg_lambda: float\n    L2 regularization parameter for successive errors in the optimizer\n    (at training time).\n\nalpha: float\n    compromise between L1 and L2 regularization (must be in [0, 1]),\n    for `solver` == 'enet'\n\nrow_sample: float\n    percentage of rows chosen from the training set.\n\ncol_sample: float\n    percentage of columns chosen from the training set.\n\ndropout: float\n    percentage of nodes dropped from the training set.\n\ntolerance: float\n    controls early stopping in gradient descent (at training time).\n\ndirect_link: bool\n    indicates whether the original features are included (True) in model's\n    fitting or not (False).\n\nverbose: int\n    progress bar (yes = 1) or not (no = 0) (currently).\n\nseed: int\n    reproducibility seed for nodes_sim=='uniform', clustering and dropout.\n\nbackend: str\n    type of backend; must be in ('cpu', 'gpu', 'tpu')\n\nsolver: str\n    type of 'weak' learner; currently in ('ridge', 'lasso')\n\nactivation: str\n    activation function: currently 'relu', 'relu6', 'sigmoid', 'tanh'\n\ntype_pi: str.\n    type of prediction interval; currently \"kde\" (default) or \"bootstrap\".\n    Used only in `self.predict`, for `self.replications` > 0 and `self.kernel`\n    in ('gaussian', 'tophat'). Default is `None`.\n\nreplications: int.\n    number of replications (if needed) for predictive simulation.\n    Used only in `self.predict`, for `self.kernel` in ('gaussian',\n    'tophat') and `self.type_pi = 'kde'`. Default is `None`.\n\nn_clusters: int\n    number of clusters for clustering the features\n\nclustering_method: str\n    clustering method: currently 'kmeans', 'gmm'\n\ncluster_scaling: str\n    scaling method for clustering: currently 'standard', 'robust', 'minmax'\n\ndegree: int\n    degree of features interactions to include in the model\n\nweights_distr: str\n    distribution of weights for constructing the model's hidden layer;\n    either 'uniform' or 'gaussian'\n
\n", "bases": "mlsauce.booster._booster_regressor.LSBoostRegressor"}, "mlsauce.GenericBoostingRegressor.__init__": {"fullname": "mlsauce.GenericBoostingRegressor.__init__", "modulename": "mlsauce", "qualname": "GenericBoostingRegressor.__init__", "kind": "function", "doc": "

\n", "signature": "(\tobj,\tn_estimators=100,\tlearning_rate=0.1,\tn_hidden_features=5,\treg_lambda=0.1,\talpha=0.5,\trow_sample=1,\tcol_sample=1,\tdropout=0,\ttolerance=0.0001,\tdirect_link=1,\tverbose=1,\tseed=123,\tbackend='cpu',\tsolver='ridge',\tactivation='relu',\ttype_pi=None,\treplications=None,\tkernel=None,\tn_clusters=0,\tclustering_method='kmeans',\tcluster_scaling='standard',\tdegree=None,\tweights_distr='uniform')"}, "mlsauce.GenericBoostingRegressor.base_model": {"fullname": "mlsauce.GenericBoostingRegressor.base_model", "modulename": "mlsauce", "qualname": "GenericBoostingRegressor.base_model", "kind": "variable", "doc": "

\n"}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"fullname": "mlsauce.GenericBoostingRegressor.set_predict_request", "modulename": "mlsauce", "qualname": "GenericBoostingRegressor.set_predict_request", "kind": "function", "doc": "

A descriptor for request methods.

\n\n

New in version 1.3.

\n\n

Parameters

\n\n

name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

\n\n

keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

\n\n

validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

\n\n

Notes

\n\n

This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

\n\n

References

\n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.GenericBoostingRegressor.set_score_request": {"fullname": "mlsauce.GenericBoostingRegressor.set_score_request", "modulename": "mlsauce", "qualname": "GenericBoostingRegressor.set_score_request", "kind": "function", "doc": "

A descriptor for request methods.

\n\n

New in version 1.3.

\n\n

Parameters

\n\n

name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

\n\n

keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

\n\n

validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

\n\n

Notes

\n\n

This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

\n\n

References

\n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.StumpClassifier": {"fullname": "mlsauce.StumpClassifier", "modulename": "mlsauce", "qualname": "StumpClassifier", "kind": "class", "doc": "

Stump classifier.

\n\n

Attributes:

\n\n
bins: int\n    Number of histogram bins; as in numpy.histogram.\n
\n", "bases": "sklearn.base.BaseEstimator, sklearn.base.ClassifierMixin"}, "mlsauce.StumpClassifier.__init__": {"fullname": "mlsauce.StumpClassifier.__init__", "modulename": "mlsauce", "qualname": "StumpClassifier.__init__", "kind": "function", "doc": "

\n", "signature": "(bins='auto')"}, "mlsauce.StumpClassifier.bins": {"fullname": "mlsauce.StumpClassifier.bins", "modulename": "mlsauce", "qualname": "StumpClassifier.bins", "kind": "variable", "doc": "

\n"}, "mlsauce.StumpClassifier.obj": {"fullname": "mlsauce.StumpClassifier.obj", "modulename": "mlsauce", "qualname": "StumpClassifier.obj", "kind": "variable", "doc": "

\n"}, "mlsauce.StumpClassifier.fit": {"fullname": "mlsauce.StumpClassifier.fit", "modulename": "mlsauce", "qualname": "StumpClassifier.fit", "kind": "function", "doc": "

Fit Stump to training data (X, y)

\n\n

Args:

\n\n
X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\ny: array-like, shape = [n_samples]\n    Target values.\n\nsample_weight: array_like, shape = [n_samples]\n    Observations weights.\n
\n\n

Returns:

\n\n
self: object.\n
\n", "signature": "(self, X, y, sample_weight=None, **kwargs):", "funcdef": "def"}, "mlsauce.StumpClassifier.predict": {"fullname": "mlsauce.StumpClassifier.predict", "modulename": "mlsauce", "qualname": "StumpClassifier.predict", "kind": "function", "doc": "

Predict test data X.

\n\n

Args:

\n\n
X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\n**kwargs: additional parameters to be passed to `predict_proba`\n
\n\n

Returns:

\n\n
model predictions: {array-like}\n
\n", "signature": "(self, X, **kwargs):", "funcdef": "def"}, "mlsauce.StumpClassifier.predict_proba": {"fullname": "mlsauce.StumpClassifier.predict_proba", "modulename": "mlsauce", "qualname": "StumpClassifier.predict_proba", "kind": "function", "doc": "

Predict probabilities for test data X.

\n\n

Args:

\n\n
X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\n**kwargs: additional parameters to be passed to\n    self.cook_test_set\n
\n\n

Returns:

\n\n
probability estimates for test data: {array-like}\n
\n", "signature": "(self, X, **kwargs):", "funcdef": "def"}, "mlsauce.StumpClassifier.set_fit_request": {"fullname": "mlsauce.StumpClassifier.set_fit_request", "modulename": "mlsauce", "qualname": "StumpClassifier.set_fit_request", "kind": "function", "doc": "

A descriptor for request methods.

\n\n

New in version 1.3.

\n\n

Parameters

\n\n

name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

\n\n

keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

\n\n

validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

\n\n

Notes

\n\n

This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

\n\n

References

\n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.StumpClassifier.set_score_request": {"fullname": "mlsauce.StumpClassifier.set_score_request", "modulename": "mlsauce", "qualname": "StumpClassifier.set_score_request", "kind": "function", "doc": "

A descriptor for request methods.

\n\n

New in version 1.3.

\n\n

Parameters

\n\n

name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

\n\n

keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

\n\n

validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

\n\n

Notes

\n\n

This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

\n\n

References

\n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.ElasticNetRegressor": {"fullname": "mlsauce.ElasticNetRegressor", "modulename": "mlsauce", "qualname": "ElasticNetRegressor", "kind": "class", "doc": "

Elasticnet.

\n\n

Attributes:

\n\n
reg_lambda: float\n    regularization parameter.\n\nalpha: float\n    compromise between L1 and L2 regularization (must be in [0, 1]),\n    for `solver` == 'enet'.\n\nbackend: str\n    type of backend; must be in ('cpu', 'gpu', 'tpu')\n
\n", "bases": "sklearn.base.BaseEstimator, sklearn.base.RegressorMixin"}, "mlsauce.ElasticNetRegressor.__init__": {"fullname": "mlsauce.ElasticNetRegressor.__init__", "modulename": "mlsauce", "qualname": "ElasticNetRegressor.__init__", "kind": "function", "doc": "

\n", "signature": "(reg_lambda=0.1, alpha=0.5, backend='cpu')"}, "mlsauce.ElasticNetRegressor.reg_lambda": {"fullname": "mlsauce.ElasticNetRegressor.reg_lambda", "modulename": "mlsauce", "qualname": "ElasticNetRegressor.reg_lambda", "kind": "variable", "doc": "

\n"}, "mlsauce.ElasticNetRegressor.alpha": {"fullname": "mlsauce.ElasticNetRegressor.alpha", "modulename": "mlsauce", "qualname": "ElasticNetRegressor.alpha", "kind": "variable", "doc": "

\n"}, "mlsauce.ElasticNetRegressor.backend": {"fullname": "mlsauce.ElasticNetRegressor.backend", "modulename": "mlsauce", "qualname": "ElasticNetRegressor.backend", "kind": "variable", "doc": "

\n"}, "mlsauce.ElasticNetRegressor.fit": {"fullname": "mlsauce.ElasticNetRegressor.fit", "modulename": "mlsauce", "qualname": "ElasticNetRegressor.fit", "kind": "function", "doc": "

Fit matrixops (classifier) to training data (X, y)

\n\n

Args:

\n\n
X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\ny: array-like, shape = [n_samples]\n    Target values.\n\n**kwargs: additional parameters to be passed to self.cook_training_set.\n
\n\n

Returns:

\n\n
self: object.\n
\n", "signature": "(self, X, y, **kwargs):", "funcdef": "def"}, "mlsauce.ElasticNetRegressor.predict": {"fullname": "mlsauce.ElasticNetRegressor.predict", "modulename": "mlsauce", "qualname": "ElasticNetRegressor.predict", "kind": "function", "doc": "

Predict test data X.

\n\n

Args:

\n\n
X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\n**kwargs: additional parameters to be passed to `predict_proba`\n
\n\n

Returns:

\n\n
model predictions: {array-like}\n
\n", "signature": "(self, X, **kwargs):", "funcdef": "def"}, "mlsauce.ElasticNetRegressor.set_score_request": {"fullname": "mlsauce.ElasticNetRegressor.set_score_request", "modulename": "mlsauce", "qualname": "ElasticNetRegressor.set_score_request", "kind": "function", "doc": "

A descriptor for request methods.

\n\n

New in version 1.3.

\n\n

Parameters

\n\n

name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

\n\n

keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

\n\n

validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

\n\n

Notes

\n\n

This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

\n\n

References

\n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.LassoRegressor": {"fullname": "mlsauce.LassoRegressor", "modulename": "mlsauce", "qualname": "LassoRegressor", "kind": "class", "doc": "

Lasso.

\n\n

Attributes:

\n\n
reg_lambda: float\n    L1 regularization parameter.\n\nmax_iter: int\n    number of iterations of lasso shooting algorithm.\n\ntol: float\n    tolerance for convergence of lasso shooting algorithm.\n\nbackend: str\n    type of backend; must be in ('cpu', 'gpu', 'tpu').\n
\n", "bases": "sklearn.base.BaseEstimator, sklearn.base.RegressorMixin"}, "mlsauce.LassoRegressor.__init__": {"fullname": "mlsauce.LassoRegressor.__init__", "modulename": "mlsauce", "qualname": "LassoRegressor.__init__", "kind": "function", "doc": "

\n", "signature": "(reg_lambda=0.1, max_iter=10, tol=0.001, backend='cpu')"}, "mlsauce.LassoRegressor.reg_lambda": {"fullname": "mlsauce.LassoRegressor.reg_lambda", "modulename": "mlsauce", "qualname": "LassoRegressor.reg_lambda", "kind": "variable", "doc": "

\n"}, "mlsauce.LassoRegressor.max_iter": {"fullname": "mlsauce.LassoRegressor.max_iter", "modulename": "mlsauce", "qualname": "LassoRegressor.max_iter", "kind": "variable", "doc": "

\n"}, "mlsauce.LassoRegressor.tol": {"fullname": "mlsauce.LassoRegressor.tol", "modulename": "mlsauce", "qualname": "LassoRegressor.tol", "kind": "variable", "doc": "

\n"}, "mlsauce.LassoRegressor.backend": {"fullname": "mlsauce.LassoRegressor.backend", "modulename": "mlsauce", "qualname": "LassoRegressor.backend", "kind": "variable", "doc": "

\n"}, "mlsauce.LassoRegressor.fit": {"fullname": "mlsauce.LassoRegressor.fit", "modulename": "mlsauce", "qualname": "LassoRegressor.fit", "kind": "function", "doc": "

Fit matrixops (classifier) to training data (X, y)

\n\n

Args:

\n\n
X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\ny: array-like, shape = [n_samples]\n    Target values.\n\n**kwargs: additional parameters to be passed to self.cook_training_set.\n
\n\n

Returns:

\n\n
self: object.\n
\n", "signature": "(self, X, y, **kwargs):", "funcdef": "def"}, "mlsauce.LassoRegressor.predict": {"fullname": "mlsauce.LassoRegressor.predict", "modulename": "mlsauce", "qualname": "LassoRegressor.predict", "kind": "function", "doc": "

Predict test data X.

\n\n

Args:

\n\n
X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\n**kwargs: additional parameters to be passed to `predict_proba`\n
\n\n

Returns:

\n\n
model predictions: {array-like}\n
\n", "signature": "(self, X, **kwargs):", "funcdef": "def"}, "mlsauce.LassoRegressor.set_score_request": {"fullname": "mlsauce.LassoRegressor.set_score_request", "modulename": "mlsauce", "qualname": "LassoRegressor.set_score_request", "kind": "function", "doc": "

A descriptor for request methods.

\n\n

New in version 1.3.

\n\n

Parameters

\n\n

name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

\n\n

keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

\n\n

validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

\n\n

Notes

\n\n

This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

\n\n

References

\n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.LSBoostRegressor": {"fullname": "mlsauce.LSBoostRegressor", "modulename": "mlsauce", "qualname": "LSBoostRegressor", "kind": "class", "doc": "

LSBoost regressor.

\n\n

Attributes:

\n\n
n_estimators: int\n    number of boosting iterations.\n\nlearning_rate: float\n    controls the learning speed at training time.\n\nn_hidden_features: int\n    number of nodes in successive hidden layers.\n\nreg_lambda: float\n    L2 regularization parameter for successive errors in the optimizer\n    (at training time).\n\nalpha: float\n    compromise between L1 and L2 regularization (must be in [0, 1]),\n    for `solver` == 'enet'\n\nrow_sample: float\n    percentage of rows chosen from the training set.\n\ncol_sample: float\n    percentage of columns chosen from the training set.\n\ndropout: float\n    percentage of nodes dropped from the training set.\n\ntolerance: float\n    controls early stopping in gradient descent (at training time).\n\ndirect_link: bool\n    indicates whether the original features are included (True) in model's\n    fitting or not (False).\n\nverbose: int\n    progress bar (yes = 1) or not (no = 0) (currently).\n\nseed: int\n    reproducibility seed for nodes_sim=='uniform', clustering and dropout.\n\nbackend: str\n    type of backend; must be in ('cpu', 'gpu', 'tpu')\n\nsolver: str\n    type of 'weak' learner; currently in ('ridge', 'lasso')\n\nactivation: str\n    activation function: currently 'relu', 'relu6', 'sigmoid', 'tanh'\n\ntype_pi: str.\n    type of prediction interval; currently \"kde\" (default) or \"bootstrap\".\n    Used only in `self.predict`, for `self.replications` > 0 and `self.kernel`\n    in ('gaussian', 'tophat'). Default is `None`.\n\nreplications: int.\n    number of replications (if needed) for predictive simulation.\n    Used only in `self.predict`, for `self.kernel` in ('gaussian',\n    'tophat') and `self.type_pi = 'kde'`. Default is `None`.\n\nn_clusters: int\n    number of clusters for clustering the features\n\nclustering_method: str\n    clustering method: currently 'kmeans', 'gmm'\n\ncluster_scaling: str\n    scaling method for clustering: currently 'standard', 'robust', 'minmax'\n\ndegree: int\n    degree of features interactions to include in the model\n\nweights_distr: str\n    distribution of weights for constructing the model's hidden layer;\n    either 'uniform' or 'gaussian'\n
\n\n

Examples:

\n\n
\n
import subprocess\nimport sys\nimport os\n\nsubprocess.check_call([sys.executable, "-m", "pip", "install", "matplotlib"])\n\nimport mlsauce as ms\nimport numpy as np\nimport matplotlib.pyplot as plt\nfrom sklearn.datasets import load_diabetes\nfrom sklearn.model_selection import train_test_split, GridSearchCV, cross_val_score\nfrom sklearn.tree import DecisionTreeRegressor\nfrom time import time\nfrom os import chdir\nfrom sklearn import metrics\n\nregr = DecisionTreeRegressor()\n\ndiabetes = load_diabetes()\nX = diabetes.data\ny = diabetes.target\n# split data into training test and test set\nnp.random.seed(15029)\nX_train, X_test, y_train, y_test = train_test_split(X, y,\n                                                    test_size=0.2)\n\nobj = ms.GenericBoostingRegressor(regr, col_sample=0.9, row_sample=0.9)\nprint(obj.get_params())\nstart = time()\nobj.fit(X_train, y_train)\nprint(time()-start)\nstart = time()\nprint(np.sqrt(np.mean(np.square(obj.predict(X_test) - y_test))))\nprint(time()-start)\n\nprint(obj.obj['loss'])\n\nobj = ms.GenericBoostingRegressor(regr, col_sample=0.9, row_sample=0.9, n_clusters=2)\nprint(obj.get_params())\nstart = time()\nobj.fit(X_train, y_train)\nprint(time()-start)\nstart = time()\nprint(np.sqrt(np.mean(np.square(obj.predict(X_test) - y_test))))\nprint(time()-start)\n\nprint(obj.obj['loss'])\n
\n
\n
\n", "bases": "sklearn.base.BaseEstimator, sklearn.base.RegressorMixin"}, "mlsauce.LSBoostRegressor.__init__": {"fullname": "mlsauce.LSBoostRegressor.__init__", "modulename": "mlsauce", "qualname": "LSBoostRegressor.__init__", "kind": "function", "doc": "

\n", "signature": "(\tn_estimators=100,\tlearning_rate=0.1,\tn_hidden_features=5,\treg_lambda=0.1,\talpha=0.5,\trow_sample=1,\tcol_sample=1,\tdropout=0,\ttolerance=0.0001,\tdirect_link=1,\tverbose=1,\tseed=123,\tbackend='cpu',\tsolver='ridge',\tactivation='relu',\ttype_pi=None,\treplications=None,\tkernel=None,\tn_clusters=0,\tclustering_method='kmeans',\tcluster_scaling='standard',\tdegree=None,\tweights_distr='uniform',\tbase_model=None)"}, "mlsauce.LSBoostRegressor.base_model": {"fullname": "mlsauce.LSBoostRegressor.base_model", "modulename": "mlsauce", "qualname": "LSBoostRegressor.base_model", "kind": "variable", "doc": "

\n"}, "mlsauce.LSBoostRegressor.n_estimators": {"fullname": "mlsauce.LSBoostRegressor.n_estimators", "modulename": "mlsauce", "qualname": "LSBoostRegressor.n_estimators", "kind": "variable", "doc": "

\n"}, "mlsauce.LSBoostRegressor.learning_rate": {"fullname": "mlsauce.LSBoostRegressor.learning_rate", "modulename": "mlsauce", "qualname": "LSBoostRegressor.learning_rate", "kind": "variable", "doc": "

\n"}, "mlsauce.LSBoostRegressor.n_hidden_features": {"fullname": "mlsauce.LSBoostRegressor.n_hidden_features", "modulename": "mlsauce", "qualname": "LSBoostRegressor.n_hidden_features", "kind": "variable", "doc": "

\n"}, "mlsauce.LSBoostRegressor.reg_lambda": {"fullname": "mlsauce.LSBoostRegressor.reg_lambda", "modulename": "mlsauce", "qualname": "LSBoostRegressor.reg_lambda", "kind": "variable", "doc": "

\n"}, "mlsauce.LSBoostRegressor.alpha": {"fullname": "mlsauce.LSBoostRegressor.alpha", "modulename": "mlsauce", "qualname": "LSBoostRegressor.alpha", "kind": "variable", "doc": "

\n"}, "mlsauce.LSBoostRegressor.row_sample": {"fullname": "mlsauce.LSBoostRegressor.row_sample", "modulename": "mlsauce", "qualname": "LSBoostRegressor.row_sample", "kind": "variable", "doc": "

\n"}, "mlsauce.LSBoostRegressor.col_sample": {"fullname": "mlsauce.LSBoostRegressor.col_sample", "modulename": "mlsauce", "qualname": "LSBoostRegressor.col_sample", "kind": "variable", "doc": "

\n"}, "mlsauce.LSBoostRegressor.dropout": {"fullname": "mlsauce.LSBoostRegressor.dropout", "modulename": "mlsauce", "qualname": "LSBoostRegressor.dropout", "kind": "variable", "doc": "

\n"}, "mlsauce.LSBoostRegressor.tolerance": {"fullname": "mlsauce.LSBoostRegressor.tolerance", "modulename": "mlsauce", "qualname": "LSBoostRegressor.tolerance", "kind": "variable", "doc": "

\n"}, "mlsauce.LSBoostRegressor.direct_link": {"fullname": "mlsauce.LSBoostRegressor.direct_link", "modulename": "mlsauce", "qualname": "LSBoostRegressor.direct_link", "kind": "variable", "doc": "

\n"}, "mlsauce.LSBoostRegressor.verbose": {"fullname": "mlsauce.LSBoostRegressor.verbose", "modulename": "mlsauce", "qualname": "LSBoostRegressor.verbose", "kind": "variable", "doc": "

\n"}, "mlsauce.LSBoostRegressor.seed": {"fullname": "mlsauce.LSBoostRegressor.seed", "modulename": "mlsauce", "qualname": "LSBoostRegressor.seed", "kind": "variable", "doc": "

\n"}, "mlsauce.LSBoostRegressor.backend": {"fullname": "mlsauce.LSBoostRegressor.backend", "modulename": "mlsauce", "qualname": "LSBoostRegressor.backend", "kind": "variable", "doc": "

\n"}, "mlsauce.LSBoostRegressor.obj": {"fullname": "mlsauce.LSBoostRegressor.obj", "modulename": "mlsauce", "qualname": "LSBoostRegressor.obj", "kind": "variable", "doc": "

\n"}, "mlsauce.LSBoostRegressor.solver": {"fullname": "mlsauce.LSBoostRegressor.solver", "modulename": "mlsauce", "qualname": "LSBoostRegressor.solver", "kind": "variable", "doc": "

\n"}, "mlsauce.LSBoostRegressor.activation": {"fullname": "mlsauce.LSBoostRegressor.activation", "modulename": "mlsauce", "qualname": "LSBoostRegressor.activation", "kind": "variable", "doc": "

\n"}, "mlsauce.LSBoostRegressor.type_pi": {"fullname": "mlsauce.LSBoostRegressor.type_pi", "modulename": "mlsauce", "qualname": "LSBoostRegressor.type_pi", "kind": "variable", "doc": "

\n"}, "mlsauce.LSBoostRegressor.replications": {"fullname": "mlsauce.LSBoostRegressor.replications", "modulename": "mlsauce", "qualname": "LSBoostRegressor.replications", "kind": "variable", "doc": "

\n"}, "mlsauce.LSBoostRegressor.kernel": {"fullname": "mlsauce.LSBoostRegressor.kernel", "modulename": "mlsauce", "qualname": "LSBoostRegressor.kernel", "kind": "variable", "doc": "

\n"}, "mlsauce.LSBoostRegressor.n_clusters": {"fullname": "mlsauce.LSBoostRegressor.n_clusters", "modulename": "mlsauce", "qualname": "LSBoostRegressor.n_clusters", "kind": "variable", "doc": "

\n"}, "mlsauce.LSBoostRegressor.clustering_method": {"fullname": "mlsauce.LSBoostRegressor.clustering_method", "modulename": "mlsauce", "qualname": "LSBoostRegressor.clustering_method", "kind": "variable", "doc": "

\n"}, "mlsauce.LSBoostRegressor.cluster_scaling": {"fullname": "mlsauce.LSBoostRegressor.cluster_scaling", "modulename": "mlsauce", "qualname": "LSBoostRegressor.cluster_scaling", "kind": "variable", "doc": "

\n"}, "mlsauce.LSBoostRegressor.degree": {"fullname": "mlsauce.LSBoostRegressor.degree", "modulename": "mlsauce", "qualname": "LSBoostRegressor.degree", "kind": "variable", "doc": "

\n"}, "mlsauce.LSBoostRegressor.poly_": {"fullname": "mlsauce.LSBoostRegressor.poly_", "modulename": "mlsauce", "qualname": "LSBoostRegressor.poly_", "kind": "variable", "doc": "

\n"}, "mlsauce.LSBoostRegressor.weights_distr": {"fullname": "mlsauce.LSBoostRegressor.weights_distr", "modulename": "mlsauce", "qualname": "LSBoostRegressor.weights_distr", "kind": "variable", "doc": "

\n"}, "mlsauce.LSBoostRegressor.fit": {"fullname": "mlsauce.LSBoostRegressor.fit", "modulename": "mlsauce", "qualname": "LSBoostRegressor.fit", "kind": "function", "doc": "

Fit Booster (regressor) to training data (X, y)

\n\n

Args:

\n\n
X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\ny: array-like, shape = [n_samples]\n   Target values.\n\n**kwargs: additional parameters to be passed to self.cook_training_set.\n
\n\n

Returns:

\n\n
self: object.\n
\n", "signature": "(self, X, y, **kwargs):", "funcdef": "def"}, "mlsauce.LSBoostRegressor.predict": {"fullname": "mlsauce.LSBoostRegressor.predict", "modulename": "mlsauce", "qualname": "LSBoostRegressor.predict", "kind": "function", "doc": "

Predict probabilities for test data X.

\n\n

Args:

\n\n
X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\nlevel: int\n    Level of confidence (default = 95)\n\nmethod: str\n    `None`, or 'splitconformal', 'localconformal'\n    prediction (if you specify `return_pi = True`)\n\n**kwargs: additional parameters to be passed to\n    self.cook_test_set\n
\n\n

Returns:

\n\n
probability estimates for test data: {array-like}\n
\n", "signature": "(self, X, level=95, method=None, **kwargs):", "funcdef": "def"}, "mlsauce.LSBoostRegressor.set_predict_request": {"fullname": "mlsauce.LSBoostRegressor.set_predict_request", "modulename": "mlsauce", "qualname": "LSBoostRegressor.set_predict_request", "kind": "function", "doc": "

A descriptor for request methods.

\n\n

New in version 1.3.

\n\n

Parameters

\n\n

name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

\n\n

keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

\n\n

validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

\n\n

Notes

\n\n

This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

\n\n

References

\n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.LSBoostRegressor.set_score_request": {"fullname": "mlsauce.LSBoostRegressor.set_score_request", "modulename": "mlsauce", "qualname": "LSBoostRegressor.set_score_request", "kind": "function", "doc": "

A descriptor for request methods.

\n\n

New in version 1.3.

\n\n

Parameters

\n\n

name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

\n\n

keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

\n\n

validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

\n\n

Notes

\n\n

This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

\n\n

References

\n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.RidgeRegressor": {"fullname": "mlsauce.RidgeRegressor", "modulename": "mlsauce", "qualname": "RidgeRegressor", "kind": "class", "doc": "

Ridge.

\n\n

Attributes:

\n\n
reg_lambda: float\n    regularization parameter.\n\nbackend: str\n    type of backend; must be in ('cpu', 'gpu', 'tpu')\n
\n", "bases": "sklearn.base.BaseEstimator, sklearn.base.RegressorMixin"}, "mlsauce.RidgeRegressor.__init__": {"fullname": "mlsauce.RidgeRegressor.__init__", "modulename": "mlsauce", "qualname": "RidgeRegressor.__init__", "kind": "function", "doc": "

\n", "signature": "(reg_lambda=0.1, backend='cpu')"}, "mlsauce.RidgeRegressor.reg_lambda": {"fullname": "mlsauce.RidgeRegressor.reg_lambda", "modulename": "mlsauce", "qualname": "RidgeRegressor.reg_lambda", "kind": "variable", "doc": "

\n"}, "mlsauce.RidgeRegressor.backend": {"fullname": "mlsauce.RidgeRegressor.backend", "modulename": "mlsauce", "qualname": "RidgeRegressor.backend", "kind": "variable", "doc": "

\n"}, "mlsauce.RidgeRegressor.fit": {"fullname": "mlsauce.RidgeRegressor.fit", "modulename": "mlsauce", "qualname": "RidgeRegressor.fit", "kind": "function", "doc": "

Fit matrixops (classifier) to training data (X, y)

\n\n

Args:

\n\n
X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\ny: array-like, shape = [n_samples]\n    Target values.\n\n**kwargs: additional parameters to be passed to self.cook_training_set.\n
\n\n

Returns:

\n\n
self: object.\n
\n", "signature": "(self, X, y, **kwargs):", "funcdef": "def"}, "mlsauce.RidgeRegressor.predict": {"fullname": "mlsauce.RidgeRegressor.predict", "modulename": "mlsauce", "qualname": "RidgeRegressor.predict", "kind": "function", "doc": "

Predict test data X.

\n\n

Args:

\n\n
X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\n**kwargs: additional parameters to be passed to `predict_proba`\n
\n\n

Returns:

\n\n
model predictions: {array-like}\n
\n", "signature": "(self, X, **kwargs):", "funcdef": "def"}, "mlsauce.RidgeRegressor.set_score_request": {"fullname": "mlsauce.RidgeRegressor.set_score_request", "modulename": "mlsauce", "qualname": "RidgeRegressor.set_score_request", "kind": "function", "doc": "

A descriptor for request methods.

\n\n

New in version 1.3.

\n\n

Parameters

\n\n

name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

\n\n

keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

\n\n

validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

\n\n

Notes

\n\n

This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

\n\n

References

\n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.LazyBoostingClassifier": {"fullname": "mlsauce.LazyBoostingClassifier", "modulename": "mlsauce", "qualname": "LazyBoostingClassifier", "kind": "class", "doc": "

Fitting -- almost -- all the classification algorithms\n and returning their scores.

\n\n
Parameters:\n\n    verbose: int, optional (default=0)\n        Any positive number for verbosity.\n\n    ignore_warnings: bool, optional (default=True)\n        When set to True, the warning related to algorigms that are not\n        able to run are ignored.\n\n    custom_metric: function, optional (default=None)\n        When function is provided, models are evaluated based on the custom\n          evaluation metric provided.\n\n    predictions: bool, optional (default=False)\n        When set to True, the predictions of all the models models are\n        returned as data frame.\n\n    sort_by: string, optional (default='Accuracy')\n        Sort models by a metric. Available options are 'Accuracy',\n        'Balanced Accuracy', 'ROC AUC', 'F1 Score' or a custom metric\n        identified by its name and provided by custom_metric.\n\n    random_state: int, optional (default=42)\n        Reproducibiility seed.\n\n    estimators: list, optional (default='all')\n        list of Estimators names or just 'all' for > 90 classifiers\n        (default='all')\n\n    preprocess: bool, preprocessing is done when set to True\n\n    n_jobs: int, when possible, run in parallel\n        For now, only used by individual models that support it.\n\n    n_layers: int, optional (default=3)\n        Number of layers of GenericBoostingClassifiers to be used.\n\n    All the other parameters are the same as GenericBoostingClassifier's.\n\nAttributes:\n\n    models_: dict-object\n        Returns a dictionary with each model pipeline as value\n        with key as name of models.\n\n    best_model_: object\n        Returns the best model pipeline.\n\nExamples\n\n\n    
\n
        import os\n        import mlsauce as ms\n        from sklearn.datasets import load_breast_cancer, load_iris, load_wine, load_digits\n        from sklearn.model_selection import train_test_split\n        from time import time\n\n        load_models = [load_breast_cancer, load_iris, load_wine]\n\n        for model in load_models:\n\n            data = model()\n            X = data.data\n            y= data.target\n\n            X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = .2, random_state = 13)\n\n            clf = ms.LazyBoostingClassifier(verbose=1, ignore_warnings=False,\n                                            custom_metric=None, preprocess=False)\n\n            start = time()\n            models, predictioms = clf.fit(X_train, X_test, y_train, y_test)\n            print(f"\nElapsed: {time() - start} seconds\n")\n\n            print(models)\n
\n
\n
\n", "bases": "sklearn.base.ClassifierMixin"}, "mlsauce.LazyBoostingClassifier.__init__": {"fullname": "mlsauce.LazyBoostingClassifier.__init__", "modulename": "mlsauce", "qualname": "LazyBoostingClassifier.__init__", "kind": "function", "doc": "

\n", "signature": "(\tverbose=0,\tignore_warnings=True,\tcustom_metric=None,\tpredictions=False,\tsort_by='Accuracy',\trandom_state=42,\testimators='all',\tpreprocess=False,\tn_jobs=None)"}, "mlsauce.LazyBoostingClassifier.verbose": {"fullname": "mlsauce.LazyBoostingClassifier.verbose", "modulename": "mlsauce", "qualname": "LazyBoostingClassifier.verbose", "kind": "variable", "doc": "

\n"}, "mlsauce.LazyBoostingClassifier.ignore_warnings": {"fullname": "mlsauce.LazyBoostingClassifier.ignore_warnings", "modulename": "mlsauce", "qualname": "LazyBoostingClassifier.ignore_warnings", "kind": "variable", "doc": "

\n"}, "mlsauce.LazyBoostingClassifier.custom_metric": {"fullname": "mlsauce.LazyBoostingClassifier.custom_metric", "modulename": "mlsauce", "qualname": "LazyBoostingClassifier.custom_metric", "kind": "variable", "doc": "

\n"}, "mlsauce.LazyBoostingClassifier.predictions": {"fullname": "mlsauce.LazyBoostingClassifier.predictions", "modulename": "mlsauce", "qualname": "LazyBoostingClassifier.predictions", "kind": "variable", "doc": "

\n"}, "mlsauce.LazyBoostingClassifier.sort_by": {"fullname": "mlsauce.LazyBoostingClassifier.sort_by", "modulename": "mlsauce", "qualname": "LazyBoostingClassifier.sort_by", "kind": "variable", "doc": "

\n"}, "mlsauce.LazyBoostingClassifier.models_": {"fullname": "mlsauce.LazyBoostingClassifier.models_", "modulename": "mlsauce", "qualname": "LazyBoostingClassifier.models_", "kind": "variable", "doc": "

\n"}, "mlsauce.LazyBoostingClassifier.best_model_": {"fullname": "mlsauce.LazyBoostingClassifier.best_model_", "modulename": "mlsauce", "qualname": "LazyBoostingClassifier.best_model_", "kind": "variable", "doc": "

\n"}, "mlsauce.LazyBoostingClassifier.random_state": {"fullname": "mlsauce.LazyBoostingClassifier.random_state", "modulename": "mlsauce", "qualname": "LazyBoostingClassifier.random_state", "kind": "variable", "doc": "

\n"}, "mlsauce.LazyBoostingClassifier.estimators": {"fullname": "mlsauce.LazyBoostingClassifier.estimators", "modulename": "mlsauce", "qualname": "LazyBoostingClassifier.estimators", "kind": "variable", "doc": "

\n"}, "mlsauce.LazyBoostingClassifier.preprocess": {"fullname": "mlsauce.LazyBoostingClassifier.preprocess", "modulename": "mlsauce", "qualname": "LazyBoostingClassifier.preprocess", "kind": "variable", "doc": "

\n"}, "mlsauce.LazyBoostingClassifier.n_jobs": {"fullname": "mlsauce.LazyBoostingClassifier.n_jobs", "modulename": "mlsauce", "qualname": "LazyBoostingClassifier.n_jobs", "kind": "variable", "doc": "

\n"}, "mlsauce.LazyBoostingClassifier.fit": {"fullname": "mlsauce.LazyBoostingClassifier.fit", "modulename": "mlsauce", "qualname": "LazyBoostingClassifier.fit", "kind": "function", "doc": "

Fit classifiers to X_train and y_train, predict and score on X_test,\ny_test.

\n\n

Parameters:

\n\n
X_train: array-like,\n    Training vectors, where rows is the number of samples\n    and columns is the number of features.\n\nX_test: array-like,\n    Testing vectors, where rows is the number of samples\n    and columns is the number of features.\n\ny_train: array-like,\n    Training vectors, where rows is the number of samples\n    and columns is the number of features.\n\ny_test: array-like,\n    Testing vectors, where rows is the number of samples\n    and columns is the number of features.\n\n**kwargs: dict,\n    Additional arguments to be passed to the fit GenericBoostingClassifier.\n
\n\n

Returns:

\n\n
scores: Pandas DataFrame\n    Returns metrics of all the models in a Pandas DataFrame.\n\npredictions: Pandas DataFrame\n    Returns predictions of all the models in a Pandas DataFrame.\n
\n", "signature": "(self, X_train, X_test, y_train, y_test, **kwargs):", "funcdef": "def"}, "mlsauce.LazyBoostingClassifier.get_best_model": {"fullname": "mlsauce.LazyBoostingClassifier.get_best_model", "modulename": "mlsauce", "qualname": "LazyBoostingClassifier.get_best_model", "kind": "function", "doc": "

This function returns the best model pipeline based on the sort_by metric.

\n\n

Returns:

\n\n
best_model: object,\n    Returns the best model pipeline based on the sort_by metric.\n
\n", "signature": "(self):", "funcdef": "def"}, "mlsauce.LazyBoostingClassifier.provide_models": {"fullname": "mlsauce.LazyBoostingClassifier.provide_models", "modulename": "mlsauce", "qualname": "LazyBoostingClassifier.provide_models", "kind": "function", "doc": "

Returns all the model objects trained. If fit hasn't been called yet,\nthen it's called to return the models.

\n\n

Parameters:

\n\n

X_train: array-like,\n Training vectors, where rows is the number of samples\n and columns is the number of features.

\n\n

X_test: array-like,\n Testing vectors, where rows is the number of samples\n and columns is the number of features.

\n\n

y_train: array-like,\n Training vectors, where rows is the number of samples\n and columns is the number of features.

\n\n

y_test: array-like,\n Testing vectors, where rows is the number of samples\n and columns is the number of features.

\n\n

Returns:

\n\n
models: dict-object,\n    Returns a dictionary with each model's pipeline as value\n    and key = name of the model.\n
\n", "signature": "(self, X_train, X_test, y_train, y_test):", "funcdef": "def"}, "mlsauce.LazyBoostingRegressor": {"fullname": "mlsauce.LazyBoostingRegressor", "modulename": "mlsauce", "qualname": "LazyBoostingRegressor", "kind": "class", "doc": "

Fitting -- almost -- all the regression algorithms\n and returning their scores.

\n\n

Parameters:

\n\n
verbose: int, optional (default=0)\n    Any positive number for verbosity.\n\nignore_warnings: bool, optional (default=True)\n    When set to True, the warning related to algorigms that are not able to run are ignored.\n\ncustom_metric: function, optional (default=None)\n    When function is provided, models are evaluated based on the custom evaluation metric provided.\n\npredictions: bool, optional (default=False)\n    When set to True, the predictions of all the models models are returned as dataframe.\n\nsort_by: string, optional (default='RMSE')\n    Sort models by a metric. Available options are 'R-Squared', 'Adjusted R-Squared', 'RMSE', 'Time Taken' and 'Custom Metric'.\n    or a custom metric identified by its name and provided by custom_metric.\n\nrandom_state: int, optional (default=42)\n    Reproducibiility seed.\n\nestimators: list, optional (default='all')\n    list of Estimators names or just 'all' (default='all')\n\npreprocess: bool\n    preprocessing is done when set to True\n\nn_jobs : int, when possible, run in parallel\n    For now, only used by individual models that support it.\n\nn_layers: int, optional (default=3)\n    Number of layers of CustomRegressors to be used.\n\nAll the other parameters are the same as CustomRegressor's.\n
\n\n

Attributes:

\n\n
models_: dict-object\n    Returns a dictionary with each model pipeline as value\n    with key as name of models.\n\nbest_model_: object\n    Returns the best model pipeline based on the sort_by metric.\n
\n\n

Examples:

\n\n
\n
import os\nimport mlsauce as ms\nfrom sklearn.datasets import load_diabetes\nfrom sklearn.model_selection import train_test_split\n\ndata = load_diabetes()\nX = data.data\ny= data.target\nX_train, X_test, y_train, y_test = train_test_split(X, y, test_size = .2, random_state = 123)\n\nregr = ms.LazyBoostingRegressor(verbose=0, ignore_warnings=True,\n                                custom_metric=None, preprocess=True)\nmodels, predictioms = regr.fit(X_train, X_test, y_train, y_test)\nmodel_dictionary = regr.provide_models(X_train, X_test, y_train, y_test)\nprint(models)\n
\n
\n
\n", "bases": "sklearn.base.RegressorMixin"}, "mlsauce.LazyBoostingRegressor.__init__": {"fullname": "mlsauce.LazyBoostingRegressor.__init__", "modulename": "mlsauce", "qualname": "LazyBoostingRegressor.__init__", "kind": "function", "doc": "

\n", "signature": "(\tverbose=0,\tignore_warnings=True,\tcustom_metric=None,\tpredictions=False,\tsort_by='RMSE',\trandom_state=42,\testimators='all',\tpreprocess=False,\tn_jobs=None)"}, "mlsauce.LazyBoostingRegressor.verbose": {"fullname": "mlsauce.LazyBoostingRegressor.verbose", "modulename": "mlsauce", "qualname": "LazyBoostingRegressor.verbose", "kind": "variable", "doc": "

\n"}, "mlsauce.LazyBoostingRegressor.ignore_warnings": {"fullname": "mlsauce.LazyBoostingRegressor.ignore_warnings", "modulename": "mlsauce", "qualname": "LazyBoostingRegressor.ignore_warnings", "kind": "variable", "doc": "

\n"}, "mlsauce.LazyBoostingRegressor.custom_metric": {"fullname": "mlsauce.LazyBoostingRegressor.custom_metric", "modulename": "mlsauce", "qualname": "LazyBoostingRegressor.custom_metric", "kind": "variable", "doc": "

\n"}, "mlsauce.LazyBoostingRegressor.predictions": {"fullname": "mlsauce.LazyBoostingRegressor.predictions", "modulename": "mlsauce", "qualname": "LazyBoostingRegressor.predictions", "kind": "variable", "doc": "

\n"}, "mlsauce.LazyBoostingRegressor.sort_by": {"fullname": "mlsauce.LazyBoostingRegressor.sort_by", "modulename": "mlsauce", "qualname": "LazyBoostingRegressor.sort_by", "kind": "variable", "doc": "

\n"}, "mlsauce.LazyBoostingRegressor.models_": {"fullname": "mlsauce.LazyBoostingRegressor.models_", "modulename": "mlsauce", "qualname": "LazyBoostingRegressor.models_", "kind": "variable", "doc": "

\n"}, "mlsauce.LazyBoostingRegressor.best_model_": {"fullname": "mlsauce.LazyBoostingRegressor.best_model_", "modulename": "mlsauce", "qualname": "LazyBoostingRegressor.best_model_", "kind": "variable", "doc": "

\n"}, "mlsauce.LazyBoostingRegressor.random_state": {"fullname": "mlsauce.LazyBoostingRegressor.random_state", "modulename": "mlsauce", "qualname": "LazyBoostingRegressor.random_state", "kind": "variable", "doc": "

\n"}, "mlsauce.LazyBoostingRegressor.estimators": {"fullname": "mlsauce.LazyBoostingRegressor.estimators", "modulename": "mlsauce", "qualname": "LazyBoostingRegressor.estimators", "kind": "variable", "doc": "

\n"}, "mlsauce.LazyBoostingRegressor.preprocess": {"fullname": "mlsauce.LazyBoostingRegressor.preprocess", "modulename": "mlsauce", "qualname": "LazyBoostingRegressor.preprocess", "kind": "variable", "doc": "

\n"}, "mlsauce.LazyBoostingRegressor.n_jobs": {"fullname": "mlsauce.LazyBoostingRegressor.n_jobs", "modulename": "mlsauce", "qualname": "LazyBoostingRegressor.n_jobs", "kind": "variable", "doc": "

\n"}, "mlsauce.LazyBoostingRegressor.fit": {"fullname": "mlsauce.LazyBoostingRegressor.fit", "modulename": "mlsauce", "qualname": "LazyBoostingRegressor.fit", "kind": "function", "doc": "

Fit Regression algorithms to X_train and y_train, predict and score on X_test, y_test.

\n\n

Parameters:

\n\n
X_train : array-like,\n    Training vectors, where rows is the number of samples\n    and columns is the number of features.\n\nX_test : array-like,\n    Testing vectors, where rows is the number of samples\n    and columns is the number of features.\n\ny_train : array-like,\n    Training vectors, where rows is the number of samples\n    and columns is the number of features.\n\ny_test : array-like,\n    Testing vectors, where rows is the number of samples\n    and columns is the number of features.\n\n**kwargs: dict,\n    Additional parameters to be passed to the GenericBoostingRegressor.\n
\n\n

Returns:

\n\n

scores: Pandas DataFrame\n Returns metrics of all the models in a Pandas DataFrame.

\n\n

predictions : Pandas DataFrame\n Returns predictions of all the models in a Pandas DataFrame.

\n", "signature": "(self, X_train, X_test, y_train, y_test, **kwargs):", "funcdef": "def"}, "mlsauce.LazyBoostingRegressor.get_best_model": {"fullname": "mlsauce.LazyBoostingRegressor.get_best_model", "modulename": "mlsauce", "qualname": "LazyBoostingRegressor.get_best_model", "kind": "function", "doc": "

This function returns the best model pipeline based on the sort_by metric.

\n\n

Returns:

\n\n
best_model: object,\n    Returns the best model pipeline based on the sort_by metric.\n
\n", "signature": "(self):", "funcdef": "def"}, "mlsauce.LazyBoostingRegressor.provide_models": {"fullname": "mlsauce.LazyBoostingRegressor.provide_models", "modulename": "mlsauce", "qualname": "LazyBoostingRegressor.provide_models", "kind": "function", "doc": "

This function returns all the model objects trained in fit function.\nIf fit is not called already, then we call fit and then return the models.

\n\n

Parameters:

\n\n
X_train : array-like,\n    Training vectors, where rows is the number of samples\n    and columns is the number of features.\n\nX_test : array-like,\n    Testing vectors, where rows is the number of samples\n    and columns is the number of features.\n\ny_train : array-like,\n    Training vectors, where rows is the number of samples\n    and columns is the number of features.\n\ny_test : array-like,\n    Testing vectors, where rows is the number of samples\n    and columns is the number of features.\n
\n\n

Returns:

\n\n
models: dict-object,\n    Returns a dictionary with each model pipeline as value\n    with key as name of models.\n
\n", "signature": "(self, X_train, X_test, y_train, y_test):", "funcdef": "def"}, "mlsauce.download": {"fullname": "mlsauce.download", "modulename": "mlsauce", "qualname": "download", "kind": "function", "doc": "

\n", "signature": "(\tpkgname='MASS',\tdataset='Boston',\tsource='https://cran.r-universe.dev/',\t**kwargs):", "funcdef": "def"}, "mlsauce.get_config": {"fullname": "mlsauce.get_config", "modulename": "mlsauce", "qualname": "get_config", "kind": "function", "doc": "

Retrieve current values for configuration set by set_config()

\n\n

Returns

\n\n

config : dict\n Keys are parameter names that can be passed to set_config().

\n\n

See Also

\n\n

config_context: Context manager for global mlsauce configuration\nset_config: Set global mlsauce configuration

\n", "signature": "():", "funcdef": "def"}, "mlsauce.set_config": {"fullname": "mlsauce.set_config", "modulename": "mlsauce", "qualname": "set_config", "kind": "function", "doc": "

Set global mlsauce configuration

\n\n

New in version 0.3.0.

\n\n

Parameters

\n\n

assume_finite : bool, optional\n If True, validation for finiteness will be skipped,\n saving time, but leading to potential crashes. If\n False, validation for finiteness will be performed,\n avoiding error. Global default: False.

\n\n
*New in version 0.3.0.*\n
\n\n

working_memory : int, optional\n If set, mlsauce will attempt to limit the size of temporary arrays\n to this number of MiB (per job when parallelised), often saving both\n computation time and memory on expensive operations that can be\n performed in chunks. Global default: 1024.

\n\n
*New in version 0.3.0.*\n
\n\n

print_changed_only : bool, optional\n If True, only the parameters that were set to non-default\n values will be printed when printing an estimator. For example,\n print(SVC()) while True will only print 'SVC()' while the default\n behaviour would be to print 'SVC(C=1.0, cache_size=200, ...)' with\n all the non-changed parameters.

\n\n
*New in version 0.3.0.*\n
\n\n

display : {'text', 'diagram'}, optional\n If 'diagram', estimators will be displayed as text in a jupyter lab\n of notebook context. If 'text', estimators will be displayed as\n text. Default is 'text'.

\n\n
*New in version 0.3.0.*\n
\n\n

See Also

\n\n

config_context: Context manager for global mlsauce configuration\nget_config: Retrieve current values of the global configuration

\n", "signature": "(\tassume_finite=None,\tworking_memory=None,\tprint_changed_only=None,\tdisplay=None):", "funcdef": "def"}, "mlsauce.config_context": {"fullname": "mlsauce.config_context", "modulename": "mlsauce", "qualname": "config_context", "kind": "function", "doc": "

Context manager for global mlsauce configuration

\n\n

Parameters

\n\n

assume_finite : bool, optional\n If True, validation for finiteness will be skipped,\n saving time, but leading to potential crashes. If\n False, validation for finiteness will be performed,\n avoiding error. Global default: False.

\n\n

working_memory : int, optional\n If set, mlsauce will attempt to limit the size of temporary arrays\n to this number of MiB (per job when parallelised), often saving both\n computation time and memory on expensive operations that can be\n performed in chunks. Global default: 1024.

\n\n

print_changed_only : bool, optional\n If True, only the parameters that were set to non-default\n values will be printed when printing an estimator. For example,\n print(SVC()) while True will only print 'SVC()', but would print\n 'SVC(C=1.0, cache_size=200, ...)' with all the non-changed parameters\n when False. Default is True.

\n\n
*New in version 0.3.0.*\n
\n\n

display : {'text', 'diagram'}, optional\n If 'diagram', estimators will be displayed as text in a jupyter lab\n of notebook context. If 'text', estimators will be displayed as\n text. Default is 'text'.

\n\n
*New in version 0.3.0.*\n
\n\n

Notes

\n\n

All settings, not just those presently modified, will be returned to\ntheir previous values when the context manager is exited. This is not\nthread-safe.

\n\n

Examples

\n\n
\n
>>> import mlsauce\n>>> from mlsauce.utils.validation import assert_all_finite\n>>> with mlsauce.config_context(assume_finite=True):\n...     assert_all_finite([float('nan')])\n>>> with mlsauce.config_context(assume_finite=True):\n...     with mlsauce.config_context(assume_finite=False):\n...         assert_all_finite([float('nan')])\nTraceback (most recent call last):\n...\nValueError: Input contains NaN, ...\n
\n
\n\n

See Also

\n\n

set_config: Set global mlsauce configuration\nget_config: Retrieve current values of the global configuration

\n", "signature": "(**new_config):", "funcdef": "def"}, "mlsauce.adaopt": {"fullname": "mlsauce.adaopt", "modulename": "mlsauce.adaopt", "kind": "module", "doc": "

\n"}, "mlsauce.adaopt.AdaOpt": {"fullname": "mlsauce.adaopt.AdaOpt", "modulename": "mlsauce.adaopt", "qualname": "AdaOpt", "kind": "class", "doc": "

AdaOpt classifier.

\n\n

Attributes:

\n\n
n_iterations: int\n    number of iterations of the optimizer at training time.\n\nlearning_rate: float\n    controls the speed of the optimizer at training time.\n\nreg_lambda: float\n    L2 regularization parameter for successive errors in the optimizer\n    (at training time).\n\nreg_alpha: float\n    L1 regularization parameter for successive errors in the optimizer\n    (at training time).\n\neta: float\n    controls the slope in gradient descent (at training time).\n\ngamma: float\n    controls the step size in gradient descent (at training time).\n\nk: int\n    number of nearest neighbors selected at test time for classification.\n\ntolerance: float\n    controls early stopping in gradient descent (at training time).\n\nn_clusters: int\n    number of clusters, if MiniBatch k-means is used at test time\n    (for faster prediction).\n\nbatch_size: int\n    size of the batch, if MiniBatch k-means is used at test time\n    (for faster prediction).\n\nrow_sample: float\n    percentage of rows chosen from training set (by stratified subsampling,\n    for faster prediction).\n\ntype_dist: str\n    distance used for finding the nearest neighbors; currently `euclidean-f`\n    (euclidean distances calculated as whole), `euclidean` (euclidean distances\n    calculated row by row), `cosine` (cosine distance).\n\nn_jobs: int\n    number of cpus for parallel processing (default: None)\n\nverbose: int\n    progress bar for parallel processing (yes = 1) or not (no = 0)\n\ncache: boolean\n    if the nearest neighbors are cached or not, for faster retrieval in\n    subsequent calls.\n\nn_clusters_input: int\n    number of clusters (a priori) for clustering the features\n\nclustering_method: str\n    clustering method: currently 'kmeans', 'gmm'\n\ncluster_scaling: str\n    scaling method for clustering: currently 'standard', 'robust', 'minmax'\n\nseed: int\n    reproducibility seed for nodes_sim=='uniform', clustering and dropout.\n
\n", "bases": "sklearn.base.BaseEstimator, sklearn.base.ClassifierMixin"}, "mlsauce.adaopt.AdaOpt.__init__": {"fullname": "mlsauce.adaopt.AdaOpt.__init__", "modulename": "mlsauce.adaopt", "qualname": "AdaOpt.__init__", "kind": "function", "doc": "

\n", "signature": "(\tn_iterations=50,\tlearning_rate=0.3,\treg_lambda=0.1,\treg_alpha=0.5,\teta=0.01,\tgamma=0.01,\tk=3,\ttolerance=0,\tn_clusters=0,\tbatch_size=100,\trow_sample=0.8,\ttype_dist='euclidean-f',\tn_jobs=None,\tverbose=0,\tcache=True,\tn_clusters_input=0,\tclustering_method='kmeans',\tcluster_scaling='standard',\tseed=123)"}, "mlsauce.adaopt.AdaOpt.n_iterations": {"fullname": "mlsauce.adaopt.AdaOpt.n_iterations", "modulename": "mlsauce.adaopt", "qualname": "AdaOpt.n_iterations", "kind": "variable", "doc": "

\n"}, "mlsauce.adaopt.AdaOpt.learning_rate": {"fullname": "mlsauce.adaopt.AdaOpt.learning_rate", "modulename": "mlsauce.adaopt", "qualname": "AdaOpt.learning_rate", "kind": "variable", "doc": "

\n"}, "mlsauce.adaopt.AdaOpt.reg_lambda": {"fullname": "mlsauce.adaopt.AdaOpt.reg_lambda", "modulename": "mlsauce.adaopt", "qualname": "AdaOpt.reg_lambda", "kind": "variable", "doc": "

\n"}, "mlsauce.adaopt.AdaOpt.reg_alpha": {"fullname": "mlsauce.adaopt.AdaOpt.reg_alpha", "modulename": "mlsauce.adaopt", "qualname": "AdaOpt.reg_alpha", "kind": "variable", "doc": "

\n"}, "mlsauce.adaopt.AdaOpt.eta": {"fullname": "mlsauce.adaopt.AdaOpt.eta", "modulename": "mlsauce.adaopt", "qualname": "AdaOpt.eta", "kind": "variable", "doc": "

\n"}, "mlsauce.adaopt.AdaOpt.gamma": {"fullname": "mlsauce.adaopt.AdaOpt.gamma", "modulename": "mlsauce.adaopt", "qualname": "AdaOpt.gamma", "kind": "variable", "doc": "

\n"}, "mlsauce.adaopt.AdaOpt.k": {"fullname": "mlsauce.adaopt.AdaOpt.k", "modulename": "mlsauce.adaopt", "qualname": "AdaOpt.k", "kind": "variable", "doc": "

\n"}, "mlsauce.adaopt.AdaOpt.tolerance": {"fullname": "mlsauce.adaopt.AdaOpt.tolerance", "modulename": "mlsauce.adaopt", "qualname": "AdaOpt.tolerance", "kind": "variable", "doc": "

\n"}, "mlsauce.adaopt.AdaOpt.n_clusters": {"fullname": "mlsauce.adaopt.AdaOpt.n_clusters", "modulename": "mlsauce.adaopt", "qualname": "AdaOpt.n_clusters", "kind": "variable", "doc": "

\n"}, "mlsauce.adaopt.AdaOpt.batch_size": {"fullname": "mlsauce.adaopt.AdaOpt.batch_size", "modulename": "mlsauce.adaopt", "qualname": "AdaOpt.batch_size", "kind": "variable", "doc": "

\n"}, "mlsauce.adaopt.AdaOpt.row_sample": {"fullname": "mlsauce.adaopt.AdaOpt.row_sample", "modulename": "mlsauce.adaopt", "qualname": "AdaOpt.row_sample", "kind": "variable", "doc": "

\n"}, "mlsauce.adaopt.AdaOpt.type_dist": {"fullname": "mlsauce.adaopt.AdaOpt.type_dist", "modulename": "mlsauce.adaopt", "qualname": "AdaOpt.type_dist", "kind": "variable", "doc": "

\n"}, "mlsauce.adaopt.AdaOpt.n_jobs": {"fullname": "mlsauce.adaopt.AdaOpt.n_jobs", "modulename": "mlsauce.adaopt", "qualname": "AdaOpt.n_jobs", "kind": "variable", "doc": "

\n"}, "mlsauce.adaopt.AdaOpt.cache": {"fullname": "mlsauce.adaopt.AdaOpt.cache", "modulename": "mlsauce.adaopt", "qualname": "AdaOpt.cache", "kind": "variable", "doc": "

\n"}, "mlsauce.adaopt.AdaOpt.verbose": {"fullname": "mlsauce.adaopt.AdaOpt.verbose", "modulename": "mlsauce.adaopt", "qualname": "AdaOpt.verbose", "kind": "variable", "doc": "

\n"}, "mlsauce.adaopt.AdaOpt.n_clusters_input": {"fullname": "mlsauce.adaopt.AdaOpt.n_clusters_input", "modulename": "mlsauce.adaopt", "qualname": "AdaOpt.n_clusters_input", "kind": "variable", "doc": "

\n"}, "mlsauce.adaopt.AdaOpt.clustering_method": {"fullname": "mlsauce.adaopt.AdaOpt.clustering_method", "modulename": "mlsauce.adaopt", "qualname": "AdaOpt.clustering_method", "kind": "variable", "doc": "

\n"}, "mlsauce.adaopt.AdaOpt.cluster_scaling": {"fullname": "mlsauce.adaopt.AdaOpt.cluster_scaling", "modulename": "mlsauce.adaopt", "qualname": "AdaOpt.cluster_scaling", "kind": "variable", "doc": "

\n"}, "mlsauce.adaopt.AdaOpt.seed": {"fullname": "mlsauce.adaopt.AdaOpt.seed", "modulename": "mlsauce.adaopt", "qualname": "AdaOpt.seed", "kind": "variable", "doc": "

\n"}, "mlsauce.adaopt.AdaOpt.fit": {"fullname": "mlsauce.adaopt.AdaOpt.fit", "modulename": "mlsauce.adaopt", "qualname": "AdaOpt.fit", "kind": "function", "doc": "

Fit AdaOpt to training data (X, y)

\n\n

Args:

\n\n
X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\ny: array-like, shape = [n_samples]\n    Target values.\n\n**kwargs: additional parameters to be passed to self.cook_training_set.\n
\n\n

Returns:

\n\n
self: object.\n
\n", "signature": "(self, X, y, **kwargs):", "funcdef": "def"}, "mlsauce.adaopt.AdaOpt.predict": {"fullname": "mlsauce.adaopt.AdaOpt.predict", "modulename": "mlsauce.adaopt", "qualname": "AdaOpt.predict", "kind": "function", "doc": "

Predict test data X.

\n\n

Args:

\n\n
X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\n**kwargs: additional parameters to be passed to `predict_proba`\n
\n\n

Returns:

\n\n
model predictions: {array-like}\n
\n", "signature": "(self, X, **kwargs):", "funcdef": "def"}, "mlsauce.adaopt.AdaOpt.predict_proba": {"fullname": "mlsauce.adaopt.AdaOpt.predict_proba", "modulename": "mlsauce.adaopt", "qualname": "AdaOpt.predict_proba", "kind": "function", "doc": "

Predict probabilities for test data X.

\n\n

Args:

\n\n
X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\n**kwargs: additional parameters to be passed to\n    self.cook_test_set\n
\n\n

Returns:

\n\n
probability estimates for test data: {array-like}\n
\n", "signature": "(self, X, **kwargs):", "funcdef": "def"}, "mlsauce.adaopt.AdaOpt.set_score_request": {"fullname": "mlsauce.adaopt.AdaOpt.set_score_request", "modulename": "mlsauce.adaopt", "qualname": "AdaOpt.set_score_request", "kind": "function", "doc": "

A descriptor for request methods.

\n\n

New in version 1.3.

\n\n

Parameters

\n\n

name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

\n\n

keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

\n\n

validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

\n\n

Notes

\n\n

This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

\n\n

References

\n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.booster": {"fullname": "mlsauce.booster", "modulename": "mlsauce.booster", "kind": "module", "doc": "

\n"}, "mlsauce.booster.LSBoostClassifier": {"fullname": "mlsauce.booster.LSBoostClassifier", "modulename": "mlsauce.booster", "qualname": "LSBoostClassifier", "kind": "class", "doc": "

LSBoost classifier.

\n\n
Attributes:\n\n    n_estimators: int\n        number of boosting iterations.\n\n    learning_rate: float\n        controls the learning speed at training time.\n\n    n_hidden_features: int\n        number of nodes in successive hidden layers.\n\n    reg_lambda: float\n        L2 regularization parameter for successive errors in the optimizer\n        (at training time).\n\n    alpha: float\n        compromise between L1 and L2 regularization (must be in [0, 1]),\n        for `solver` == 'enet'.\n\n    row_sample: float\n        percentage of rows chosen from the training set.\n\n    col_sample: float\n        percentage of columns chosen from the training set.\n\n    dropout: float\n        percentage of nodes dropped from the training set.\n\n    tolerance: float\n        controls early stopping in gradient descent (at training time).\n\n    direct_link: bool\n        indicates whether the original features are included (True) in model's\n        fitting or not (False).\n\n    verbose: int\n        progress bar (yes = 1) or not (no = 0) (currently).\n\n    seed: int\n        reproducibility seed for nodes_sim=='uniform', clustering and dropout.\n\n    backend: str\n        type of backend; must be in ('cpu', 'gpu', 'tpu')\n\n    solver: str\n        type of 'weak' learner; currently in ('ridge', 'lasso', 'enet').\n        'enet' is a combination of 'ridge' and 'lasso' called Elastic Net.\n\n    activation: str\n        activation function: currently 'relu', 'relu6', 'sigmoid', 'tanh'\n\n    n_clusters: int\n        number of clusters for clustering the features\n\n    clustering_method: str\n        clustering method: currently 'kmeans', 'gmm'\n\n    cluster_scaling: str\n        scaling method for clustering: currently 'standard', 'robust', 'minmax'\n\n    degree: int\n        degree of features interactions to include in the model\n\n    weights_distr: str\n        distribution of weights for constructing the model's hidden layer;\n        currently 'uniform', 'gaussian'\n\nExamples:\n\n    ```python\n    import numpy as np\n    from sklearn.datasets import load_digits, load_breast_cancer, load_wine, load_iris\n    from sklearn.model_selection import train_test_split, GridSearchCV, cross_val_score\n    from sklearn.tree import DecisionTreeRegressor\n    from sklearn.kernel_ridge import KernelRidge\n    from time import time\n    from os import chdir\n    from sklearn import metrics\n    import os\n\n    import mlsauce as ms\n\n    print(\"\n
\n\n

\")\n print(\"GenericBoosting Decision tree -----\")\n print(\"\n\")

\n\n
    print(\"\n
\n\n

\")\n print(\"breast_cancer data -----\")

\n\n
    # data 1\n    breast_cancer = load_breast_cancer()\n    X = breast_cancer.data\n    y = breast_cancer.target\n    # split data into training test and test set\n    np.random.seed(15029)\n    X_train, X_test, y_train, y_test = train_test_split(X, y,\n                                                        test_size=0.2)\n\n    clf = DecisionTreeRegressor()\n    clf2 = KernelRidge()\n\n    obj = ms.GenericBoostingClassifier(clf, tolerance=1e-2)\n    print(obj.get_params())\n    start = time()\n    obj.fit(X_train, y_train)\n    print(time()-start)\n    start = time()\n    print(obj.score(X_test, y_test))\n    print(time()-start)\n\n    print(obj.obj['loss'])\n\n    obj = ms.GenericBoostingClassifier(clf, tolerance=1e-2, n_clusters=2)\n    print(obj.get_params())\n    start = time()\n    obj.fit(X_train, y_train)\n    print(time()-start)\n    start = time()\n    print(obj.score(X_test, y_test))\n    print(time()-start)\n\n    print(obj.obj['loss'])\n\n\n    # data 2\n    print(\"\n
\n\n

\")\n print(\"wine data -----\")

\n\n
    wine = load_wine()\n    Z = wine.data\n    t = wine.target\n    np.random.seed(879423)\n    X_train, X_test, y_train, y_test = train_test_split(Z, t,\n                                                        test_size=0.2)\n\n    obj = ms.GenericBoostingClassifier(clf)\n    print(obj.get_params())\n    start = time()\n    obj.fit(X_train, y_train)\n    print(time()-start)\n    start = time()\n    print(obj.score(X_test, y_test))\n    print(time()-start)\n\n    print(obj.obj['loss'])\n\n    obj = ms.GenericBoostingClassifier(clf, n_clusters=3)\n    print(obj.get_params())\n    start = time()\n    obj.fit(X_train, y_train)\n    print(time()-start)\n    start = time()\n    print(obj.score(X_test, y_test))\n    print(time()-start)\n\n    print(obj.obj['loss'])\n\n    # data 3\n    print(\"\n
\n\n

\")\n print(\"iris data -----\")

\n\n
    iris = load_iris()\n    Z = iris.data\n    t = iris.target\n    np.random.seed(734563)\n    X_train, X_test, y_train, y_test = train_test_split(Z, t,\n                                                        test_size=0.2)\n\n\n    obj = ms.GenericBoostingClassifier(clf)\n    print(obj.get_params())\n    start = time()\n    obj.fit(X_train, y_train)\n    print(time()-start)\n    start = time()\n    print(obj.score(X_test, y_test))\n    print(time()-start)\n\n    print(obj.obj['loss'])\n\n\n    print(\"\n
\n\n

\")\n print(\"GenericBoosting KRR -----\")\n print(\"\n\")

\n\n
    obj = ms.GenericBoostingClassifier(clf2, tolerance=1e-2)\n    print(obj.get_params())\n    start = time()\n    obj.fit(X_train, y_train)\n    print(time()-start)\n    start = time()\n    print(obj.score(X_test, y_test))\n    print(time()-start)\n\n    print(obj.obj['loss'])\n\n    obj = ms.GenericBoostingClassifier(clf2, tolerance=1e-2, n_clusters=2)\n    print(obj.get_params())\n    start = time()\n    obj.fit(X_train, y_train)\n    print(time()-start)\n    start = time()\n    print(obj.score(X_test, y_test))\n    print(time()-start)\n\n    print(obj.obj['loss'])\n\n\n    # data 2\n    print(\"\n
\n\n

\")\n print(\"wine data -----\")

\n\n
    wine = load_wine()\n    Z = wine.data\n    t = wine.target\n    np.random.seed(879423)\n    X_train, X_test, y_train, y_test = train_test_split(Z, t,\n                                                        test_size=0.2)\n\n    obj = ms.GenericBoostingClassifier(clf2)\n    print(obj.get_params())\n    start = time()\n    obj.fit(X_train, y_train)\n    print(time()-start)\n    start = time()\n    print(obj.score(X_test, y_test))\n    print(time()-start)\n\n    print(obj.obj['loss'])\n\n    obj = ms.GenericBoostingClassifier(clf2, n_clusters=3)\n    print(obj.get_params())\n    start = time()\n    obj.fit(X_train, y_train)\n    print(time()-start)\n    start = time()\n    print(obj.score(X_test, y_test))\n    print(time()-start)\n\n    print(obj.obj['loss'])\n\n    # data 3\n    print(\"\n
\n\n

\")\n print(\"iris data -----\")

\n\n
    iris = load_iris()\n    Z = iris.data\n    t = iris.target\n    np.random.seed(734563)\n    X_train, X_test, y_train, y_test = train_test_split(Z, t,\n                                                        test_size=0.2)\n\n\n    obj = ms.GenericBoostingClassifier(clf2)\n    print(obj.get_params())\n    start = time()\n    obj.fit(X_train, y_train)\n    print(time()-start)\n    start = time()\n    print(obj.score(X_test, y_test))\n    print(time()-start)\n\n    print(obj.obj['loss'])\n```\n
\n", "bases": "sklearn.base.BaseEstimator, sklearn.base.ClassifierMixin"}, "mlsauce.booster.LSBoostClassifier.__init__": {"fullname": "mlsauce.booster.LSBoostClassifier.__init__", "modulename": "mlsauce.booster", "qualname": "LSBoostClassifier.__init__", "kind": "function", "doc": "

\n", "signature": "(\tn_estimators=100,\tlearning_rate=0.1,\tn_hidden_features=5,\treg_lambda=0.1,\talpha=0.5,\trow_sample=1,\tcol_sample=1,\tdropout=0,\ttolerance=0.0001,\tdirect_link=1,\tverbose=1,\tseed=123,\tbackend='cpu',\tsolver='ridge',\tactivation='relu',\tn_clusters=0,\tclustering_method='kmeans',\tcluster_scaling='standard',\tdegree=None,\tweights_distr='uniform',\tbase_model=None)"}, "mlsauce.booster.LSBoostClassifier.base_model": {"fullname": "mlsauce.booster.LSBoostClassifier.base_model", "modulename": "mlsauce.booster", "qualname": "LSBoostClassifier.base_model", "kind": "variable", "doc": "

\n"}, "mlsauce.booster.LSBoostClassifier.n_estimators": {"fullname": "mlsauce.booster.LSBoostClassifier.n_estimators", "modulename": "mlsauce.booster", "qualname": "LSBoostClassifier.n_estimators", "kind": "variable", "doc": "

\n"}, "mlsauce.booster.LSBoostClassifier.learning_rate": {"fullname": "mlsauce.booster.LSBoostClassifier.learning_rate", "modulename": "mlsauce.booster", "qualname": "LSBoostClassifier.learning_rate", "kind": "variable", "doc": "

\n"}, "mlsauce.booster.LSBoostClassifier.n_hidden_features": {"fullname": "mlsauce.booster.LSBoostClassifier.n_hidden_features", "modulename": "mlsauce.booster", "qualname": "LSBoostClassifier.n_hidden_features", "kind": "variable", "doc": "

\n"}, "mlsauce.booster.LSBoostClassifier.reg_lambda": {"fullname": "mlsauce.booster.LSBoostClassifier.reg_lambda", "modulename": "mlsauce.booster", "qualname": "LSBoostClassifier.reg_lambda", "kind": "variable", "doc": "

\n"}, "mlsauce.booster.LSBoostClassifier.alpha": {"fullname": "mlsauce.booster.LSBoostClassifier.alpha", "modulename": "mlsauce.booster", "qualname": "LSBoostClassifier.alpha", "kind": "variable", "doc": "

\n"}, "mlsauce.booster.LSBoostClassifier.row_sample": {"fullname": "mlsauce.booster.LSBoostClassifier.row_sample", "modulename": "mlsauce.booster", "qualname": "LSBoostClassifier.row_sample", "kind": "variable", "doc": "

\n"}, "mlsauce.booster.LSBoostClassifier.col_sample": {"fullname": "mlsauce.booster.LSBoostClassifier.col_sample", "modulename": "mlsauce.booster", "qualname": "LSBoostClassifier.col_sample", "kind": "variable", "doc": "

\n"}, "mlsauce.booster.LSBoostClassifier.dropout": {"fullname": "mlsauce.booster.LSBoostClassifier.dropout", "modulename": "mlsauce.booster", "qualname": "LSBoostClassifier.dropout", "kind": "variable", "doc": "

\n"}, "mlsauce.booster.LSBoostClassifier.tolerance": {"fullname": "mlsauce.booster.LSBoostClassifier.tolerance", "modulename": "mlsauce.booster", "qualname": "LSBoostClassifier.tolerance", "kind": "variable", "doc": "

\n"}, "mlsauce.booster.LSBoostClassifier.direct_link": {"fullname": "mlsauce.booster.LSBoostClassifier.direct_link", "modulename": "mlsauce.booster", "qualname": "LSBoostClassifier.direct_link", "kind": "variable", "doc": "

\n"}, "mlsauce.booster.LSBoostClassifier.verbose": {"fullname": "mlsauce.booster.LSBoostClassifier.verbose", "modulename": "mlsauce.booster", "qualname": "LSBoostClassifier.verbose", "kind": "variable", "doc": "

\n"}, "mlsauce.booster.LSBoostClassifier.seed": {"fullname": "mlsauce.booster.LSBoostClassifier.seed", "modulename": "mlsauce.booster", "qualname": "LSBoostClassifier.seed", "kind": "variable", "doc": "

\n"}, "mlsauce.booster.LSBoostClassifier.backend": {"fullname": "mlsauce.booster.LSBoostClassifier.backend", "modulename": "mlsauce.booster", "qualname": "LSBoostClassifier.backend", "kind": "variable", "doc": "

\n"}, "mlsauce.booster.LSBoostClassifier.obj": {"fullname": "mlsauce.booster.LSBoostClassifier.obj", "modulename": "mlsauce.booster", "qualname": "LSBoostClassifier.obj", "kind": "variable", "doc": "

\n"}, "mlsauce.booster.LSBoostClassifier.solver": {"fullname": "mlsauce.booster.LSBoostClassifier.solver", "modulename": "mlsauce.booster", "qualname": "LSBoostClassifier.solver", "kind": "variable", "doc": "

\n"}, "mlsauce.booster.LSBoostClassifier.activation": {"fullname": "mlsauce.booster.LSBoostClassifier.activation", "modulename": "mlsauce.booster", "qualname": "LSBoostClassifier.activation", "kind": "variable", "doc": "

\n"}, "mlsauce.booster.LSBoostClassifier.n_clusters": {"fullname": "mlsauce.booster.LSBoostClassifier.n_clusters", "modulename": "mlsauce.booster", "qualname": "LSBoostClassifier.n_clusters", "kind": "variable", "doc": "

\n"}, "mlsauce.booster.LSBoostClassifier.clustering_method": {"fullname": "mlsauce.booster.LSBoostClassifier.clustering_method", "modulename": "mlsauce.booster", "qualname": "LSBoostClassifier.clustering_method", "kind": "variable", "doc": "

\n"}, "mlsauce.booster.LSBoostClassifier.cluster_scaling": {"fullname": "mlsauce.booster.LSBoostClassifier.cluster_scaling", "modulename": "mlsauce.booster", "qualname": "LSBoostClassifier.cluster_scaling", "kind": "variable", "doc": "

\n"}, "mlsauce.booster.LSBoostClassifier.degree": {"fullname": "mlsauce.booster.LSBoostClassifier.degree", "modulename": "mlsauce.booster", "qualname": "LSBoostClassifier.degree", "kind": "variable", "doc": "

\n"}, "mlsauce.booster.LSBoostClassifier.poly_": {"fullname": "mlsauce.booster.LSBoostClassifier.poly_", "modulename": "mlsauce.booster", "qualname": "LSBoostClassifier.poly_", "kind": "variable", "doc": "

\n"}, "mlsauce.booster.LSBoostClassifier.weights_distr": {"fullname": "mlsauce.booster.LSBoostClassifier.weights_distr", "modulename": "mlsauce.booster", "qualname": "LSBoostClassifier.weights_distr", "kind": "variable", "doc": "

\n"}, "mlsauce.booster.LSBoostClassifier.fit": {"fullname": "mlsauce.booster.LSBoostClassifier.fit", "modulename": "mlsauce.booster", "qualname": "LSBoostClassifier.fit", "kind": "function", "doc": "

Fit Booster (classifier) to training data (X, y)

\n\n

Args:

\n\n
X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\ny: array-like, shape = [n_samples]\n    Target values.\n\n**kwargs: additional parameters to be passed to self.cook_training_set.\n
\n\n

Returns:

\n\n
self: object.\n
\n", "signature": "(self, X, y, **kwargs):", "funcdef": "def"}, "mlsauce.booster.LSBoostClassifier.predict": {"fullname": "mlsauce.booster.LSBoostClassifier.predict", "modulename": "mlsauce.booster", "qualname": "LSBoostClassifier.predict", "kind": "function", "doc": "

Predict test data X.

\n\n

Args:

\n\n
X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\n**kwargs: additional parameters to be passed to `predict_proba`\n
\n\n

Returns:

\n\n
model predictions: {array-like}\n
\n", "signature": "(self, X, **kwargs):", "funcdef": "def"}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"fullname": "mlsauce.booster.LSBoostClassifier.predict_proba", "modulename": "mlsauce.booster", "qualname": "LSBoostClassifier.predict_proba", "kind": "function", "doc": "

Predict probabilities for test data X.

\n\n

Args:

\n\n
X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\n**kwargs: additional parameters to be passed to\n    self.cook_test_set\n
\n\n

Returns:

\n\n
probability estimates for test data: {array-like}\n
\n", "signature": "(self, X, **kwargs):", "funcdef": "def"}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"fullname": "mlsauce.booster.LSBoostClassifier.set_score_request", "modulename": "mlsauce.booster", "qualname": "LSBoostClassifier.set_score_request", "kind": "function", "doc": "

A descriptor for request methods.

\n\n

New in version 1.3.

\n\n

Parameters

\n\n

name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

\n\n

keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

\n\n

validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

\n\n

Notes

\n\n

This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

\n\n

References

\n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.booster.LSBoostRegressor": {"fullname": "mlsauce.booster.LSBoostRegressor", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor", "kind": "class", "doc": "

LSBoost regressor.

\n\n

Attributes:

\n\n
n_estimators: int\n    number of boosting iterations.\n\nlearning_rate: float\n    controls the learning speed at training time.\n\nn_hidden_features: int\n    number of nodes in successive hidden layers.\n\nreg_lambda: float\n    L2 regularization parameter for successive errors in the optimizer\n    (at training time).\n\nalpha: float\n    compromise between L1 and L2 regularization (must be in [0, 1]),\n    for `solver` == 'enet'\n\nrow_sample: float\n    percentage of rows chosen from the training set.\n\ncol_sample: float\n    percentage of columns chosen from the training set.\n\ndropout: float\n    percentage of nodes dropped from the training set.\n\ntolerance: float\n    controls early stopping in gradient descent (at training time).\n\ndirect_link: bool\n    indicates whether the original features are included (True) in model's\n    fitting or not (False).\n\nverbose: int\n    progress bar (yes = 1) or not (no = 0) (currently).\n\nseed: int\n    reproducibility seed for nodes_sim=='uniform', clustering and dropout.\n\nbackend: str\n    type of backend; must be in ('cpu', 'gpu', 'tpu')\n\nsolver: str\n    type of 'weak' learner; currently in ('ridge', 'lasso')\n\nactivation: str\n    activation function: currently 'relu', 'relu6', 'sigmoid', 'tanh'\n\ntype_pi: str.\n    type of prediction interval; currently \"kde\" (default) or \"bootstrap\".\n    Used only in `self.predict`, for `self.replications` > 0 and `self.kernel`\n    in ('gaussian', 'tophat'). Default is `None`.\n\nreplications: int.\n    number of replications (if needed) for predictive simulation.\n    Used only in `self.predict`, for `self.kernel` in ('gaussian',\n    'tophat') and `self.type_pi = 'kde'`. Default is `None`.\n\nn_clusters: int\n    number of clusters for clustering the features\n\nclustering_method: str\n    clustering method: currently 'kmeans', 'gmm'\n\ncluster_scaling: str\n    scaling method for clustering: currently 'standard', 'robust', 'minmax'\n\ndegree: int\n    degree of features interactions to include in the model\n\nweights_distr: str\n    distribution of weights for constructing the model's hidden layer;\n    either 'uniform' or 'gaussian'\n
\n\n

Examples:

\n\n
\n
import subprocess\nimport sys\nimport os\n\nsubprocess.check_call([sys.executable, "-m", "pip", "install", "matplotlib"])\n\nimport mlsauce as ms\nimport numpy as np\nimport matplotlib.pyplot as plt\nfrom sklearn.datasets import load_diabetes\nfrom sklearn.model_selection import train_test_split, GridSearchCV, cross_val_score\nfrom sklearn.tree import DecisionTreeRegressor\nfrom time import time\nfrom os import chdir\nfrom sklearn import metrics\n\nregr = DecisionTreeRegressor()\n\ndiabetes = load_diabetes()\nX = diabetes.data\ny = diabetes.target\n# split data into training test and test set\nnp.random.seed(15029)\nX_train, X_test, y_train, y_test = train_test_split(X, y,\n                                                    test_size=0.2)\n\nobj = ms.GenericBoostingRegressor(regr, col_sample=0.9, row_sample=0.9)\nprint(obj.get_params())\nstart = time()\nobj.fit(X_train, y_train)\nprint(time()-start)\nstart = time()\nprint(np.sqrt(np.mean(np.square(obj.predict(X_test) - y_test))))\nprint(time()-start)\n\nprint(obj.obj['loss'])\n\nobj = ms.GenericBoostingRegressor(regr, col_sample=0.9, row_sample=0.9, n_clusters=2)\nprint(obj.get_params())\nstart = time()\nobj.fit(X_train, y_train)\nprint(time()-start)\nstart = time()\nprint(np.sqrt(np.mean(np.square(obj.predict(X_test) - y_test))))\nprint(time()-start)\n\nprint(obj.obj['loss'])\n
\n
\n
\n", "bases": "sklearn.base.BaseEstimator, sklearn.base.RegressorMixin"}, "mlsauce.booster.LSBoostRegressor.__init__": {"fullname": "mlsauce.booster.LSBoostRegressor.__init__", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor.__init__", "kind": "function", "doc": "

\n", "signature": "(\tn_estimators=100,\tlearning_rate=0.1,\tn_hidden_features=5,\treg_lambda=0.1,\talpha=0.5,\trow_sample=1,\tcol_sample=1,\tdropout=0,\ttolerance=0.0001,\tdirect_link=1,\tverbose=1,\tseed=123,\tbackend='cpu',\tsolver='ridge',\tactivation='relu',\ttype_pi=None,\treplications=None,\tkernel=None,\tn_clusters=0,\tclustering_method='kmeans',\tcluster_scaling='standard',\tdegree=None,\tweights_distr='uniform',\tbase_model=None)"}, "mlsauce.booster.LSBoostRegressor.base_model": {"fullname": "mlsauce.booster.LSBoostRegressor.base_model", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor.base_model", "kind": "variable", "doc": "

\n"}, "mlsauce.booster.LSBoostRegressor.n_estimators": {"fullname": "mlsauce.booster.LSBoostRegressor.n_estimators", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor.n_estimators", "kind": "variable", "doc": "

\n"}, "mlsauce.booster.LSBoostRegressor.learning_rate": {"fullname": "mlsauce.booster.LSBoostRegressor.learning_rate", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor.learning_rate", "kind": "variable", "doc": "

\n"}, "mlsauce.booster.LSBoostRegressor.n_hidden_features": {"fullname": "mlsauce.booster.LSBoostRegressor.n_hidden_features", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor.n_hidden_features", "kind": "variable", "doc": "

\n"}, "mlsauce.booster.LSBoostRegressor.reg_lambda": {"fullname": "mlsauce.booster.LSBoostRegressor.reg_lambda", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor.reg_lambda", "kind": "variable", "doc": "

\n"}, "mlsauce.booster.LSBoostRegressor.alpha": {"fullname": "mlsauce.booster.LSBoostRegressor.alpha", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor.alpha", "kind": "variable", "doc": "

\n"}, "mlsauce.booster.LSBoostRegressor.row_sample": {"fullname": "mlsauce.booster.LSBoostRegressor.row_sample", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor.row_sample", "kind": "variable", "doc": "

\n"}, "mlsauce.booster.LSBoostRegressor.col_sample": {"fullname": "mlsauce.booster.LSBoostRegressor.col_sample", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor.col_sample", "kind": "variable", "doc": "

\n"}, "mlsauce.booster.LSBoostRegressor.dropout": {"fullname": "mlsauce.booster.LSBoostRegressor.dropout", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor.dropout", "kind": "variable", "doc": "

\n"}, "mlsauce.booster.LSBoostRegressor.tolerance": {"fullname": "mlsauce.booster.LSBoostRegressor.tolerance", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor.tolerance", "kind": "variable", "doc": "

\n"}, "mlsauce.booster.LSBoostRegressor.direct_link": {"fullname": "mlsauce.booster.LSBoostRegressor.direct_link", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor.direct_link", "kind": "variable", "doc": "

\n"}, "mlsauce.booster.LSBoostRegressor.verbose": {"fullname": "mlsauce.booster.LSBoostRegressor.verbose", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor.verbose", "kind": "variable", "doc": "

\n"}, "mlsauce.booster.LSBoostRegressor.seed": {"fullname": "mlsauce.booster.LSBoostRegressor.seed", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor.seed", "kind": "variable", "doc": "

\n"}, "mlsauce.booster.LSBoostRegressor.backend": {"fullname": "mlsauce.booster.LSBoostRegressor.backend", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor.backend", "kind": "variable", "doc": "

\n"}, "mlsauce.booster.LSBoostRegressor.obj": {"fullname": "mlsauce.booster.LSBoostRegressor.obj", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor.obj", "kind": "variable", "doc": "

\n"}, "mlsauce.booster.LSBoostRegressor.solver": {"fullname": "mlsauce.booster.LSBoostRegressor.solver", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor.solver", "kind": "variable", "doc": "

\n"}, "mlsauce.booster.LSBoostRegressor.activation": {"fullname": "mlsauce.booster.LSBoostRegressor.activation", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor.activation", "kind": "variable", "doc": "

\n"}, "mlsauce.booster.LSBoostRegressor.type_pi": {"fullname": "mlsauce.booster.LSBoostRegressor.type_pi", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor.type_pi", "kind": "variable", "doc": "

\n"}, "mlsauce.booster.LSBoostRegressor.replications": {"fullname": "mlsauce.booster.LSBoostRegressor.replications", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor.replications", "kind": "variable", "doc": "

\n"}, "mlsauce.booster.LSBoostRegressor.kernel": {"fullname": "mlsauce.booster.LSBoostRegressor.kernel", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor.kernel", "kind": "variable", "doc": "

\n"}, "mlsauce.booster.LSBoostRegressor.n_clusters": {"fullname": "mlsauce.booster.LSBoostRegressor.n_clusters", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor.n_clusters", "kind": "variable", "doc": "

\n"}, "mlsauce.booster.LSBoostRegressor.clustering_method": {"fullname": "mlsauce.booster.LSBoostRegressor.clustering_method", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor.clustering_method", "kind": "variable", "doc": "

\n"}, "mlsauce.booster.LSBoostRegressor.cluster_scaling": {"fullname": "mlsauce.booster.LSBoostRegressor.cluster_scaling", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor.cluster_scaling", "kind": "variable", "doc": "

\n"}, "mlsauce.booster.LSBoostRegressor.degree": {"fullname": "mlsauce.booster.LSBoostRegressor.degree", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor.degree", "kind": "variable", "doc": "

\n"}, "mlsauce.booster.LSBoostRegressor.poly_": {"fullname": "mlsauce.booster.LSBoostRegressor.poly_", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor.poly_", "kind": "variable", "doc": "

\n"}, "mlsauce.booster.LSBoostRegressor.weights_distr": {"fullname": "mlsauce.booster.LSBoostRegressor.weights_distr", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor.weights_distr", "kind": "variable", "doc": "

\n"}, "mlsauce.booster.LSBoostRegressor.fit": {"fullname": "mlsauce.booster.LSBoostRegressor.fit", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor.fit", "kind": "function", "doc": "

Fit Booster (regressor) to training data (X, y)

\n\n

Args:

\n\n
X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\ny: array-like, shape = [n_samples]\n   Target values.\n\n**kwargs: additional parameters to be passed to self.cook_training_set.\n
\n\n

Returns:

\n\n
self: object.\n
\n", "signature": "(self, X, y, **kwargs):", "funcdef": "def"}, "mlsauce.booster.LSBoostRegressor.predict": {"fullname": "mlsauce.booster.LSBoostRegressor.predict", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor.predict", "kind": "function", "doc": "

Predict probabilities for test data X.

\n\n

Args:

\n\n
X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\nlevel: int\n    Level of confidence (default = 95)\n\nmethod: str\n    `None`, or 'splitconformal', 'localconformal'\n    prediction (if you specify `return_pi = True`)\n\n**kwargs: additional parameters to be passed to\n    self.cook_test_set\n
\n\n

Returns:

\n\n
probability estimates for test data: {array-like}\n
\n", "signature": "(self, X, level=95, method=None, **kwargs):", "funcdef": "def"}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"fullname": "mlsauce.booster.LSBoostRegressor.set_predict_request", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor.set_predict_request", "kind": "function", "doc": "

A descriptor for request methods.

\n\n

New in version 1.3.

\n\n

Parameters

\n\n

name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

\n\n

keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

\n\n

validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

\n\n

Notes

\n\n

This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

\n\n

References

\n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"fullname": "mlsauce.booster.LSBoostRegressor.set_score_request", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor.set_score_request", "kind": "function", "doc": "

A descriptor for request methods.

\n\n

New in version 1.3.

\n\n

Parameters

\n\n

name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

\n\n

keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

\n\n

validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

\n\n

Notes

\n\n

This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

\n\n

References

\n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.booster.GenericBoostingClassifier": {"fullname": "mlsauce.booster.GenericBoostingClassifier", "modulename": "mlsauce.booster", "qualname": "GenericBoostingClassifier", "kind": "class", "doc": "

Generic Boosting classifier (using any classifier as base learner).

\n\n

Attributes:

\n\n
obj: object\n    model object.\n\nn_estimators: int\n    number of boosting iterations.\n\nlearning_rate: float\n    controls the learning speed at training time.\n\nn_hidden_features: int\n    number of nodes in successive hidden layers.\n\nreg_lambda: float\n    L2 regularization parameter for successive errors in the optimizer\n    (at training time).\n\nalpha: float\n    compromise between L1 and L2 regularization (must be in [0, 1]),\n    for `solver` == 'enet'.\n\nrow_sample: float\n    percentage of rows chosen from the training set.\n\ncol_sample: float\n    percentage of columns chosen from the training set.\n\ndropout: float\n    percentage of nodes dropped from the training set.\n\ntolerance: float\n    controls early stopping in gradient descent (at training time).\n\ndirect_link: bool\n    indicates whether the original features are included (True) in model's\n    fitting or not (False).\n\nverbose: int\n    progress bar (yes = 1) or not (no = 0) (currently).\n\nseed: int\n    reproducibility seed for nodes_sim=='uniform', clustering and dropout.\n\nbackend: str\n    type of backend; must be in ('cpu', 'gpu', 'tpu')\n\nsolver: str\n    type of 'weak' learner; currently in ('ridge', 'lasso', 'enet').\n    'enet' is a combination of 'ridge' and 'lasso' called Elastic Net.\n\nactivation: str\n    activation function: currently 'relu', 'relu6', 'sigmoid', 'tanh'\n\nn_clusters: int\n    number of clusters for clustering the features\n\nclustering_method: str\n    clustering method: currently 'kmeans', 'gmm'\n\ncluster_scaling: str\n    scaling method for clustering: currently 'standard', 'robust', 'minmax'\n\ndegree: int\n    degree of features interactions to include in the model\n\nweights_distr: str\n    distribution of weights for constructing the model's hidden layer;\n    currently 'uniform', 'gaussian'\n
\n", "bases": "mlsauce.booster._booster_classifier.LSBoostClassifier"}, "mlsauce.booster.GenericBoostingClassifier.__init__": {"fullname": "mlsauce.booster.GenericBoostingClassifier.__init__", "modulename": "mlsauce.booster", "qualname": "GenericBoostingClassifier.__init__", "kind": "function", "doc": "

\n", "signature": "(\tobj,\tn_estimators=100,\tlearning_rate=0.1,\tn_hidden_features=5,\treg_lambda=0.1,\talpha=0.5,\trow_sample=1,\tcol_sample=1,\tdropout=0,\ttolerance=0.0001,\tdirect_link=1,\tverbose=1,\tseed=123,\tbackend='cpu',\tsolver='ridge',\tactivation='relu',\tn_clusters=0,\tclustering_method='kmeans',\tcluster_scaling='standard',\tdegree=None,\tweights_distr='uniform')"}, "mlsauce.booster.GenericBoostingClassifier.base_model": {"fullname": "mlsauce.booster.GenericBoostingClassifier.base_model", "modulename": "mlsauce.booster", "qualname": "GenericBoostingClassifier.base_model", "kind": "variable", "doc": "

\n"}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"fullname": "mlsauce.booster.GenericBoostingClassifier.set_score_request", "modulename": "mlsauce.booster", "qualname": "GenericBoostingClassifier.set_score_request", "kind": "function", "doc": "

A descriptor for request methods.

\n\n

New in version 1.3.

\n\n

Parameters

\n\n

name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

\n\n

keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

\n\n

validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

\n\n

Notes

\n\n

This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

\n\n

References

\n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.booster.GenericBoostingRegressor": {"fullname": "mlsauce.booster.GenericBoostingRegressor", "modulename": "mlsauce.booster", "qualname": "GenericBoostingRegressor", "kind": "class", "doc": "

LSBoost regressor.

\n\n

Attributes:

\n\n
n_estimators: int\n    number of boosting iterations.\n\nlearning_rate: float\n    controls the learning speed at training time.\n\nn_hidden_features: int\n    number of nodes in successive hidden layers.\n\nreg_lambda: float\n    L2 regularization parameter for successive errors in the optimizer\n    (at training time).\n\nalpha: float\n    compromise between L1 and L2 regularization (must be in [0, 1]),\n    for `solver` == 'enet'\n\nrow_sample: float\n    percentage of rows chosen from the training set.\n\ncol_sample: float\n    percentage of columns chosen from the training set.\n\ndropout: float\n    percentage of nodes dropped from the training set.\n\ntolerance: float\n    controls early stopping in gradient descent (at training time).\n\ndirect_link: bool\n    indicates whether the original features are included (True) in model's\n    fitting or not (False).\n\nverbose: int\n    progress bar (yes = 1) or not (no = 0) (currently).\n\nseed: int\n    reproducibility seed for nodes_sim=='uniform', clustering and dropout.\n\nbackend: str\n    type of backend; must be in ('cpu', 'gpu', 'tpu')\n\nsolver: str\n    type of 'weak' learner; currently in ('ridge', 'lasso')\n\nactivation: str\n    activation function: currently 'relu', 'relu6', 'sigmoid', 'tanh'\n\ntype_pi: str.\n    type of prediction interval; currently \"kde\" (default) or \"bootstrap\".\n    Used only in `self.predict`, for `self.replications` > 0 and `self.kernel`\n    in ('gaussian', 'tophat'). Default is `None`.\n\nreplications: int.\n    number of replications (if needed) for predictive simulation.\n    Used only in `self.predict`, for `self.kernel` in ('gaussian',\n    'tophat') and `self.type_pi = 'kde'`. Default is `None`.\n\nn_clusters: int\n    number of clusters for clustering the features\n\nclustering_method: str\n    clustering method: currently 'kmeans', 'gmm'\n\ncluster_scaling: str\n    scaling method for clustering: currently 'standard', 'robust', 'minmax'\n\ndegree: int\n    degree of features interactions to include in the model\n\nweights_distr: str\n    distribution of weights for constructing the model's hidden layer;\n    either 'uniform' or 'gaussian'\n
\n", "bases": "mlsauce.booster._booster_regressor.LSBoostRegressor"}, "mlsauce.booster.GenericBoostingRegressor.__init__": {"fullname": "mlsauce.booster.GenericBoostingRegressor.__init__", "modulename": "mlsauce.booster", "qualname": "GenericBoostingRegressor.__init__", "kind": "function", "doc": "

\n", "signature": "(\tobj,\tn_estimators=100,\tlearning_rate=0.1,\tn_hidden_features=5,\treg_lambda=0.1,\talpha=0.5,\trow_sample=1,\tcol_sample=1,\tdropout=0,\ttolerance=0.0001,\tdirect_link=1,\tverbose=1,\tseed=123,\tbackend='cpu',\tsolver='ridge',\tactivation='relu',\ttype_pi=None,\treplications=None,\tkernel=None,\tn_clusters=0,\tclustering_method='kmeans',\tcluster_scaling='standard',\tdegree=None,\tweights_distr='uniform')"}, "mlsauce.booster.GenericBoostingRegressor.base_model": {"fullname": "mlsauce.booster.GenericBoostingRegressor.base_model", "modulename": "mlsauce.booster", "qualname": "GenericBoostingRegressor.base_model", "kind": "variable", "doc": "

\n"}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"fullname": "mlsauce.booster.GenericBoostingRegressor.set_predict_request", "modulename": "mlsauce.booster", "qualname": "GenericBoostingRegressor.set_predict_request", "kind": "function", "doc": "

A descriptor for request methods.

\n\n

New in version 1.3.

\n\n

Parameters

\n\n

name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

\n\n

keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

\n\n

validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

\n\n

Notes

\n\n

This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

\n\n

References

\n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"fullname": "mlsauce.booster.GenericBoostingRegressor.set_score_request", "modulename": "mlsauce.booster", "qualname": "GenericBoostingRegressor.set_score_request", "kind": "function", "doc": "

A descriptor for request methods.

\n\n

New in version 1.3.

\n\n

Parameters

\n\n

name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

\n\n

keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

\n\n

validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

\n\n

Notes

\n\n

This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

\n\n

References

\n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.datasets": {"fullname": "mlsauce.datasets", "modulename": "mlsauce.datasets", "kind": "module", "doc": "

\n"}, "mlsauce.datasets.dowload": {"fullname": "mlsauce.datasets.dowload", "modulename": "mlsauce.datasets.dowload", "kind": "module", "doc": "

\n"}, "mlsauce.datasets.dowload.download": {"fullname": "mlsauce.datasets.dowload.download", "modulename": "mlsauce.datasets.dowload", "qualname": "download", "kind": "function", "doc": "

\n", "signature": "(\tpkgname='MASS',\tdataset='Boston',\tsource='https://cran.r-universe.dev/',\t**kwargs):", "funcdef": "def"}, "mlsauce.demo": {"fullname": "mlsauce.demo", "modulename": "mlsauce.demo", "kind": "module", "doc": "

\n"}, "mlsauce.elasticnet": {"fullname": "mlsauce.elasticnet", "modulename": "mlsauce.elasticnet", "kind": "module", "doc": "

\n"}, "mlsauce.elasticnet.ElasticNetRegressor": {"fullname": "mlsauce.elasticnet.ElasticNetRegressor", "modulename": "mlsauce.elasticnet", "qualname": "ElasticNetRegressor", "kind": "class", "doc": "

Elasticnet.

\n\n

Attributes:

\n\n
reg_lambda: float\n    regularization parameter.\n\nalpha: float\n    compromise between L1 and L2 regularization (must be in [0, 1]),\n    for `solver` == 'enet'.\n\nbackend: str\n    type of backend; must be in ('cpu', 'gpu', 'tpu')\n
\n", "bases": "sklearn.base.BaseEstimator, sklearn.base.RegressorMixin"}, "mlsauce.elasticnet.ElasticNetRegressor.__init__": {"fullname": "mlsauce.elasticnet.ElasticNetRegressor.__init__", "modulename": "mlsauce.elasticnet", "qualname": "ElasticNetRegressor.__init__", "kind": "function", "doc": "

\n", "signature": "(reg_lambda=0.1, alpha=0.5, backend='cpu')"}, "mlsauce.elasticnet.ElasticNetRegressor.reg_lambda": {"fullname": "mlsauce.elasticnet.ElasticNetRegressor.reg_lambda", "modulename": "mlsauce.elasticnet", "qualname": "ElasticNetRegressor.reg_lambda", "kind": "variable", "doc": "

\n"}, "mlsauce.elasticnet.ElasticNetRegressor.alpha": {"fullname": "mlsauce.elasticnet.ElasticNetRegressor.alpha", "modulename": "mlsauce.elasticnet", "qualname": "ElasticNetRegressor.alpha", "kind": "variable", "doc": "

\n"}, "mlsauce.elasticnet.ElasticNetRegressor.backend": {"fullname": "mlsauce.elasticnet.ElasticNetRegressor.backend", "modulename": "mlsauce.elasticnet", "qualname": "ElasticNetRegressor.backend", "kind": "variable", "doc": "

\n"}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"fullname": "mlsauce.elasticnet.ElasticNetRegressor.fit", "modulename": "mlsauce.elasticnet", "qualname": "ElasticNetRegressor.fit", "kind": "function", "doc": "

Fit matrixops (classifier) to training data (X, y)

\n\n

Args:

\n\n
X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\ny: array-like, shape = [n_samples]\n    Target values.\n\n**kwargs: additional parameters to be passed to self.cook_training_set.\n
\n\n

Returns:

\n\n
self: object.\n
\n", "signature": "(self, X, y, **kwargs):", "funcdef": "def"}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"fullname": "mlsauce.elasticnet.ElasticNetRegressor.predict", "modulename": "mlsauce.elasticnet", "qualname": "ElasticNetRegressor.predict", "kind": "function", "doc": "

Predict test data X.

\n\n

Args:

\n\n
X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\n**kwargs: additional parameters to be passed to `predict_proba`\n
\n\n

Returns:

\n\n
model predictions: {array-like}\n
\n", "signature": "(self, X, **kwargs):", "funcdef": "def"}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"fullname": "mlsauce.elasticnet.ElasticNetRegressor.set_score_request", "modulename": "mlsauce.elasticnet", "qualname": "ElasticNetRegressor.set_score_request", "kind": "function", "doc": "

A descriptor for request methods.

\n\n

New in version 1.3.

\n\n

Parameters

\n\n

name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

\n\n

keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

\n\n

validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

\n\n

Notes

\n\n

This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

\n\n

References

\n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.lasso": {"fullname": "mlsauce.lasso", "modulename": "mlsauce.lasso", "kind": "module", "doc": "

\n"}, "mlsauce.lasso.LassoRegressor": {"fullname": "mlsauce.lasso.LassoRegressor", "modulename": "mlsauce.lasso", "qualname": "LassoRegressor", "kind": "class", "doc": "

Lasso.

\n\n

Attributes:

\n\n
reg_lambda: float\n    L1 regularization parameter.\n\nmax_iter: int\n    number of iterations of lasso shooting algorithm.\n\ntol: float\n    tolerance for convergence of lasso shooting algorithm.\n\nbackend: str\n    type of backend; must be in ('cpu', 'gpu', 'tpu').\n
\n", "bases": "sklearn.base.BaseEstimator, sklearn.base.RegressorMixin"}, "mlsauce.lasso.LassoRegressor.__init__": {"fullname": "mlsauce.lasso.LassoRegressor.__init__", "modulename": "mlsauce.lasso", "qualname": "LassoRegressor.__init__", "kind": "function", "doc": "

\n", "signature": "(reg_lambda=0.1, max_iter=10, tol=0.001, backend='cpu')"}, "mlsauce.lasso.LassoRegressor.reg_lambda": {"fullname": "mlsauce.lasso.LassoRegressor.reg_lambda", "modulename": "mlsauce.lasso", "qualname": "LassoRegressor.reg_lambda", "kind": "variable", "doc": "

\n"}, "mlsauce.lasso.LassoRegressor.max_iter": {"fullname": "mlsauce.lasso.LassoRegressor.max_iter", "modulename": "mlsauce.lasso", "qualname": "LassoRegressor.max_iter", "kind": "variable", "doc": "

\n"}, "mlsauce.lasso.LassoRegressor.tol": {"fullname": "mlsauce.lasso.LassoRegressor.tol", "modulename": "mlsauce.lasso", "qualname": "LassoRegressor.tol", "kind": "variable", "doc": "

\n"}, "mlsauce.lasso.LassoRegressor.backend": {"fullname": "mlsauce.lasso.LassoRegressor.backend", "modulename": "mlsauce.lasso", "qualname": "LassoRegressor.backend", "kind": "variable", "doc": "

\n"}, "mlsauce.lasso.LassoRegressor.fit": {"fullname": "mlsauce.lasso.LassoRegressor.fit", "modulename": "mlsauce.lasso", "qualname": "LassoRegressor.fit", "kind": "function", "doc": "

Fit matrixops (classifier) to training data (X, y)

\n\n

Args:

\n\n
X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\ny: array-like, shape = [n_samples]\n    Target values.\n\n**kwargs: additional parameters to be passed to self.cook_training_set.\n
\n\n

Returns:

\n\n
self: object.\n
\n", "signature": "(self, X, y, **kwargs):", "funcdef": "def"}, "mlsauce.lasso.LassoRegressor.predict": {"fullname": "mlsauce.lasso.LassoRegressor.predict", "modulename": "mlsauce.lasso", "qualname": "LassoRegressor.predict", "kind": "function", "doc": "

Predict test data X.

\n\n

Args:

\n\n
X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\n**kwargs: additional parameters to be passed to `predict_proba`\n
\n\n

Returns:

\n\n
model predictions: {array-like}\n
\n", "signature": "(self, X, **kwargs):", "funcdef": "def"}, "mlsauce.lasso.LassoRegressor.set_score_request": {"fullname": "mlsauce.lasso.LassoRegressor.set_score_request", "modulename": "mlsauce.lasso", "qualname": "LassoRegressor.set_score_request", "kind": "function", "doc": "

A descriptor for request methods.

\n\n

New in version 1.3.

\n\n

Parameters

\n\n

name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

\n\n

keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

\n\n

validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

\n\n

Notes

\n\n

This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

\n\n

References

\n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.lazybooster": {"fullname": "mlsauce.lazybooster", "modulename": "mlsauce.lazybooster", "kind": "module", "doc": "

\n"}, "mlsauce.lazybooster.LazyBoostingClassifier": {"fullname": "mlsauce.lazybooster.LazyBoostingClassifier", "modulename": "mlsauce.lazybooster", "qualname": "LazyBoostingClassifier", "kind": "class", "doc": "

Fitting -- almost -- all the classification algorithms\n and returning their scores.

\n\n
Parameters:\n\n    verbose: int, optional (default=0)\n        Any positive number for verbosity.\n\n    ignore_warnings: bool, optional (default=True)\n        When set to True, the warning related to algorigms that are not\n        able to run are ignored.\n\n    custom_metric: function, optional (default=None)\n        When function is provided, models are evaluated based on the custom\n          evaluation metric provided.\n\n    predictions: bool, optional (default=False)\n        When set to True, the predictions of all the models models are\n        returned as data frame.\n\n    sort_by: string, optional (default='Accuracy')\n        Sort models by a metric. Available options are 'Accuracy',\n        'Balanced Accuracy', 'ROC AUC', 'F1 Score' or a custom metric\n        identified by its name and provided by custom_metric.\n\n    random_state: int, optional (default=42)\n        Reproducibiility seed.\n\n    estimators: list, optional (default='all')\n        list of Estimators names or just 'all' for > 90 classifiers\n        (default='all')\n\n    preprocess: bool, preprocessing is done when set to True\n\n    n_jobs: int, when possible, run in parallel\n        For now, only used by individual models that support it.\n\n    n_layers: int, optional (default=3)\n        Number of layers of GenericBoostingClassifiers to be used.\n\n    All the other parameters are the same as GenericBoostingClassifier's.\n\nAttributes:\n\n    models_: dict-object\n        Returns a dictionary with each model pipeline as value\n        with key as name of models.\n\n    best_model_: object\n        Returns the best model pipeline.\n\nExamples\n\n\n    
\n
        import os\n        import mlsauce as ms\n        from sklearn.datasets import load_breast_cancer, load_iris, load_wine, load_digits\n        from sklearn.model_selection import train_test_split\n        from time import time\n\n        load_models = [load_breast_cancer, load_iris, load_wine]\n\n        for model in load_models:\n\n            data = model()\n            X = data.data\n            y= data.target\n\n            X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = .2, random_state = 13)\n\n            clf = ms.LazyBoostingClassifier(verbose=1, ignore_warnings=False,\n                                            custom_metric=None, preprocess=False)\n\n            start = time()\n            models, predictioms = clf.fit(X_train, X_test, y_train, y_test)\n            print(f"\nElapsed: {time() - start} seconds\n")\n\n            print(models)\n
\n
\n
\n", "bases": "sklearn.base.ClassifierMixin"}, "mlsauce.lazybooster.LazyBoostingClassifier.__init__": {"fullname": "mlsauce.lazybooster.LazyBoostingClassifier.__init__", "modulename": "mlsauce.lazybooster", "qualname": "LazyBoostingClassifier.__init__", "kind": "function", "doc": "

\n", "signature": "(\tverbose=0,\tignore_warnings=True,\tcustom_metric=None,\tpredictions=False,\tsort_by='Accuracy',\trandom_state=42,\testimators='all',\tpreprocess=False,\tn_jobs=None)"}, "mlsauce.lazybooster.LazyBoostingClassifier.verbose": {"fullname": "mlsauce.lazybooster.LazyBoostingClassifier.verbose", "modulename": "mlsauce.lazybooster", "qualname": "LazyBoostingClassifier.verbose", "kind": "variable", "doc": "

\n"}, "mlsauce.lazybooster.LazyBoostingClassifier.ignore_warnings": {"fullname": "mlsauce.lazybooster.LazyBoostingClassifier.ignore_warnings", "modulename": "mlsauce.lazybooster", "qualname": "LazyBoostingClassifier.ignore_warnings", "kind": "variable", "doc": "

\n"}, "mlsauce.lazybooster.LazyBoostingClassifier.custom_metric": {"fullname": "mlsauce.lazybooster.LazyBoostingClassifier.custom_metric", "modulename": "mlsauce.lazybooster", "qualname": "LazyBoostingClassifier.custom_metric", "kind": "variable", "doc": "

\n"}, "mlsauce.lazybooster.LazyBoostingClassifier.predictions": {"fullname": "mlsauce.lazybooster.LazyBoostingClassifier.predictions", "modulename": "mlsauce.lazybooster", "qualname": "LazyBoostingClassifier.predictions", "kind": "variable", "doc": "

\n"}, "mlsauce.lazybooster.LazyBoostingClassifier.sort_by": {"fullname": "mlsauce.lazybooster.LazyBoostingClassifier.sort_by", "modulename": "mlsauce.lazybooster", "qualname": "LazyBoostingClassifier.sort_by", "kind": "variable", "doc": "

\n"}, "mlsauce.lazybooster.LazyBoostingClassifier.models_": {"fullname": "mlsauce.lazybooster.LazyBoostingClassifier.models_", "modulename": "mlsauce.lazybooster", "qualname": "LazyBoostingClassifier.models_", "kind": "variable", "doc": "

\n"}, "mlsauce.lazybooster.LazyBoostingClassifier.best_model_": {"fullname": "mlsauce.lazybooster.LazyBoostingClassifier.best_model_", "modulename": "mlsauce.lazybooster", "qualname": "LazyBoostingClassifier.best_model_", "kind": "variable", "doc": "

\n"}, "mlsauce.lazybooster.LazyBoostingClassifier.random_state": {"fullname": "mlsauce.lazybooster.LazyBoostingClassifier.random_state", "modulename": "mlsauce.lazybooster", "qualname": "LazyBoostingClassifier.random_state", "kind": "variable", "doc": "

\n"}, "mlsauce.lazybooster.LazyBoostingClassifier.estimators": {"fullname": "mlsauce.lazybooster.LazyBoostingClassifier.estimators", "modulename": "mlsauce.lazybooster", "qualname": "LazyBoostingClassifier.estimators", "kind": "variable", "doc": "

\n"}, "mlsauce.lazybooster.LazyBoostingClassifier.preprocess": {"fullname": "mlsauce.lazybooster.LazyBoostingClassifier.preprocess", "modulename": "mlsauce.lazybooster", "qualname": "LazyBoostingClassifier.preprocess", "kind": "variable", "doc": "

\n"}, "mlsauce.lazybooster.LazyBoostingClassifier.n_jobs": {"fullname": "mlsauce.lazybooster.LazyBoostingClassifier.n_jobs", "modulename": "mlsauce.lazybooster", "qualname": "LazyBoostingClassifier.n_jobs", "kind": "variable", "doc": "

\n"}, "mlsauce.lazybooster.LazyBoostingClassifier.fit": {"fullname": "mlsauce.lazybooster.LazyBoostingClassifier.fit", "modulename": "mlsauce.lazybooster", "qualname": "LazyBoostingClassifier.fit", "kind": "function", "doc": "

Fit classifiers to X_train and y_train, predict and score on X_test,\ny_test.

\n\n

Parameters:

\n\n
X_train: array-like,\n    Training vectors, where rows is the number of samples\n    and columns is the number of features.\n\nX_test: array-like,\n    Testing vectors, where rows is the number of samples\n    and columns is the number of features.\n\ny_train: array-like,\n    Training vectors, where rows is the number of samples\n    and columns is the number of features.\n\ny_test: array-like,\n    Testing vectors, where rows is the number of samples\n    and columns is the number of features.\n\n**kwargs: dict,\n    Additional arguments to be passed to the fit GenericBoostingClassifier.\n
\n\n

Returns:

\n\n
scores: Pandas DataFrame\n    Returns metrics of all the models in a Pandas DataFrame.\n\npredictions: Pandas DataFrame\n    Returns predictions of all the models in a Pandas DataFrame.\n
\n", "signature": "(self, X_train, X_test, y_train, y_test, **kwargs):", "funcdef": "def"}, "mlsauce.lazybooster.LazyBoostingClassifier.get_best_model": {"fullname": "mlsauce.lazybooster.LazyBoostingClassifier.get_best_model", "modulename": "mlsauce.lazybooster", "qualname": "LazyBoostingClassifier.get_best_model", "kind": "function", "doc": "

This function returns the best model pipeline based on the sort_by metric.

\n\n

Returns:

\n\n
best_model: object,\n    Returns the best model pipeline based on the sort_by metric.\n
\n", "signature": "(self):", "funcdef": "def"}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"fullname": "mlsauce.lazybooster.LazyBoostingClassifier.provide_models", "modulename": "mlsauce.lazybooster", "qualname": "LazyBoostingClassifier.provide_models", "kind": "function", "doc": "

Returns all the model objects trained. If fit hasn't been called yet,\nthen it's called to return the models.

\n\n

Parameters:

\n\n

X_train: array-like,\n Training vectors, where rows is the number of samples\n and columns is the number of features.

\n\n

X_test: array-like,\n Testing vectors, where rows is the number of samples\n and columns is the number of features.

\n\n

y_train: array-like,\n Training vectors, where rows is the number of samples\n and columns is the number of features.

\n\n

y_test: array-like,\n Testing vectors, where rows is the number of samples\n and columns is the number of features.

\n\n

Returns:

\n\n
models: dict-object,\n    Returns a dictionary with each model's pipeline as value\n    and key = name of the model.\n
\n", "signature": "(self, X_train, X_test, y_train, y_test):", "funcdef": "def"}, "mlsauce.lazybooster.LazyBoostingRegressor": {"fullname": "mlsauce.lazybooster.LazyBoostingRegressor", "modulename": "mlsauce.lazybooster", "qualname": "LazyBoostingRegressor", "kind": "class", "doc": "

Fitting -- almost -- all the regression algorithms\n and returning their scores.

\n\n

Parameters:

\n\n
verbose: int, optional (default=0)\n    Any positive number for verbosity.\n\nignore_warnings: bool, optional (default=True)\n    When set to True, the warning related to algorigms that are not able to run are ignored.\n\ncustom_metric: function, optional (default=None)\n    When function is provided, models are evaluated based on the custom evaluation metric provided.\n\npredictions: bool, optional (default=False)\n    When set to True, the predictions of all the models models are returned as dataframe.\n\nsort_by: string, optional (default='RMSE')\n    Sort models by a metric. Available options are 'R-Squared', 'Adjusted R-Squared', 'RMSE', 'Time Taken' and 'Custom Metric'.\n    or a custom metric identified by its name and provided by custom_metric.\n\nrandom_state: int, optional (default=42)\n    Reproducibiility seed.\n\nestimators: list, optional (default='all')\n    list of Estimators names or just 'all' (default='all')\n\npreprocess: bool\n    preprocessing is done when set to True\n\nn_jobs : int, when possible, run in parallel\n    For now, only used by individual models that support it.\n\nn_layers: int, optional (default=3)\n    Number of layers of CustomRegressors to be used.\n\nAll the other parameters are the same as CustomRegressor's.\n
\n\n

Attributes:

\n\n
models_: dict-object\n    Returns a dictionary with each model pipeline as value\n    with key as name of models.\n\nbest_model_: object\n    Returns the best model pipeline based on the sort_by metric.\n
\n\n

Examples:

\n\n
\n
import os\nimport mlsauce as ms\nfrom sklearn.datasets import load_diabetes\nfrom sklearn.model_selection import train_test_split\n\ndata = load_diabetes()\nX = data.data\ny= data.target\nX_train, X_test, y_train, y_test = train_test_split(X, y, test_size = .2, random_state = 123)\n\nregr = ms.LazyBoostingRegressor(verbose=0, ignore_warnings=True,\n                                custom_metric=None, preprocess=True)\nmodels, predictioms = regr.fit(X_train, X_test, y_train, y_test)\nmodel_dictionary = regr.provide_models(X_train, X_test, y_train, y_test)\nprint(models)\n
\n
\n
\n", "bases": "sklearn.base.RegressorMixin"}, "mlsauce.lazybooster.LazyBoostingRegressor.__init__": {"fullname": "mlsauce.lazybooster.LazyBoostingRegressor.__init__", "modulename": "mlsauce.lazybooster", "qualname": "LazyBoostingRegressor.__init__", "kind": "function", "doc": "

\n", "signature": "(\tverbose=0,\tignore_warnings=True,\tcustom_metric=None,\tpredictions=False,\tsort_by='RMSE',\trandom_state=42,\testimators='all',\tpreprocess=False,\tn_jobs=None)"}, "mlsauce.lazybooster.LazyBoostingRegressor.verbose": {"fullname": "mlsauce.lazybooster.LazyBoostingRegressor.verbose", "modulename": "mlsauce.lazybooster", "qualname": "LazyBoostingRegressor.verbose", "kind": "variable", "doc": "

\n"}, "mlsauce.lazybooster.LazyBoostingRegressor.ignore_warnings": {"fullname": "mlsauce.lazybooster.LazyBoostingRegressor.ignore_warnings", "modulename": "mlsauce.lazybooster", "qualname": "LazyBoostingRegressor.ignore_warnings", "kind": "variable", "doc": "

\n"}, "mlsauce.lazybooster.LazyBoostingRegressor.custom_metric": {"fullname": "mlsauce.lazybooster.LazyBoostingRegressor.custom_metric", "modulename": "mlsauce.lazybooster", "qualname": "LazyBoostingRegressor.custom_metric", "kind": "variable", "doc": "

\n"}, "mlsauce.lazybooster.LazyBoostingRegressor.predictions": {"fullname": "mlsauce.lazybooster.LazyBoostingRegressor.predictions", "modulename": "mlsauce.lazybooster", "qualname": "LazyBoostingRegressor.predictions", "kind": "variable", "doc": "

\n"}, "mlsauce.lazybooster.LazyBoostingRegressor.sort_by": {"fullname": "mlsauce.lazybooster.LazyBoostingRegressor.sort_by", "modulename": "mlsauce.lazybooster", "qualname": "LazyBoostingRegressor.sort_by", "kind": "variable", "doc": "

\n"}, "mlsauce.lazybooster.LazyBoostingRegressor.models_": {"fullname": "mlsauce.lazybooster.LazyBoostingRegressor.models_", "modulename": "mlsauce.lazybooster", "qualname": "LazyBoostingRegressor.models_", "kind": "variable", "doc": "

\n"}, "mlsauce.lazybooster.LazyBoostingRegressor.best_model_": {"fullname": "mlsauce.lazybooster.LazyBoostingRegressor.best_model_", "modulename": "mlsauce.lazybooster", "qualname": "LazyBoostingRegressor.best_model_", "kind": "variable", "doc": "

\n"}, "mlsauce.lazybooster.LazyBoostingRegressor.random_state": {"fullname": "mlsauce.lazybooster.LazyBoostingRegressor.random_state", "modulename": "mlsauce.lazybooster", "qualname": "LazyBoostingRegressor.random_state", "kind": "variable", "doc": "

\n"}, "mlsauce.lazybooster.LazyBoostingRegressor.estimators": {"fullname": "mlsauce.lazybooster.LazyBoostingRegressor.estimators", "modulename": "mlsauce.lazybooster", "qualname": "LazyBoostingRegressor.estimators", "kind": "variable", "doc": "

\n"}, "mlsauce.lazybooster.LazyBoostingRegressor.preprocess": {"fullname": "mlsauce.lazybooster.LazyBoostingRegressor.preprocess", "modulename": "mlsauce.lazybooster", "qualname": "LazyBoostingRegressor.preprocess", "kind": "variable", "doc": "

\n"}, "mlsauce.lazybooster.LazyBoostingRegressor.n_jobs": {"fullname": "mlsauce.lazybooster.LazyBoostingRegressor.n_jobs", "modulename": "mlsauce.lazybooster", "qualname": "LazyBoostingRegressor.n_jobs", "kind": "variable", "doc": "

\n"}, "mlsauce.lazybooster.LazyBoostingRegressor.fit": {"fullname": "mlsauce.lazybooster.LazyBoostingRegressor.fit", "modulename": "mlsauce.lazybooster", "qualname": "LazyBoostingRegressor.fit", "kind": "function", "doc": "

Fit Regression algorithms to X_train and y_train, predict and score on X_test, y_test.

\n\n

Parameters:

\n\n
X_train : array-like,\n    Training vectors, where rows is the number of samples\n    and columns is the number of features.\n\nX_test : array-like,\n    Testing vectors, where rows is the number of samples\n    and columns is the number of features.\n\ny_train : array-like,\n    Training vectors, where rows is the number of samples\n    and columns is the number of features.\n\ny_test : array-like,\n    Testing vectors, where rows is the number of samples\n    and columns is the number of features.\n\n**kwargs: dict,\n    Additional parameters to be passed to the GenericBoostingRegressor.\n
\n\n

Returns:

\n\n

scores: Pandas DataFrame\n Returns metrics of all the models in a Pandas DataFrame.

\n\n

predictions : Pandas DataFrame\n Returns predictions of all the models in a Pandas DataFrame.

\n", "signature": "(self, X_train, X_test, y_train, y_test, **kwargs):", "funcdef": "def"}, "mlsauce.lazybooster.LazyBoostingRegressor.get_best_model": {"fullname": "mlsauce.lazybooster.LazyBoostingRegressor.get_best_model", "modulename": "mlsauce.lazybooster", "qualname": "LazyBoostingRegressor.get_best_model", "kind": "function", "doc": "

This function returns the best model pipeline based on the sort_by metric.

\n\n

Returns:

\n\n
best_model: object,\n    Returns the best model pipeline based on the sort_by metric.\n
\n", "signature": "(self):", "funcdef": "def"}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"fullname": "mlsauce.lazybooster.LazyBoostingRegressor.provide_models", "modulename": "mlsauce.lazybooster", "qualname": "LazyBoostingRegressor.provide_models", "kind": "function", "doc": "

This function returns all the model objects trained in fit function.\nIf fit is not called already, then we call fit and then return the models.

\n\n

Parameters:

\n\n
X_train : array-like,\n    Training vectors, where rows is the number of samples\n    and columns is the number of features.\n\nX_test : array-like,\n    Testing vectors, where rows is the number of samples\n    and columns is the number of features.\n\ny_train : array-like,\n    Training vectors, where rows is the number of samples\n    and columns is the number of features.\n\ny_test : array-like,\n    Testing vectors, where rows is the number of samples\n    and columns is the number of features.\n
\n\n

Returns:

\n\n
models: dict-object,\n    Returns a dictionary with each model pipeline as value\n    with key as name of models.\n
\n", "signature": "(self, X_train, X_test, y_train, y_test):", "funcdef": "def"}, "mlsauce.nonconformist": {"fullname": "mlsauce.nonconformist", "modulename": "mlsauce.nonconformist", "kind": "module", "doc": "

docstring

\n"}, "mlsauce.nonconformist.AbsErrorErrFunc": {"fullname": "mlsauce.nonconformist.AbsErrorErrFunc", "modulename": "mlsauce.nonconformist", "qualname": "AbsErrorErrFunc", "kind": "class", "doc": "

Calculates absolute error nonconformity for regression problems.

\n\n

For each correct output in y, nonconformity is defined as

\n\n

$$| y_i - \\hat{y}_i |$$

\n", "bases": "mlsauce.nonconformist.nc.RegressionErrFunc"}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"fullname": "mlsauce.nonconformist.AbsErrorErrFunc.apply", "modulename": "mlsauce.nonconformist", "qualname": "AbsErrorErrFunc.apply", "kind": "function", "doc": "

Apply the nonconformity function.

\n\n

Parameters

\n\n

prediction : numpy array of shape [n_samples, n_classes]\n Class probability estimates for each sample.

\n\n

y : numpy array of shape [n_samples]\n True output labels of each sample.

\n\n

Returns

\n\n

nc : numpy array of shape [n_samples]\n Nonconformity scores of the samples.

\n", "signature": "(self, prediction, y):", "funcdef": "def"}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"fullname": "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse", "modulename": "mlsauce.nonconformist", "qualname": "AbsErrorErrFunc.apply_inverse", "kind": "function", "doc": "

Apply the inverse of the nonconformity function (i.e.,\ncalculate prediction interval).

\n\n

Parameters

\n\n

nc : numpy array of shape [n_calibration_samples]\n Nonconformity scores obtained for conformal predictor.

\n\n

significance : float\n Significance level (0, 1).

\n\n

Returns

\n\n

interval : numpy array of shape [n_samples, 2]\n Minimum and maximum interval boundaries for each prediction.

\n", "signature": "(self, nc, significance):", "funcdef": "def"}, "mlsauce.nonconformist.QuantileRegErrFunc": {"fullname": "mlsauce.nonconformist.QuantileRegErrFunc", "modulename": "mlsauce.nonconformist", "qualname": "QuantileRegErrFunc", "kind": "class", "doc": "

Calculates conformalized quantile regression error.

\n\n

For each correct output in y, nonconformity is defined as

\n\n

$$max{\\hat{q}_low - y, y - \\hat{q}_high}$$

\n", "bases": "mlsauce.nonconformist.nc.RegressionErrFunc"}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"fullname": "mlsauce.nonconformist.QuantileRegErrFunc.apply", "modulename": "mlsauce.nonconformist", "qualname": "QuantileRegErrFunc.apply", "kind": "function", "doc": "

Apply the nonconformity function.

\n\n

Parameters

\n\n

prediction : numpy array of shape [n_samples, n_classes]\n Class probability estimates for each sample.

\n\n

y : numpy array of shape [n_samples]\n True output labels of each sample.

\n\n

Returns

\n\n

nc : numpy array of shape [n_samples]\n Nonconformity scores of the samples.

\n", "signature": "(self, prediction, y):", "funcdef": "def"}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"fullname": "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse", "modulename": "mlsauce.nonconformist", "qualname": "QuantileRegErrFunc.apply_inverse", "kind": "function", "doc": "

Apply the inverse of the nonconformity function (i.e.,\ncalculate prediction interval).

\n\n

Parameters

\n\n

nc : numpy array of shape [n_calibration_samples]\n Nonconformity scores obtained for conformal predictor.

\n\n

significance : float\n Significance level (0, 1).

\n\n

Returns

\n\n

interval : numpy array of shape [n_samples, 2]\n Minimum and maximum interval boundaries for each prediction.

\n", "signature": "(self, nc, significance):", "funcdef": "def"}, "mlsauce.nonconformist.RegressorAdapter": {"fullname": "mlsauce.nonconformist.RegressorAdapter", "modulename": "mlsauce.nonconformist", "qualname": "RegressorAdapter", "kind": "class", "doc": "

Base class for all estimators in scikit-learn.

\n\n

Inheriting from this class provides default implementations of:

\n\n
    \n
  • setting and getting parameters used by GridSearchCV and friends;
  • \n
  • textual and HTML representation displayed in terminals and IDEs;
  • \n
  • estimator serialization;
  • \n
  • parameters validation;
  • \n
  • data validation;
  • \n
  • feature names validation.
  • \n
\n\n

Read more in the :ref:User Guide <rolling_your_own_estimator>.

\n\n

Notes

\n\n

All estimators should specify all the parameters that can be set\nat the class level in their __init__ as explicit keyword\narguments (no *args or **kwargs).

\n\n

Examples

\n\n
\n
>>> import numpy as np\n>>> from sklearn.base import BaseEstimator\n>>> class MyEstimator(BaseEstimator):\n...     def __init__(self, *, param=1):\n...         self.param = param\n...     def fit(self, X, y=None):\n...         self.is_fitted_ = True\n...         return self\n...     def predict(self, X):\n...         return np.full(shape=X.shape[0], fill_value=self.param)\n>>> estimator = MyEstimator(param=2)\n>>> estimator.get_params()\n{'param': 2}\n>>> X = np.array([[1, 2], [2, 3], [3, 4]])\n>>> y = np.array([1, 0, 1])\n>>> estimator.fit(X, y).predict(X)\narray([2, 2, 2])\n>>> estimator.set_params(param=3).fit(X, y).predict(X)\narray([3, 3, 3])\n
\n
\n", "bases": "mlsauce.nonconformist.base.BaseModelAdapter"}, "mlsauce.nonconformist.RegressorAdapter.__init__": {"fullname": "mlsauce.nonconformist.RegressorAdapter.__init__", "modulename": "mlsauce.nonconformist", "qualname": "RegressorAdapter.__init__", "kind": "function", "doc": "

\n", "signature": "(model, fit_params=None)"}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"fullname": "mlsauce.nonconformist.RegressorAdapter.set_fit_request", "modulename": "mlsauce.nonconformist", "qualname": "RegressorAdapter.set_fit_request", "kind": "function", "doc": "

A descriptor for request methods.

\n\n

New in version 1.3.

\n\n

Parameters

\n\n

name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

\n\n

keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

\n\n

validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

\n\n

Notes

\n\n

This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

\n\n

References

\n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"fullname": "mlsauce.nonconformist.RegressorAdapter.set_predict_request", "modulename": "mlsauce.nonconformist", "qualname": "RegressorAdapter.set_predict_request", "kind": "function", "doc": "

A descriptor for request methods.

\n\n

New in version 1.3.

\n\n

Parameters

\n\n

name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

\n\n

keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

\n\n

validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

\n\n

Notes

\n\n

This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

\n\n

References

\n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.nonconformist.RegressorNc": {"fullname": "mlsauce.nonconformist.RegressorNc", "modulename": "mlsauce.nonconformist", "qualname": "RegressorNc", "kind": "class", "doc": "

Nonconformity scorer using an underlying regression model.

\n\n

Parameters

\n\n

model : RegressorAdapter\n Underlying regression model used for calculating nonconformity scores.

\n\n

err_func : RegressionErrFunc\n Error function object.

\n\n

normalizer : BaseScorer\n Normalization model.

\n\n

beta : float\n Normalization smoothing parameter. As the beta-value increases,\n the normalized nonconformity function approaches a non-normalized\n equivalent.

\n\n

Attributes

\n\n

model : RegressorAdapter\n Underlying model object.

\n\n

err_func : RegressionErrFunc\n Scorer function used to calculate nonconformity scores.

\n\n

See also

\n\n

ProbEstClassifierNc, NormalizedRegressorNc

\n", "bases": "mlsauce.nonconformist.nc.BaseModelNc"}, "mlsauce.nonconformist.RegressorNc.__init__": {"fullname": "mlsauce.nonconformist.RegressorNc.__init__", "modulename": "mlsauce.nonconformist", "qualname": "RegressorNc.__init__", "kind": "function", "doc": "

\n", "signature": "(\tmodel,\terr_func=<mlsauce.nonconformist.nc.AbsErrorErrFunc object>,\tnormalizer=None,\tbeta=1e-06)"}, "mlsauce.nonconformist.RegressorNc.predict": {"fullname": "mlsauce.nonconformist.RegressorNc.predict", "modulename": "mlsauce.nonconformist", "qualname": "RegressorNc.predict", "kind": "function", "doc": "

Constructs prediction intervals for a set of test examples.

\n\n

Predicts the output of each test pattern using the underlying model,\nand applies the (partial) inverse nonconformity function to each\nprediction, resulting in a prediction interval for each test pattern.

\n\n

Parameters

\n\n

x : numpy array of shape [n_samples, n_features]\n Inputs of patters for which to predict output values.

\n\n

significance : float\n Significance level (maximum allowed error rate) of predictions.\n Should be a float between 0 and 1. If None, then intervals for\n all significance levels (0.01, 0.02, ..., 0.99) are output in a\n 3d-matrix.

\n\n

Returns

\n\n

p : numpy array of shape [n_samples, 2] or [n_samples, 2, 99]\n If significance is None, then p contains the interval (minimum\n and maximum boundaries) for each test pattern, and each significance\n level (0.01, 0.02, ..., 0.99). If significance is a float between\n 0 and 1, then p contains the prediction intervals (minimum and\n maximum boundaries) for the set of test patterns at the chosen\n significance level.

\n", "signature": "(self, x, nc, significance=None):", "funcdef": "def"}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"fullname": "mlsauce.nonconformist.RegressorNc.set_fit_request", "modulename": "mlsauce.nonconformist", "qualname": "RegressorNc.set_fit_request", "kind": "function", "doc": "

A descriptor for request methods.

\n\n

New in version 1.3.

\n\n

Parameters

\n\n

name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

\n\n

keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

\n\n

validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

\n\n

Notes

\n\n

This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

\n\n

References

\n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"fullname": "mlsauce.nonconformist.RegressorNc.set_predict_request", "modulename": "mlsauce.nonconformist", "qualname": "RegressorNc.set_predict_request", "kind": "function", "doc": "

A descriptor for request methods.

\n\n

New in version 1.3.

\n\n

Parameters

\n\n

name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

\n\n

keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

\n\n

validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

\n\n

Notes

\n\n

This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

\n\n

References

\n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"fullname": "mlsauce.nonconformist.RegressorNc.set_score_request", "modulename": "mlsauce.nonconformist", "qualname": "RegressorNc.set_score_request", "kind": "function", "doc": "

A descriptor for request methods.

\n\n

New in version 1.3.

\n\n

Parameters

\n\n

name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

\n\n

keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

\n\n

validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

\n\n

Notes

\n\n

This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

\n\n

References

\n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.nonconformist.RegressorNormalizer": {"fullname": "mlsauce.nonconformist.RegressorNormalizer", "modulename": "mlsauce.nonconformist", "qualname": "RegressorNormalizer", "kind": "class", "doc": "

Base class for all estimators in scikit-learn.

\n\n

Inheriting from this class provides default implementations of:

\n\n
    \n
  • setting and getting parameters used by GridSearchCV and friends;
  • \n
  • textual and HTML representation displayed in terminals and IDEs;
  • \n
  • estimator serialization;
  • \n
  • parameters validation;
  • \n
  • data validation;
  • \n
  • feature names validation.
  • \n
\n\n

Read more in the :ref:User Guide <rolling_your_own_estimator>.

\n\n

Notes

\n\n

All estimators should specify all the parameters that can be set\nat the class level in their __init__ as explicit keyword\narguments (no *args or **kwargs).

\n\n

Examples

\n\n
\n
>>> import numpy as np\n>>> from sklearn.base import BaseEstimator\n>>> class MyEstimator(BaseEstimator):\n...     def __init__(self, *, param=1):\n...         self.param = param\n...     def fit(self, X, y=None):\n...         self.is_fitted_ = True\n...         return self\n...     def predict(self, X):\n...         return np.full(shape=X.shape[0], fill_value=self.param)\n>>> estimator = MyEstimator(param=2)\n>>> estimator.get_params()\n{'param': 2}\n>>> X = np.array([[1, 2], [2, 3], [3, 4]])\n>>> y = np.array([1, 0, 1])\n>>> estimator.fit(X, y).predict(X)\narray([2, 2, 2])\n>>> estimator.set_params(param=3).fit(X, y).predict(X)\narray([3, 3, 3])\n
\n
\n", "bases": "mlsauce.nonconformist.nc.BaseScorer"}, "mlsauce.nonconformist.RegressorNormalizer.__init__": {"fullname": "mlsauce.nonconformist.RegressorNormalizer.__init__", "modulename": "mlsauce.nonconformist", "qualname": "RegressorNormalizer.__init__", "kind": "function", "doc": "

\n", "signature": "(base_model, normalizer_model, err_func)"}, "mlsauce.nonconformist.RegressorNormalizer.base_model": {"fullname": "mlsauce.nonconformist.RegressorNormalizer.base_model", "modulename": "mlsauce.nonconformist", "qualname": "RegressorNormalizer.base_model", "kind": "variable", "doc": "

\n"}, "mlsauce.nonconformist.RegressorNormalizer.normalizer_model": {"fullname": "mlsauce.nonconformist.RegressorNormalizer.normalizer_model", "modulename": "mlsauce.nonconformist", "qualname": "RegressorNormalizer.normalizer_model", "kind": "variable", "doc": "

\n"}, "mlsauce.nonconformist.RegressorNormalizer.err_func": {"fullname": "mlsauce.nonconformist.RegressorNormalizer.err_func", "modulename": "mlsauce.nonconformist", "qualname": "RegressorNormalizer.err_func", "kind": "variable", "doc": "

\n"}, "mlsauce.nonconformist.RegressorNormalizer.fit": {"fullname": "mlsauce.nonconformist.RegressorNormalizer.fit", "modulename": "mlsauce.nonconformist", "qualname": "RegressorNormalizer.fit", "kind": "function", "doc": "

\n", "signature": "(self, x, y):", "funcdef": "def"}, "mlsauce.nonconformist.RegressorNormalizer.score": {"fullname": "mlsauce.nonconformist.RegressorNormalizer.score", "modulename": "mlsauce.nonconformist", "qualname": "RegressorNormalizer.score", "kind": "function", "doc": "

\n", "signature": "(self, x, y=None):", "funcdef": "def"}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"fullname": "mlsauce.nonconformist.RegressorNormalizer.set_fit_request", "modulename": "mlsauce.nonconformist", "qualname": "RegressorNormalizer.set_fit_request", "kind": "function", "doc": "

A descriptor for request methods.

\n\n

New in version 1.3.

\n\n

Parameters

\n\n

name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

\n\n

keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

\n\n

validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

\n\n

Notes

\n\n

This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

\n\n

References

\n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"fullname": "mlsauce.nonconformist.RegressorNormalizer.set_score_request", "modulename": "mlsauce.nonconformist", "qualname": "RegressorNormalizer.set_score_request", "kind": "function", "doc": "

A descriptor for request methods.

\n\n

New in version 1.3.

\n\n

Parameters

\n\n

name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

\n\n

keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

\n\n

validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

\n\n

Notes

\n\n

This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

\n\n

References

\n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.nonconformist.IcpRegressor": {"fullname": "mlsauce.nonconformist.IcpRegressor", "modulename": "mlsauce.nonconformist", "qualname": "IcpRegressor", "kind": "class", "doc": "

Inductive conformal regressor.

\n\n

Parameters

\n\n

nc_function : BaseScorer\n Nonconformity scorer object used to calculate nonconformity of\n calibration examples and test patterns. Should implement fit(x, y),\n calc_nc(x, y) and predict(x, nc_scores, significance).

\n\n

Attributes

\n\n

cal_x : numpy array of shape [n_cal_examples, n_features]\n Inputs of calibration set.

\n\n

cal_y : numpy array of shape [n_cal_examples]\n Outputs of calibration set.

\n\n

nc_function : BaseScorer\n Nonconformity scorer object used to calculate nonconformity scores.

\n\n

See also

\n\n

IcpClassifier

\n\n

References

\n\n

Examples

\n\n
\n
>>> import numpy as np\n>>> from sklearn.datasets import load_boston\n>>> from sklearn.tree import DecisionTreeRegressor\n>>> from nonconformist.base import RegressorAdapter\n>>> from nonconformist.icp import IcpRegressor\n>>> from nonconformist.nc import RegressorNc, AbsErrorErrFunc\n>>> boston = load_boston()\n>>> idx = np.random.permutation(boston.target.size)\n>>> train = idx[:int(idx.size / 3)]\n>>> cal = idx[int(idx.size / 3):int(2 * idx.size / 3)]\n>>> test = idx[int(2 * idx.size / 3):]\n>>> model = RegressorAdapter(DecisionTreeRegressor())\n>>> nc = RegressorNc(model, AbsErrorErrFunc())\n>>> icp = IcpRegressor(nc)\n>>> icp.fit(boston.data[train, :], boston.target[train])\n>>> icp.calibrate(boston.data[cal, :], boston.target[cal])\n>>> icp.predict(boston.data[test, :], significance=0.10)\n...     # doctest: +SKIP\narray([[  5. ,  20.6],\n        [ 15.5,  31.1],\n        ...,\n        [ 14.2,  29.8],\n        [ 11.6,  27.2]])\n
\n
\n\n
\n
\n
    \n
\n
\n", "bases": "mlsauce.nonconformist.icp.BaseIcp, mlsauce.nonconformist.base.RegressorMixin"}, "mlsauce.nonconformist.IcpRegressor.__init__": {"fullname": "mlsauce.nonconformist.IcpRegressor.__init__", "modulename": "mlsauce.nonconformist", "qualname": "IcpRegressor.__init__", "kind": "function", "doc": "

\n", "signature": "(nc_function, condition=None)"}, "mlsauce.nonconformist.IcpRegressor.predict": {"fullname": "mlsauce.nonconformist.IcpRegressor.predict", "modulename": "mlsauce.nonconformist", "qualname": "IcpRegressor.predict", "kind": "function", "doc": "

Predict the output values for a set of input patterns.

\n\n

Parameters

\n\n

x : numpy array of shape [n_samples, n_features]\n Inputs of patters for which to predict output values.

\n\n

significance : float\n Significance level (maximum allowed error rate) of predictions.\n Should be a float between 0 and 1. If None, then intervals for\n all significance levels (0.01, 0.02, ..., 0.99) are output in a\n 3d-matrix.

\n\n

Returns

\n\n

p : numpy array of shape [n_samples, 2] or [n_samples, 2, 99}\n If significance is None, then p contains the interval (minimum\n and maximum boundaries) for each test pattern, and each significance\n level (0.01, 0.02, ..., 0.99). If significance is a float between\n 0 and 1, then p contains the prediction intervals (minimum and\n maximum boundaries) for the set of test patterns at the chosen\n significance level.

\n", "signature": "(self, x, significance=None):", "funcdef": "def"}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"fullname": "mlsauce.nonconformist.IcpRegressor.set_fit_request", "modulename": "mlsauce.nonconformist", "qualname": "IcpRegressor.set_fit_request", "kind": "function", "doc": "

A descriptor for request methods.

\n\n

New in version 1.3.

\n\n

Parameters

\n\n

name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

\n\n

keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

\n\n

validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

\n\n

Notes

\n\n

This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

\n\n

References

\n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"fullname": "mlsauce.nonconformist.IcpRegressor.set_predict_request", "modulename": "mlsauce.nonconformist", "qualname": "IcpRegressor.set_predict_request", "kind": "function", "doc": "

A descriptor for request methods.

\n\n

New in version 1.3.

\n\n

Parameters

\n\n

name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

\n\n

keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

\n\n

validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

\n\n

Notes

\n\n

This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

\n\n

References

\n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.predictioninterval": {"fullname": "mlsauce.predictioninterval", "modulename": "mlsauce.predictioninterval", "kind": "module", "doc": "

\n"}, "mlsauce.predictioninterval.PredictionInterval": {"fullname": "mlsauce.predictioninterval.PredictionInterval", "modulename": "mlsauce.predictioninterval", "qualname": "PredictionInterval", "kind": "class", "doc": "

Class PredictionInterval: Obtain prediction intervals.

\n\n

Attributes:

\n\n
obj: an object;\n    fitted object containing methods `fit` and `predict`\n\nmethod: a string;\n    method for constructing the prediction intervals.\n    Currently \"splitconformal\" (default) and \"localconformal\"\n\nlevel: a float;\n    Confidence level for prediction intervals. Default is 95,\n    equivalent to a miscoverage error of 5 (%)\n\nreplications: an integer;\n    Number of replications for simulated conformal (default is `None`)\n\ntype_pi: a string;\n    type of prediction interval: currently \"kde\" (default) or \"bootstrap\"\n\nseed: an integer;\n    Reproducibility of fit (there's a random split between fitting and calibration data)\n
\n", "bases": "sklearn.base.BaseEstimator, sklearn.base.RegressorMixin"}, "mlsauce.predictioninterval.PredictionInterval.__init__": {"fullname": "mlsauce.predictioninterval.PredictionInterval.__init__", "modulename": "mlsauce.predictioninterval", "qualname": "PredictionInterval.__init__", "kind": "function", "doc": "

\n", "signature": "(\tobj,\tmethod='splitconformal',\tlevel=95,\ttype_pi='bootstrap',\treplications=None,\tkernel=None,\tagg='mean',\tseed=123)"}, "mlsauce.predictioninterval.PredictionInterval.obj": {"fullname": "mlsauce.predictioninterval.PredictionInterval.obj", "modulename": "mlsauce.predictioninterval", "qualname": "PredictionInterval.obj", "kind": "variable", "doc": "

\n"}, "mlsauce.predictioninterval.PredictionInterval.method": {"fullname": "mlsauce.predictioninterval.PredictionInterval.method", "modulename": "mlsauce.predictioninterval", "qualname": "PredictionInterval.method", "kind": "variable", "doc": "

\n"}, "mlsauce.predictioninterval.PredictionInterval.level": {"fullname": "mlsauce.predictioninterval.PredictionInterval.level", "modulename": "mlsauce.predictioninterval", "qualname": "PredictionInterval.level", "kind": "variable", "doc": "

\n"}, "mlsauce.predictioninterval.PredictionInterval.type_pi": {"fullname": "mlsauce.predictioninterval.PredictionInterval.type_pi", "modulename": "mlsauce.predictioninterval", "qualname": "PredictionInterval.type_pi", "kind": "variable", "doc": "

\n"}, "mlsauce.predictioninterval.PredictionInterval.replications": {"fullname": "mlsauce.predictioninterval.PredictionInterval.replications", "modulename": "mlsauce.predictioninterval", "qualname": "PredictionInterval.replications", "kind": "variable", "doc": "

\n"}, "mlsauce.predictioninterval.PredictionInterval.kernel": {"fullname": "mlsauce.predictioninterval.PredictionInterval.kernel", "modulename": "mlsauce.predictioninterval", "qualname": "PredictionInterval.kernel", "kind": "variable", "doc": "

\n"}, "mlsauce.predictioninterval.PredictionInterval.agg": {"fullname": "mlsauce.predictioninterval.PredictionInterval.agg", "modulename": "mlsauce.predictioninterval", "qualname": "PredictionInterval.agg", "kind": "variable", "doc": "

\n"}, "mlsauce.predictioninterval.PredictionInterval.seed": {"fullname": "mlsauce.predictioninterval.PredictionInterval.seed", "modulename": "mlsauce.predictioninterval", "qualname": "PredictionInterval.seed", "kind": "variable", "doc": "

\n"}, "mlsauce.predictioninterval.PredictionInterval.alpha_": {"fullname": "mlsauce.predictioninterval.PredictionInterval.alpha_", "modulename": "mlsauce.predictioninterval", "qualname": "PredictionInterval.alpha_", "kind": "variable", "doc": "

\n"}, "mlsauce.predictioninterval.PredictionInterval.quantile_": {"fullname": "mlsauce.predictioninterval.PredictionInterval.quantile_", "modulename": "mlsauce.predictioninterval", "qualname": "PredictionInterval.quantile_", "kind": "variable", "doc": "

\n"}, "mlsauce.predictioninterval.PredictionInterval.icp_": {"fullname": "mlsauce.predictioninterval.PredictionInterval.icp_", "modulename": "mlsauce.predictioninterval", "qualname": "PredictionInterval.icp_", "kind": "variable", "doc": "

\n"}, "mlsauce.predictioninterval.PredictionInterval.calibrated_residuals_": {"fullname": "mlsauce.predictioninterval.PredictionInterval.calibrated_residuals_", "modulename": "mlsauce.predictioninterval", "qualname": "PredictionInterval.calibrated_residuals_", "kind": "variable", "doc": "

\n"}, "mlsauce.predictioninterval.PredictionInterval.scaled_calibrated_residuals_": {"fullname": "mlsauce.predictioninterval.PredictionInterval.scaled_calibrated_residuals_", "modulename": "mlsauce.predictioninterval", "qualname": "PredictionInterval.scaled_calibrated_residuals_", "kind": "variable", "doc": "

\n"}, "mlsauce.predictioninterval.PredictionInterval.calibrated_residuals_scaler_": {"fullname": "mlsauce.predictioninterval.PredictionInterval.calibrated_residuals_scaler_", "modulename": "mlsauce.predictioninterval", "qualname": "PredictionInterval.calibrated_residuals_scaler_", "kind": "variable", "doc": "

\n"}, "mlsauce.predictioninterval.PredictionInterval.kde_": {"fullname": "mlsauce.predictioninterval.PredictionInterval.kde_", "modulename": "mlsauce.predictioninterval", "qualname": "PredictionInterval.kde_", "kind": "variable", "doc": "

\n"}, "mlsauce.predictioninterval.PredictionInterval.fit": {"fullname": "mlsauce.predictioninterval.PredictionInterval.fit", "modulename": "mlsauce.predictioninterval", "qualname": "PredictionInterval.fit", "kind": "function", "doc": "

Fit the method to training data (X, y).

\n\n

Args:

\n\n
X: array-like, shape = [n_samples, n_features];\n    Training set vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\ny: array-like, shape = [n_samples, ]; Target values.\n
\n", "signature": "(self, X, y):", "funcdef": "def"}, "mlsauce.predictioninterval.PredictionInterval.predict": {"fullname": "mlsauce.predictioninterval.PredictionInterval.predict", "modulename": "mlsauce.predictioninterval", "qualname": "PredictionInterval.predict", "kind": "function", "doc": "

Obtain predictions and prediction intervals

\n\n

Args:

\n\n
X: array-like, shape = [n_samples, n_features];\n    Testing set vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\nreturn_pi: boolean\n    Whether the prediction interval is returned or not.\n    Default is False, for compatibility with other _estimators_.\n    If True, a tuple containing the predictions + lower and upper\n    bounds is returned.\n
\n", "signature": "(self, X, return_pi=False):", "funcdef": "def"}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"fullname": "mlsauce.predictioninterval.PredictionInterval.set_predict_request", "modulename": "mlsauce.predictioninterval", "qualname": "PredictionInterval.set_predict_request", "kind": "function", "doc": "

A descriptor for request methods.

\n\n

New in version 1.3.

\n\n

Parameters

\n\n

name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

\n\n

keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

\n\n

validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

\n\n

Notes

\n\n

This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

\n\n

References

\n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"fullname": "mlsauce.predictioninterval.PredictionInterval.set_score_request", "modulename": "mlsauce.predictioninterval", "qualname": "PredictionInterval.set_score_request", "kind": "function", "doc": "

A descriptor for request methods.

\n\n

New in version 1.3.

\n\n

Parameters

\n\n

name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

\n\n

keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

\n\n

validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

\n\n

Notes

\n\n

This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

\n\n

References

\n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.ridge": {"fullname": "mlsauce.ridge", "modulename": "mlsauce.ridge", "kind": "module", "doc": "

\n"}, "mlsauce.ridge.RidgeRegressor": {"fullname": "mlsauce.ridge.RidgeRegressor", "modulename": "mlsauce.ridge", "qualname": "RidgeRegressor", "kind": "class", "doc": "

Ridge.

\n\n

Attributes:

\n\n
reg_lambda: float\n    regularization parameter.\n\nbackend: str\n    type of backend; must be in ('cpu', 'gpu', 'tpu')\n
\n", "bases": "sklearn.base.BaseEstimator, sklearn.base.RegressorMixin"}, "mlsauce.ridge.RidgeRegressor.__init__": {"fullname": "mlsauce.ridge.RidgeRegressor.__init__", "modulename": "mlsauce.ridge", "qualname": "RidgeRegressor.__init__", "kind": "function", "doc": "

\n", "signature": "(reg_lambda=0.1, backend='cpu')"}, "mlsauce.ridge.RidgeRegressor.reg_lambda": {"fullname": "mlsauce.ridge.RidgeRegressor.reg_lambda", "modulename": "mlsauce.ridge", "qualname": "RidgeRegressor.reg_lambda", "kind": "variable", "doc": "

\n"}, "mlsauce.ridge.RidgeRegressor.backend": {"fullname": "mlsauce.ridge.RidgeRegressor.backend", "modulename": "mlsauce.ridge", "qualname": "RidgeRegressor.backend", "kind": "variable", "doc": "

\n"}, "mlsauce.ridge.RidgeRegressor.fit": {"fullname": "mlsauce.ridge.RidgeRegressor.fit", "modulename": "mlsauce.ridge", "qualname": "RidgeRegressor.fit", "kind": "function", "doc": "

Fit matrixops (classifier) to training data (X, y)

\n\n

Args:

\n\n
X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\ny: array-like, shape = [n_samples]\n    Target values.\n\n**kwargs: additional parameters to be passed to self.cook_training_set.\n
\n\n

Returns:

\n\n
self: object.\n
\n", "signature": "(self, X, y, **kwargs):", "funcdef": "def"}, "mlsauce.ridge.RidgeRegressor.predict": {"fullname": "mlsauce.ridge.RidgeRegressor.predict", "modulename": "mlsauce.ridge", "qualname": "RidgeRegressor.predict", "kind": "function", "doc": "

Predict test data X.

\n\n

Args:

\n\n
X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\n**kwargs: additional parameters to be passed to `predict_proba`\n
\n\n

Returns:

\n\n
model predictions: {array-like}\n
\n", "signature": "(self, X, **kwargs):", "funcdef": "def"}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"fullname": "mlsauce.ridge.RidgeRegressor.set_score_request", "modulename": "mlsauce.ridge", "qualname": "RidgeRegressor.set_score_request", "kind": "function", "doc": "

A descriptor for request methods.

\n\n

New in version 1.3.

\n\n

Parameters

\n\n

name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

\n\n

keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

\n\n

validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

\n\n

Notes

\n\n

This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

\n\n

References

\n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.setup": {"fullname": "mlsauce.setup", "modulename": "mlsauce.setup", "kind": "module", "doc": "

\n"}, "mlsauce.stump": {"fullname": "mlsauce.stump", "modulename": "mlsauce.stump", "kind": "module", "doc": "

\n"}, "mlsauce.stump.StumpClassifier": {"fullname": "mlsauce.stump.StumpClassifier", "modulename": "mlsauce.stump", "qualname": "StumpClassifier", "kind": "class", "doc": "

Stump classifier.

\n\n

Attributes:

\n\n
bins: int\n    Number of histogram bins; as in numpy.histogram.\n
\n", "bases": "sklearn.base.BaseEstimator, sklearn.base.ClassifierMixin"}, "mlsauce.stump.StumpClassifier.__init__": {"fullname": "mlsauce.stump.StumpClassifier.__init__", "modulename": "mlsauce.stump", "qualname": "StumpClassifier.__init__", "kind": "function", "doc": "

\n", "signature": "(bins='auto')"}, "mlsauce.stump.StumpClassifier.bins": {"fullname": "mlsauce.stump.StumpClassifier.bins", "modulename": "mlsauce.stump", "qualname": "StumpClassifier.bins", "kind": "variable", "doc": "

\n"}, "mlsauce.stump.StumpClassifier.obj": {"fullname": "mlsauce.stump.StumpClassifier.obj", "modulename": "mlsauce.stump", "qualname": "StumpClassifier.obj", "kind": "variable", "doc": "

\n"}, "mlsauce.stump.StumpClassifier.fit": {"fullname": "mlsauce.stump.StumpClassifier.fit", "modulename": "mlsauce.stump", "qualname": "StumpClassifier.fit", "kind": "function", "doc": "

Fit Stump to training data (X, y)

\n\n

Args:

\n\n
X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\ny: array-like, shape = [n_samples]\n    Target values.\n\nsample_weight: array_like, shape = [n_samples]\n    Observations weights.\n
\n\n

Returns:

\n\n
self: object.\n
\n", "signature": "(self, X, y, sample_weight=None, **kwargs):", "funcdef": "def"}, "mlsauce.stump.StumpClassifier.predict": {"fullname": "mlsauce.stump.StumpClassifier.predict", "modulename": "mlsauce.stump", "qualname": "StumpClassifier.predict", "kind": "function", "doc": "

Predict test data X.

\n\n

Args:

\n\n
X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\n**kwargs: additional parameters to be passed to `predict_proba`\n
\n\n

Returns:

\n\n
model predictions: {array-like}\n
\n", "signature": "(self, X, **kwargs):", "funcdef": "def"}, "mlsauce.stump.StumpClassifier.predict_proba": {"fullname": "mlsauce.stump.StumpClassifier.predict_proba", "modulename": "mlsauce.stump", "qualname": "StumpClassifier.predict_proba", "kind": "function", "doc": "

Predict probabilities for test data X.

\n\n

Args:

\n\n
X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\n**kwargs: additional parameters to be passed to\n    self.cook_test_set\n
\n\n

Returns:

\n\n
probability estimates for test data: {array-like}\n
\n", "signature": "(self, X, **kwargs):", "funcdef": "def"}, "mlsauce.stump.StumpClassifier.set_fit_request": {"fullname": "mlsauce.stump.StumpClassifier.set_fit_request", "modulename": "mlsauce.stump", "qualname": "StumpClassifier.set_fit_request", "kind": "function", "doc": "

A descriptor for request methods.

\n\n

New in version 1.3.

\n\n

Parameters

\n\n

name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

\n\n

keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

\n\n

validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

\n\n

Notes

\n\n

This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

\n\n

References

\n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.stump.StumpClassifier.set_score_request": {"fullname": "mlsauce.stump.StumpClassifier.set_score_request", "modulename": "mlsauce.stump", "qualname": "StumpClassifier.set_score_request", "kind": "function", "doc": "

A descriptor for request methods.

\n\n

New in version 1.3.

\n\n

Parameters

\n\n

name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

\n\n

keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

\n\n

validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

\n\n

Notes

\n\n

This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

\n\n

References

\n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.utils": {"fullname": "mlsauce.utils", "modulename": "mlsauce.utils", "kind": "module", "doc": "

\n"}, "mlsauce.utils.cluster": {"fullname": "mlsauce.utils.cluster", "modulename": "mlsauce.utils", "qualname": "cluster", "kind": "function", "doc": "

\n", "signature": "(\tX,\tn_clusters=None,\tmethod='kmeans',\ttype_scaling='standard',\ttraining=True,\tscaler=None,\tlabel_encoder=None,\tclusterer=None,\tseed=123):", "funcdef": "def"}, "mlsauce.utils.subsample": {"fullname": "mlsauce.utils.subsample", "modulename": "mlsauce.utils", "qualname": "subsample", "kind": "function", "doc": "

\n", "signature": "(y, row_sample=0.8, seed=123):", "funcdef": "def"}, "mlsauce.utils.merge_two_dicts": {"fullname": "mlsauce.utils.merge_two_dicts", "modulename": "mlsauce.utils", "qualname": "merge_two_dicts", "kind": "function", "doc": "

\n", "signature": "(x, y):", "funcdef": "def"}, "mlsauce.utils.flatten": {"fullname": "mlsauce.utils.flatten", "modulename": "mlsauce.utils", "qualname": "flatten", "kind": "function", "doc": "

\n", "signature": "(l):", "funcdef": "def"}, "mlsauce.utils.is_float": {"fullname": "mlsauce.utils.is_float", "modulename": "mlsauce.utils", "qualname": "is_float", "kind": "function", "doc": "

\n", "signature": "(x):", "funcdef": "def"}, "mlsauce.utils.is_factor": {"fullname": "mlsauce.utils.is_factor", "modulename": "mlsauce.utils", "qualname": "is_factor", "kind": "function", "doc": "

\n", "signature": "(y):", "funcdef": "def"}, "mlsauce.utils.Progbar": {"fullname": "mlsauce.utils.Progbar", "modulename": "mlsauce.utils", "qualname": "Progbar", "kind": "class", "doc": "

Displays a progress bar.

\n\n

Arguments

\n\n
target: Total number of steps expected, None if unknown.\nwidth: Progress bar width on screen.\nverbose: Verbosity mode, 0 (silent), 1 (verbose), 2 (semi-verbose)\nstateful_metrics: Iterable of string names of metrics that\n    should *not* be averaged over time. Metrics in this list\n    will be displayed as-is. All others will be averaged\n    by the progbar before display.\ninterval: Minimum visual progress update interval (in seconds).\n
\n"}, "mlsauce.utils.Progbar.__init__": {"fullname": "mlsauce.utils.Progbar.__init__", "modulename": "mlsauce.utils", "qualname": "Progbar.__init__", "kind": "function", "doc": "

\n", "signature": "(target, width=30, verbose=1, interval=0.05, stateful_metrics=None)"}, "mlsauce.utils.Progbar.target": {"fullname": "mlsauce.utils.Progbar.target", "modulename": "mlsauce.utils", "qualname": "Progbar.target", "kind": "variable", "doc": "

\n"}, "mlsauce.utils.Progbar.width": {"fullname": "mlsauce.utils.Progbar.width", "modulename": "mlsauce.utils", "qualname": "Progbar.width", "kind": "variable", "doc": "

\n"}, "mlsauce.utils.Progbar.verbose": {"fullname": "mlsauce.utils.Progbar.verbose", "modulename": "mlsauce.utils", "qualname": "Progbar.verbose", "kind": "variable", "doc": "

\n"}, "mlsauce.utils.Progbar.interval": {"fullname": "mlsauce.utils.Progbar.interval", "modulename": "mlsauce.utils", "qualname": "Progbar.interval", "kind": "variable", "doc": "

\n"}, "mlsauce.utils.Progbar.update": {"fullname": "mlsauce.utils.Progbar.update", "modulename": "mlsauce.utils", "qualname": "Progbar.update", "kind": "function", "doc": "

Updates the progress bar.

\n\n

Arguments

\n\n
current: Index of current step.\nvalues: List of tuples:\n    `(name, value_for_last_step)`.\n    If `name` is in `stateful_metrics`,\n    `value_for_last_step` will be displayed as-is.\n    Else, an average of the metric over time will be displayed.\n
\n", "signature": "(self, current, values=None):", "funcdef": "def"}, "mlsauce.utils.Progbar.add": {"fullname": "mlsauce.utils.Progbar.add", "modulename": "mlsauce.utils", "qualname": "Progbar.add", "kind": "function", "doc": "

\n", "signature": "(self, n, values=None):", "funcdef": "def"}, "mlsauce.utils.get_beta": {"fullname": "mlsauce.utils.get_beta", "modulename": "mlsauce.utils.get_beta", "kind": "module", "doc": "

\n"}, "mlsauce.utils.check_and_install": {"fullname": "mlsauce.utils.check_and_install", "modulename": "mlsauce.utils", "qualname": "check_and_install", "kind": "function", "doc": "

Check if a package is installed; if not, install it.

\n", "signature": "(package_name):", "funcdef": "def"}, "mlsauce.utils.get_beta.get_beta": {"fullname": "mlsauce.utils.get_beta.get_beta", "modulename": "mlsauce.utils.get_beta", "qualname": "get_beta", "kind": "function", "doc": "

\n", "signature": "(X, y):", "funcdef": "def"}}, "docInfo": {"mlsauce": {"qualname": 0, "fullname": 1, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.AdaOpt": {"qualname": 1, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 6, "doc": 277}, "mlsauce.AdaOpt.__init__": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 245, "bases": 0, "doc": 3}, "mlsauce.AdaOpt.n_iterations": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.AdaOpt.learning_rate": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.AdaOpt.reg_lambda": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.AdaOpt.reg_alpha": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.AdaOpt.eta": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.AdaOpt.gamma": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.AdaOpt.k": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.AdaOpt.tolerance": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.AdaOpt.n_clusters": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.AdaOpt.batch_size": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.AdaOpt.row_sample": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.AdaOpt.type_dist": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.AdaOpt.n_jobs": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.AdaOpt.cache": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.AdaOpt.verbose": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.AdaOpt.n_clusters_input": {"qualname": 4, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.AdaOpt.clustering_method": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.AdaOpt.cluster_scaling": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.AdaOpt.seed": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.AdaOpt.fit": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 28, "bases": 0, "doc": 73}, "mlsauce.AdaOpt.predict": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 23, "bases": 0, "doc": 62}, "mlsauce.AdaOpt.predict_proba": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 23, "bases": 0, "doc": 69}, "mlsauce.AdaOpt.set_score_request": {"qualname": 4, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.LSBoostClassifier": {"qualname": 1, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 6, "doc": 980}, "mlsauce.LSBoostClassifier.__init__": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 276, "bases": 0, "doc": 3}, "mlsauce.LSBoostClassifier.base_model": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostClassifier.n_estimators": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostClassifier.learning_rate": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostClassifier.n_hidden_features": {"qualname": 4, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostClassifier.reg_lambda": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostClassifier.alpha": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostClassifier.row_sample": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostClassifier.col_sample": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostClassifier.dropout": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostClassifier.tolerance": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostClassifier.direct_link": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostClassifier.verbose": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostClassifier.seed": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostClassifier.backend": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostClassifier.obj": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostClassifier.solver": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostClassifier.activation": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostClassifier.n_clusters": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostClassifier.clustering_method": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostClassifier.cluster_scaling": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostClassifier.degree": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostClassifier.poly_": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostClassifier.weights_distr": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostClassifier.fit": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 28, "bases": 0, "doc": 74}, "mlsauce.LSBoostClassifier.predict": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 23, "bases": 0, "doc": 62}, "mlsauce.LSBoostClassifier.predict_proba": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 23, "bases": 0, "doc": 69}, "mlsauce.LSBoostClassifier.set_score_request": {"qualname": 4, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.GenericBoostingClassifier": {"qualname": 1, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 5, "doc": 264}, "mlsauce.GenericBoostingClassifier.__init__": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 270, "bases": 0, "doc": 3}, "mlsauce.GenericBoostingClassifier.base_model": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.GenericBoostingClassifier.set_score_request": {"qualname": 4, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.GenericBoostingRegressor": {"qualname": 1, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 5, "doc": 303}, "mlsauce.GenericBoostingRegressor.__init__": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 304, "bases": 0, "doc": 3}, "mlsauce.GenericBoostingRegressor.base_model": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"qualname": 4, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.GenericBoostingRegressor.set_score_request": {"qualname": 4, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.StumpClassifier": {"qualname": 1, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 6, "doc": 23}, "mlsauce.StumpClassifier.__init__": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 3}, "mlsauce.StumpClassifier.bins": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.StumpClassifier.obj": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.StumpClassifier.fit": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 39, "bases": 0, "doc": 71}, "mlsauce.StumpClassifier.predict": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 23, "bases": 0, "doc": 62}, "mlsauce.StumpClassifier.predict_proba": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 23, "bases": 0, "doc": 69}, "mlsauce.StumpClassifier.set_fit_request": {"qualname": 4, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.StumpClassifier.set_score_request": {"qualname": 4, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.ElasticNetRegressor": {"qualname": 1, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 6, "doc": 44}, "mlsauce.ElasticNetRegressor.__init__": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 41, "bases": 0, "doc": 3}, "mlsauce.ElasticNetRegressor.reg_lambda": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.ElasticNetRegressor.alpha": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.ElasticNetRegressor.backend": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.ElasticNetRegressor.fit": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 28, "bases": 0, "doc": 74}, "mlsauce.ElasticNetRegressor.predict": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 23, "bases": 0, "doc": 62}, "mlsauce.ElasticNetRegressor.set_score_request": {"qualname": 4, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.LassoRegressor": {"qualname": 1, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 6, "doc": 48}, "mlsauce.LassoRegressor.__init__": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 52, "bases": 0, "doc": 3}, "mlsauce.LassoRegressor.reg_lambda": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LassoRegressor.max_iter": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LassoRegressor.tol": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LassoRegressor.backend": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LassoRegressor.fit": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 28, "bases": 0, "doc": 74}, "mlsauce.LassoRegressor.predict": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 23, "bases": 0, "doc": 62}, "mlsauce.LassoRegressor.set_score_request": {"qualname": 4, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.LSBoostRegressor": {"qualname": 1, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 6, "doc": 1176}, "mlsauce.LSBoostRegressor.__init__": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 310, "bases": 0, "doc": 3}, "mlsauce.LSBoostRegressor.base_model": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostRegressor.n_estimators": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostRegressor.learning_rate": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostRegressor.n_hidden_features": {"qualname": 4, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostRegressor.reg_lambda": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostRegressor.alpha": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostRegressor.row_sample": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostRegressor.col_sample": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostRegressor.dropout": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostRegressor.tolerance": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostRegressor.direct_link": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostRegressor.verbose": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostRegressor.seed": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostRegressor.backend": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostRegressor.obj": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostRegressor.solver": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostRegressor.activation": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostRegressor.type_pi": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostRegressor.replications": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostRegressor.kernel": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostRegressor.n_clusters": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostRegressor.clustering_method": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostRegressor.cluster_scaling": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostRegressor.degree": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostRegressor.poly_": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostRegressor.weights_distr": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostRegressor.fit": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 28, "bases": 0, "doc": 74}, "mlsauce.LSBoostRegressor.predict": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 43, "bases": 0, "doc": 89}, "mlsauce.LSBoostRegressor.set_predict_request": {"qualname": 4, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.LSBoostRegressor.set_score_request": {"qualname": 4, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.RidgeRegressor": {"qualname": 1, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 6, "doc": 28}, "mlsauce.RidgeRegressor.__init__": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 30, "bases": 0, "doc": 3}, "mlsauce.RidgeRegressor.reg_lambda": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.RidgeRegressor.backend": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.RidgeRegressor.fit": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 28, "bases": 0, "doc": 74}, "mlsauce.RidgeRegressor.predict": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 23, "bases": 0, "doc": 62}, "mlsauce.RidgeRegressor.set_score_request": {"qualname": 4, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.LazyBoostingClassifier": {"qualname": 1, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 3, "doc": 673}, "mlsauce.LazyBoostingClassifier.__init__": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 116, "bases": 0, "doc": 3}, "mlsauce.LazyBoostingClassifier.verbose": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LazyBoostingClassifier.ignore_warnings": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LazyBoostingClassifier.custom_metric": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LazyBoostingClassifier.predictions": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LazyBoostingClassifier.sort_by": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LazyBoostingClassifier.models_": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LazyBoostingClassifier.best_model_": {"qualname": 4, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LazyBoostingClassifier.random_state": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LazyBoostingClassifier.estimators": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LazyBoostingClassifier.preprocess": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LazyBoostingClassifier.n_jobs": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LazyBoostingClassifier.fit": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 42, "bases": 0, "doc": 152}, "mlsauce.LazyBoostingClassifier.get_best_model": {"qualname": 4, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 38}, "mlsauce.LazyBoostingClassifier.provide_models": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 35, "bases": 0, "doc": 146}, "mlsauce.LazyBoostingRegressor": {"qualname": 1, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 3, "doc": 607}, "mlsauce.LazyBoostingRegressor.__init__": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 116, "bases": 0, "doc": 3}, "mlsauce.LazyBoostingRegressor.verbose": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LazyBoostingRegressor.ignore_warnings": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LazyBoostingRegressor.custom_metric": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LazyBoostingRegressor.predictions": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LazyBoostingRegressor.sort_by": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LazyBoostingRegressor.models_": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LazyBoostingRegressor.best_model_": {"qualname": 4, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LazyBoostingRegressor.random_state": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LazyBoostingRegressor.estimators": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LazyBoostingRegressor.preprocess": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LazyBoostingRegressor.n_jobs": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LazyBoostingRegressor.fit": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 42, "bases": 0, "doc": 158}, "mlsauce.LazyBoostingRegressor.get_best_model": {"qualname": 4, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 38}, "mlsauce.LazyBoostingRegressor.provide_models": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 35, "bases": 0, "doc": 147}, "mlsauce.download": {"qualname": 1, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 62, "bases": 0, "doc": 3}, "mlsauce.get_config": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 7, "bases": 0, "doc": 57}, "mlsauce.set_config": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 54, "bases": 0, "doc": 273}, "mlsauce.config_context": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 14, "bases": 0, "doc": 486}, "mlsauce.adaopt": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.adaopt.AdaOpt": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 6, "doc": 277}, "mlsauce.adaopt.AdaOpt.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 245, "bases": 0, "doc": 3}, "mlsauce.adaopt.AdaOpt.n_iterations": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.adaopt.AdaOpt.learning_rate": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.adaopt.AdaOpt.reg_lambda": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.adaopt.AdaOpt.reg_alpha": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.adaopt.AdaOpt.eta": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.adaopt.AdaOpt.gamma": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.adaopt.AdaOpt.k": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.adaopt.AdaOpt.tolerance": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.adaopt.AdaOpt.n_clusters": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.adaopt.AdaOpt.batch_size": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.adaopt.AdaOpt.row_sample": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.adaopt.AdaOpt.type_dist": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.adaopt.AdaOpt.n_jobs": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.adaopt.AdaOpt.cache": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.adaopt.AdaOpt.verbose": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.adaopt.AdaOpt.n_clusters_input": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.adaopt.AdaOpt.clustering_method": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.adaopt.AdaOpt.cluster_scaling": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.adaopt.AdaOpt.seed": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.adaopt.AdaOpt.fit": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 28, "bases": 0, "doc": 73}, "mlsauce.adaopt.AdaOpt.predict": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 23, "bases": 0, "doc": 62}, "mlsauce.adaopt.AdaOpt.predict_proba": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 23, "bases": 0, "doc": 69}, "mlsauce.adaopt.AdaOpt.set_score_request": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.booster": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostClassifier": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 6, "doc": 980}, "mlsauce.booster.LSBoostClassifier.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 276, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostClassifier.base_model": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostClassifier.n_estimators": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostClassifier.learning_rate": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostClassifier.n_hidden_features": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostClassifier.reg_lambda": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostClassifier.alpha": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostClassifier.row_sample": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostClassifier.col_sample": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostClassifier.dropout": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostClassifier.tolerance": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostClassifier.direct_link": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostClassifier.verbose": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostClassifier.seed": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostClassifier.backend": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostClassifier.obj": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostClassifier.solver": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostClassifier.activation": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostClassifier.n_clusters": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostClassifier.clustering_method": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostClassifier.cluster_scaling": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostClassifier.degree": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostClassifier.poly_": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostClassifier.weights_distr": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostClassifier.fit": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 28, "bases": 0, "doc": 74}, "mlsauce.booster.LSBoostClassifier.predict": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 23, "bases": 0, "doc": 62}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 23, "bases": 0, "doc": 69}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.booster.LSBoostRegressor": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 6, "doc": 1176}, "mlsauce.booster.LSBoostRegressor.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 310, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostRegressor.base_model": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostRegressor.n_estimators": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostRegressor.learning_rate": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostRegressor.n_hidden_features": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostRegressor.reg_lambda": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostRegressor.alpha": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostRegressor.row_sample": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostRegressor.col_sample": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostRegressor.dropout": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostRegressor.tolerance": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostRegressor.direct_link": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostRegressor.verbose": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostRegressor.seed": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostRegressor.backend": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostRegressor.obj": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostRegressor.solver": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostRegressor.activation": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostRegressor.type_pi": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostRegressor.replications": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostRegressor.kernel": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostRegressor.n_clusters": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostRegressor.clustering_method": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostRegressor.cluster_scaling": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostRegressor.degree": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostRegressor.poly_": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostRegressor.weights_distr": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostRegressor.fit": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 28, "bases": 0, "doc": 74}, "mlsauce.booster.LSBoostRegressor.predict": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 43, "bases": 0, "doc": 89}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.booster.GenericBoostingClassifier": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 5, "doc": 264}, "mlsauce.booster.GenericBoostingClassifier.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 270, "bases": 0, "doc": 3}, "mlsauce.booster.GenericBoostingClassifier.base_model": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.booster.GenericBoostingRegressor": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 5, "doc": 303}, "mlsauce.booster.GenericBoostingRegressor.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 304, "bases": 0, "doc": 3}, "mlsauce.booster.GenericBoostingRegressor.base_model": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.datasets": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.datasets.dowload": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.datasets.dowload.download": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 62, "bases": 0, "doc": 3}, "mlsauce.demo": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.elasticnet": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.elasticnet.ElasticNetRegressor": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 6, "doc": 44}, "mlsauce.elasticnet.ElasticNetRegressor.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 41, "bases": 0, "doc": 3}, "mlsauce.elasticnet.ElasticNetRegressor.reg_lambda": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.elasticnet.ElasticNetRegressor.alpha": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.elasticnet.ElasticNetRegressor.backend": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 28, "bases": 0, "doc": 74}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 23, "bases": 0, "doc": 62}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.lasso": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.lasso.LassoRegressor": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 6, "doc": 48}, "mlsauce.lasso.LassoRegressor.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 52, "bases": 0, "doc": 3}, "mlsauce.lasso.LassoRegressor.reg_lambda": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.lasso.LassoRegressor.max_iter": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.lasso.LassoRegressor.tol": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.lasso.LassoRegressor.backend": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.lasso.LassoRegressor.fit": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 28, "bases": 0, "doc": 74}, "mlsauce.lasso.LassoRegressor.predict": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 23, "bases": 0, "doc": 62}, "mlsauce.lasso.LassoRegressor.set_score_request": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.lazybooster": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.lazybooster.LazyBoostingClassifier": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 3, "doc": 673}, "mlsauce.lazybooster.LazyBoostingClassifier.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 116, "bases": 0, "doc": 3}, "mlsauce.lazybooster.LazyBoostingClassifier.verbose": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.lazybooster.LazyBoostingClassifier.ignore_warnings": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.lazybooster.LazyBoostingClassifier.custom_metric": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.lazybooster.LazyBoostingClassifier.predictions": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.lazybooster.LazyBoostingClassifier.sort_by": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.lazybooster.LazyBoostingClassifier.models_": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.lazybooster.LazyBoostingClassifier.best_model_": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.lazybooster.LazyBoostingClassifier.random_state": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.lazybooster.LazyBoostingClassifier.estimators": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.lazybooster.LazyBoostingClassifier.preprocess": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.lazybooster.LazyBoostingClassifier.n_jobs": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.lazybooster.LazyBoostingClassifier.fit": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 42, "bases": 0, "doc": 152}, "mlsauce.lazybooster.LazyBoostingClassifier.get_best_model": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 38}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 35, "bases": 0, "doc": 146}, "mlsauce.lazybooster.LazyBoostingRegressor": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 3, "doc": 607}, "mlsauce.lazybooster.LazyBoostingRegressor.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 116, "bases": 0, "doc": 3}, "mlsauce.lazybooster.LazyBoostingRegressor.verbose": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.lazybooster.LazyBoostingRegressor.ignore_warnings": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.lazybooster.LazyBoostingRegressor.custom_metric": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.lazybooster.LazyBoostingRegressor.predictions": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.lazybooster.LazyBoostingRegressor.sort_by": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.lazybooster.LazyBoostingRegressor.models_": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.lazybooster.LazyBoostingRegressor.best_model_": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.lazybooster.LazyBoostingRegressor.random_state": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.lazybooster.LazyBoostingRegressor.estimators": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.lazybooster.LazyBoostingRegressor.preprocess": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.lazybooster.LazyBoostingRegressor.n_jobs": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.lazybooster.LazyBoostingRegressor.fit": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 42, "bases": 0, "doc": 158}, "mlsauce.lazybooster.LazyBoostingRegressor.get_best_model": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 38}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 35, "bases": 0, "doc": 147}, "mlsauce.nonconformist": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.nonconformist.AbsErrorErrFunc": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 4, "doc": 32}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 65}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 69}, "mlsauce.nonconformist.QuantileRegErrFunc": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 4, "doc": 30}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 65}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 69}, "mlsauce.nonconformist.RegressorAdapter": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 4, "doc": 675}, "mlsauce.nonconformist.RegressorAdapter.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 3}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.nonconformist.RegressorNc": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 4, "doc": 102}, "mlsauce.nonconformist.RegressorNc.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 68, "bases": 0, "doc": 3}, "mlsauce.nonconformist.RegressorNc.predict": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 31, "bases": 0, "doc": 193}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.nonconformist.RegressorNormalizer": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 4, "doc": 675}, "mlsauce.nonconformist.RegressorNormalizer.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 22, "bases": 0, "doc": 3}, "mlsauce.nonconformist.RegressorNormalizer.base_model": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.nonconformist.RegressorNormalizer.normalizer_model": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.nonconformist.RegressorNormalizer.err_func": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.nonconformist.RegressorNormalizer.fit": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 3}, "mlsauce.nonconformist.RegressorNormalizer.score": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 3}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.nonconformist.IcpRegressor": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 8, "doc": 748}, "mlsauce.nonconformist.IcpRegressor.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 3}, "mlsauce.nonconformist.IcpRegressor.predict": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 161}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.predictioninterval": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.predictioninterval.PredictionInterval": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 6, "doc": 100}, "mlsauce.predictioninterval.PredictionInterval.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 100, "bases": 0, "doc": 3}, "mlsauce.predictioninterval.PredictionInterval.obj": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.predictioninterval.PredictionInterval.method": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.predictioninterval.PredictionInterval.level": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.predictioninterval.PredictionInterval.type_pi": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.predictioninterval.PredictionInterval.replications": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.predictioninterval.PredictionInterval.kernel": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.predictioninterval.PredictionInterval.agg": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.predictioninterval.PredictionInterval.seed": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.predictioninterval.PredictionInterval.alpha_": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.predictioninterval.PredictionInterval.quantile_": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.predictioninterval.PredictionInterval.icp_": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.predictioninterval.PredictionInterval.calibrated_residuals_": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.predictioninterval.PredictionInterval.scaled_calibrated_residuals_": {"qualname": 5, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.predictioninterval.PredictionInterval.calibrated_residuals_scaler_": {"qualname": 5, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.predictioninterval.PredictionInterval.kde_": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.predictioninterval.PredictionInterval.fit": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 57}, "mlsauce.predictioninterval.PredictionInterval.predict": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 27, "bases": 0, "doc": 75}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.ridge": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.ridge.RidgeRegressor": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 6, "doc": 28}, "mlsauce.ridge.RidgeRegressor.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 30, "bases": 0, "doc": 3}, "mlsauce.ridge.RidgeRegressor.reg_lambda": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.ridge.RidgeRegressor.backend": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.ridge.RidgeRegressor.fit": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 28, "bases": 0, "doc": 74}, "mlsauce.ridge.RidgeRegressor.predict": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 23, "bases": 0, "doc": 62}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.setup": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.stump": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.stump.StumpClassifier": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 6, "doc": 23}, "mlsauce.stump.StumpClassifier.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 3}, "mlsauce.stump.StumpClassifier.bins": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.stump.StumpClassifier.obj": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.stump.StumpClassifier.fit": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 39, "bases": 0, "doc": 71}, "mlsauce.stump.StumpClassifier.predict": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 23, "bases": 0, "doc": 62}, "mlsauce.stump.StumpClassifier.predict_proba": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 23, "bases": 0, "doc": 69}, "mlsauce.stump.StumpClassifier.set_fit_request": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.stump.StumpClassifier.set_score_request": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.utils": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.utils.cluster": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 111, "bases": 0, "doc": 3}, "mlsauce.utils.subsample": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 33, "bases": 0, "doc": 3}, "mlsauce.utils.merge_two_dicts": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 3}, "mlsauce.utils.flatten": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "mlsauce.utils.is_float": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "mlsauce.utils.is_factor": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "mlsauce.utils.Progbar": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 82}, "mlsauce.utils.Progbar.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 51, "bases": 0, "doc": 3}, "mlsauce.utils.Progbar.target": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.utils.Progbar.width": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.utils.Progbar.verbose": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.utils.Progbar.interval": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.utils.Progbar.update": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 57}, "mlsauce.utils.Progbar.add": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 3}, "mlsauce.utils.get_beta": {"qualname": 0, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.utils.check_and_install": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 12, "bases": 0, "doc": 13}, "mlsauce.utils.get_beta.get_beta": {"qualname": 2, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 3}}, "length": 408, "save": true}, "index": {"qualname": {"root": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.LSBoostClassifier.poly_": {"tf": 1}, "mlsauce.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.StumpClassifier.__init__": {"tf": 1}, "mlsauce.ElasticNetRegressor.__init__": {"tf": 1}, "mlsauce.LassoRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.poly_": {"tf": 1}, "mlsauce.RidgeRegressor.__init__": {"tf": 1}, "mlsauce.LazyBoostingClassifier.__init__": {"tf": 1}, "mlsauce.LazyBoostingClassifier.models_": {"tf": 1}, "mlsauce.LazyBoostingClassifier.best_model_": {"tf": 1}, "mlsauce.LazyBoostingRegressor.__init__": {"tf": 1}, "mlsauce.LazyBoostingRegressor.models_": {"tf": 1}, "mlsauce.LazyBoostingRegressor.best_model_": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.poly_": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.poly_": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.__init__": {"tf": 1}, "mlsauce.lasso.LassoRegressor.__init__": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.__init__": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.models_": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.best_model_": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.__init__": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.models_": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.best_model_": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.__init__": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.__init__": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.__init__": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.alpha_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.quantile_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.icp_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.calibrated_residuals_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.scaled_calibrated_residuals_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.calibrated_residuals_scaler_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.kde_": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.__init__": {"tf": 1}, "mlsauce.stump.StumpClassifier.__init__": {"tf": 1}, "mlsauce.utils.Progbar.__init__": {"tf": 1}}, "df": 47, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.AdaOpt.n_iterations": {"tf": 1}, "mlsauce.AdaOpt.learning_rate": {"tf": 1}, "mlsauce.AdaOpt.reg_lambda": {"tf": 1}, "mlsauce.AdaOpt.reg_alpha": {"tf": 1}, "mlsauce.AdaOpt.eta": {"tf": 1}, "mlsauce.AdaOpt.gamma": {"tf": 1}, "mlsauce.AdaOpt.k": {"tf": 1}, "mlsauce.AdaOpt.tolerance": {"tf": 1}, "mlsauce.AdaOpt.n_clusters": {"tf": 1}, "mlsauce.AdaOpt.batch_size": {"tf": 1}, "mlsauce.AdaOpt.row_sample": {"tf": 1}, "mlsauce.AdaOpt.type_dist": {"tf": 1}, "mlsauce.AdaOpt.n_jobs": {"tf": 1}, "mlsauce.AdaOpt.cache": {"tf": 1}, "mlsauce.AdaOpt.verbose": {"tf": 1}, "mlsauce.AdaOpt.n_clusters_input": {"tf": 1}, "mlsauce.AdaOpt.clustering_method": {"tf": 1}, "mlsauce.AdaOpt.cluster_scaling": {"tf": 1}, "mlsauce.AdaOpt.seed": {"tf": 1}, "mlsauce.AdaOpt.fit": {"tf": 1}, "mlsauce.AdaOpt.predict": {"tf": 1}, "mlsauce.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.n_iterations": {"tf": 1}, "mlsauce.adaopt.AdaOpt.learning_rate": {"tf": 1}, "mlsauce.adaopt.AdaOpt.reg_lambda": {"tf": 1}, "mlsauce.adaopt.AdaOpt.reg_alpha": {"tf": 1}, "mlsauce.adaopt.AdaOpt.eta": {"tf": 1}, "mlsauce.adaopt.AdaOpt.gamma": {"tf": 1}, "mlsauce.adaopt.AdaOpt.k": {"tf": 1}, "mlsauce.adaopt.AdaOpt.tolerance": {"tf": 1}, "mlsauce.adaopt.AdaOpt.n_clusters": {"tf": 1}, "mlsauce.adaopt.AdaOpt.batch_size": {"tf": 1}, "mlsauce.adaopt.AdaOpt.row_sample": {"tf": 1}, "mlsauce.adaopt.AdaOpt.type_dist": {"tf": 1}, "mlsauce.adaopt.AdaOpt.n_jobs": {"tf": 1}, "mlsauce.adaopt.AdaOpt.cache": {"tf": 1}, "mlsauce.adaopt.AdaOpt.verbose": {"tf": 1}, "mlsauce.adaopt.AdaOpt.n_clusters_input": {"tf": 1}, "mlsauce.adaopt.AdaOpt.clustering_method": {"tf": 1}, "mlsauce.adaopt.AdaOpt.cluster_scaling": {"tf": 1}, "mlsauce.adaopt.AdaOpt.seed": {"tf": 1}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}}, "df": 50}}}}, "d": {"docs": {"mlsauce.utils.Progbar.add": {"tf": 1}}, "df": 1}}, "l": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {"mlsauce.AdaOpt.reg_alpha": {"tf": 1}, "mlsauce.LSBoostClassifier.alpha": {"tf": 1}, "mlsauce.ElasticNetRegressor.alpha": {"tf": 1}, "mlsauce.LSBoostRegressor.alpha": {"tf": 1}, "mlsauce.adaopt.AdaOpt.reg_alpha": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.alpha": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.alpha": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.alpha": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.alpha_": {"tf": 1}}, "df": 9}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.LSBoostClassifier.activation": {"tf": 1}, "mlsauce.LSBoostRegressor.activation": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.activation": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.activation": {"tf": 1}}, "df": 4}}}}}}}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}}, "df": 3}}}}}}}}}}}}}}, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}}, "df": 4}}}}, "g": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.predictioninterval.PredictionInterval.agg": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.utils.check_and_install": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.StumpClassifier.__init__": {"tf": 1}, "mlsauce.ElasticNetRegressor.__init__": {"tf": 1}, "mlsauce.LassoRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.RidgeRegressor.__init__": {"tf": 1}, "mlsauce.LazyBoostingClassifier.__init__": {"tf": 1}, "mlsauce.LazyBoostingRegressor.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.__init__": {"tf": 1}, "mlsauce.lasso.LassoRegressor.__init__": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.__init__": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.__init__": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.__init__": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.__init__": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.__init__": {"tf": 1}, "mlsauce.stump.StumpClassifier.__init__": {"tf": 1}, "mlsauce.utils.Progbar.__init__": {"tf": 1}}, "df": 28}}, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt.n_clusters_input": {"tf": 1}, "mlsauce.adaopt.AdaOpt.n_clusters_input": {"tf": 1}}, "df": 2}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}}, "df": 2}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.utils.Progbar.interval": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.utils.check_and_install": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.LassoRegressor.max_iter": {"tf": 1}, "mlsauce.lasso.LassoRegressor.max_iter": {"tf": 1}}, "df": 2, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.AdaOpt.n_iterations": {"tf": 1}, "mlsauce.adaopt.AdaOpt.n_iterations": {"tf": 1}}, "df": 2}}}}}}}}}, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.LazyBoostingClassifier.ignore_warnings": {"tf": 1}, "mlsauce.LazyBoostingRegressor.ignore_warnings": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.ignore_warnings": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.ignore_warnings": {"tf": 1}}, "df": 4}}}}}, "c": {"docs": {}, "df": 0, "p": {"docs": {"mlsauce.predictioninterval.PredictionInterval.icp_": {"tf": 1}}, "df": 1, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.__init__": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}}, "df": 5}}}}}}}}}}}, "s": {"docs": {"mlsauce.utils.is_float": {"tf": 1}, "mlsauce.utils.is_factor": {"tf": 1}}, "df": 2}}, "n": {"docs": {"mlsauce.AdaOpt.n_iterations": {"tf": 1}, "mlsauce.AdaOpt.n_clusters": {"tf": 1}, "mlsauce.AdaOpt.n_jobs": {"tf": 1}, "mlsauce.AdaOpt.n_clusters_input": {"tf": 1}, "mlsauce.LSBoostClassifier.n_estimators": {"tf": 1}, "mlsauce.LSBoostClassifier.n_hidden_features": {"tf": 1}, "mlsauce.LSBoostClassifier.n_clusters": {"tf": 1}, "mlsauce.LSBoostRegressor.n_estimators": {"tf": 1}, "mlsauce.LSBoostRegressor.n_hidden_features": {"tf": 1}, "mlsauce.LSBoostRegressor.n_clusters": {"tf": 1}, "mlsauce.LazyBoostingClassifier.n_jobs": {"tf": 1}, "mlsauce.LazyBoostingRegressor.n_jobs": {"tf": 1}, "mlsauce.adaopt.AdaOpt.n_iterations": {"tf": 1}, "mlsauce.adaopt.AdaOpt.n_clusters": {"tf": 1}, "mlsauce.adaopt.AdaOpt.n_jobs": {"tf": 1}, "mlsauce.adaopt.AdaOpt.n_clusters_input": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.n_estimators": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.n_hidden_features": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.n_clusters": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.n_estimators": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.n_hidden_features": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.n_clusters": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.n_jobs": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.n_jobs": {"tf": 1}}, "df": 24, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.nonconformist.RegressorNormalizer.normalizer_model": {"tf": 1}}, "df": 1}}}}}}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.AdaOpt.learning_rate": {"tf": 1}, "mlsauce.LSBoostClassifier.learning_rate": {"tf": 1}, "mlsauce.LSBoostRegressor.learning_rate": {"tf": 1}, "mlsauce.adaopt.AdaOpt.learning_rate": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.learning_rate": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.learning_rate": {"tf": 1}}, "df": 6}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.predictioninterval.PredictionInterval.level": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {"mlsauce.AdaOpt.reg_lambda": {"tf": 1}, "mlsauce.LSBoostClassifier.reg_lambda": {"tf": 1}, "mlsauce.ElasticNetRegressor.reg_lambda": {"tf": 1}, "mlsauce.LassoRegressor.reg_lambda": {"tf": 1}, "mlsauce.LSBoostRegressor.reg_lambda": {"tf": 1}, "mlsauce.RidgeRegressor.reg_lambda": {"tf": 1}, "mlsauce.adaopt.AdaOpt.reg_lambda": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.reg_lambda": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.reg_lambda": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.reg_lambda": {"tf": 1}, "mlsauce.lasso.LassoRegressor.reg_lambda": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.reg_lambda": {"tf": 1}}, "df": 12}}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.LassoRegressor": {"tf": 1}, "mlsauce.LassoRegressor.__init__": {"tf": 1}, "mlsauce.LassoRegressor.reg_lambda": {"tf": 1}, "mlsauce.LassoRegressor.max_iter": {"tf": 1}, "mlsauce.LassoRegressor.tol": {"tf": 1}, "mlsauce.LassoRegressor.backend": {"tf": 1}, "mlsauce.LassoRegressor.fit": {"tf": 1}, "mlsauce.LassoRegressor.predict": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor": {"tf": 1}, "mlsauce.lasso.LassoRegressor.__init__": {"tf": 1}, "mlsauce.lasso.LassoRegressor.reg_lambda": {"tf": 1}, "mlsauce.lasso.LassoRegressor.max_iter": {"tf": 1}, "mlsauce.lasso.LassoRegressor.tol": {"tf": 1}, "mlsauce.lasso.LassoRegressor.backend": {"tf": 1}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}}, "df": 18}}}}}}}}}}}}, "z": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingClassifier.__init__": {"tf": 1}, "mlsauce.LazyBoostingClassifier.verbose": {"tf": 1}, "mlsauce.LazyBoostingClassifier.ignore_warnings": {"tf": 1}, "mlsauce.LazyBoostingClassifier.custom_metric": {"tf": 1}, "mlsauce.LazyBoostingClassifier.predictions": {"tf": 1}, "mlsauce.LazyBoostingClassifier.sort_by": {"tf": 1}, "mlsauce.LazyBoostingClassifier.models_": {"tf": 1}, "mlsauce.LazyBoostingClassifier.best_model_": {"tf": 1}, "mlsauce.LazyBoostingClassifier.random_state": {"tf": 1}, "mlsauce.LazyBoostingClassifier.estimators": {"tf": 1}, "mlsauce.LazyBoostingClassifier.preprocess": {"tf": 1}, "mlsauce.LazyBoostingClassifier.n_jobs": {"tf": 1}, "mlsauce.LazyBoostingClassifier.fit": {"tf": 1}, "mlsauce.LazyBoostingClassifier.get_best_model": {"tf": 1}, "mlsauce.LazyBoostingClassifier.provide_models": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.__init__": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.verbose": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.ignore_warnings": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.custom_metric": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.predictions": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.sort_by": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.models_": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.best_model_": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.random_state": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.estimators": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.preprocess": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.n_jobs": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.fit": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.get_best_model": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 1}}, "df": 32}}}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.LazyBoostingRegressor.__init__": {"tf": 1}, "mlsauce.LazyBoostingRegressor.verbose": {"tf": 1}, "mlsauce.LazyBoostingRegressor.ignore_warnings": {"tf": 1}, "mlsauce.LazyBoostingRegressor.custom_metric": {"tf": 1}, "mlsauce.LazyBoostingRegressor.predictions": {"tf": 1}, "mlsauce.LazyBoostingRegressor.sort_by": {"tf": 1}, "mlsauce.LazyBoostingRegressor.models_": {"tf": 1}, "mlsauce.LazyBoostingRegressor.best_model_": {"tf": 1}, "mlsauce.LazyBoostingRegressor.random_state": {"tf": 1}, "mlsauce.LazyBoostingRegressor.estimators": {"tf": 1}, "mlsauce.LazyBoostingRegressor.preprocess": {"tf": 1}, "mlsauce.LazyBoostingRegressor.n_jobs": {"tf": 1}, "mlsauce.LazyBoostingRegressor.fit": {"tf": 1}, "mlsauce.LazyBoostingRegressor.get_best_model": {"tf": 1}, "mlsauce.LazyBoostingRegressor.provide_models": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.__init__": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.verbose": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.ignore_warnings": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.custom_metric": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.predictions": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.sort_by": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.models_": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.best_model_": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.random_state": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.estimators": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.preprocess": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.n_jobs": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.fit": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.get_best_model": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 1}}, "df": 32}}}}}}}}}}}}}}}}}}}}, "s": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.LSBoostClassifier.base_model": {"tf": 1}, "mlsauce.LSBoostClassifier.n_estimators": {"tf": 1}, "mlsauce.LSBoostClassifier.learning_rate": {"tf": 1}, "mlsauce.LSBoostClassifier.n_hidden_features": {"tf": 1}, "mlsauce.LSBoostClassifier.reg_lambda": {"tf": 1}, "mlsauce.LSBoostClassifier.alpha": {"tf": 1}, "mlsauce.LSBoostClassifier.row_sample": {"tf": 1}, "mlsauce.LSBoostClassifier.col_sample": {"tf": 1}, "mlsauce.LSBoostClassifier.dropout": {"tf": 1}, "mlsauce.LSBoostClassifier.tolerance": {"tf": 1}, "mlsauce.LSBoostClassifier.direct_link": {"tf": 1}, "mlsauce.LSBoostClassifier.verbose": {"tf": 1}, "mlsauce.LSBoostClassifier.seed": {"tf": 1}, "mlsauce.LSBoostClassifier.backend": {"tf": 1}, "mlsauce.LSBoostClassifier.obj": {"tf": 1}, "mlsauce.LSBoostClassifier.solver": {"tf": 1}, "mlsauce.LSBoostClassifier.activation": {"tf": 1}, "mlsauce.LSBoostClassifier.n_clusters": {"tf": 1}, "mlsauce.LSBoostClassifier.clustering_method": {"tf": 1}, "mlsauce.LSBoostClassifier.cluster_scaling": {"tf": 1}, "mlsauce.LSBoostClassifier.degree": {"tf": 1}, "mlsauce.LSBoostClassifier.poly_": {"tf": 1}, "mlsauce.LSBoostClassifier.weights_distr": {"tf": 1}, "mlsauce.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.base_model": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.n_estimators": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.learning_rate": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.n_hidden_features": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.reg_lambda": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.alpha": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.row_sample": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.col_sample": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.dropout": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.tolerance": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.direct_link": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.verbose": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.seed": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.backend": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.obj": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.solver": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.activation": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.n_clusters": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.clustering_method": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.cluster_scaling": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.degree": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.poly_": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.weights_distr": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}}, "df": 58}}}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.base_model": {"tf": 1}, "mlsauce.LSBoostRegressor.n_estimators": {"tf": 1}, "mlsauce.LSBoostRegressor.learning_rate": {"tf": 1}, "mlsauce.LSBoostRegressor.n_hidden_features": {"tf": 1}, "mlsauce.LSBoostRegressor.reg_lambda": {"tf": 1}, "mlsauce.LSBoostRegressor.alpha": {"tf": 1}, "mlsauce.LSBoostRegressor.row_sample": {"tf": 1}, "mlsauce.LSBoostRegressor.col_sample": {"tf": 1}, "mlsauce.LSBoostRegressor.dropout": {"tf": 1}, "mlsauce.LSBoostRegressor.tolerance": {"tf": 1}, "mlsauce.LSBoostRegressor.direct_link": {"tf": 1}, "mlsauce.LSBoostRegressor.verbose": {"tf": 1}, "mlsauce.LSBoostRegressor.seed": {"tf": 1}, "mlsauce.LSBoostRegressor.backend": {"tf": 1}, "mlsauce.LSBoostRegressor.obj": {"tf": 1}, "mlsauce.LSBoostRegressor.solver": {"tf": 1}, "mlsauce.LSBoostRegressor.activation": {"tf": 1}, "mlsauce.LSBoostRegressor.type_pi": {"tf": 1}, "mlsauce.LSBoostRegressor.replications": {"tf": 1}, "mlsauce.LSBoostRegressor.kernel": {"tf": 1}, "mlsauce.LSBoostRegressor.n_clusters": {"tf": 1}, "mlsauce.LSBoostRegressor.clustering_method": {"tf": 1}, "mlsauce.LSBoostRegressor.cluster_scaling": {"tf": 1}, "mlsauce.LSBoostRegressor.degree": {"tf": 1}, "mlsauce.LSBoostRegressor.poly_": {"tf": 1}, "mlsauce.LSBoostRegressor.weights_distr": {"tf": 1}, "mlsauce.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.base_model": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.n_estimators": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.learning_rate": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.n_hidden_features": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.reg_lambda": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.alpha": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.row_sample": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.col_sample": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.dropout": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.tolerance": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.direct_link": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.verbose": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.seed": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.backend": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.obj": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.solver": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.activation": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.type_pi": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.replications": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.kernel": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.n_clusters": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.clustering_method": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.cluster_scaling": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.degree": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.poly_": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.weights_distr": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}}, "df": 64}}}}}}}}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"docs": {"mlsauce.LSBoostClassifier.direct_link": {"tf": 1}, "mlsauce.LSBoostRegressor.direct_link": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.direct_link": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.direct_link": {"tf": 1}}, "df": 4}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.learning_rate": {"tf": 1}, "mlsauce.LSBoostClassifier.learning_rate": {"tf": 1}, "mlsauce.LSBoostRegressor.learning_rate": {"tf": 1}, "mlsauce.adaopt.AdaOpt.learning_rate": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.learning_rate": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.learning_rate": {"tf": 1}}, "df": 6}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"mlsauce.LazyBoostingClassifier.random_state": {"tf": 1}, "mlsauce.LazyBoostingRegressor.random_state": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.random_state": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.random_state": {"tf": 1}}, "df": 4}}}}}, "e": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.AdaOpt.reg_lambda": {"tf": 1}, "mlsauce.AdaOpt.reg_alpha": {"tf": 1}, "mlsauce.LSBoostClassifier.reg_lambda": {"tf": 1}, "mlsauce.ElasticNetRegressor.reg_lambda": {"tf": 1}, "mlsauce.LassoRegressor.reg_lambda": {"tf": 1}, "mlsauce.LSBoostRegressor.reg_lambda": {"tf": 1}, "mlsauce.RidgeRegressor.reg_lambda": {"tf": 1}, "mlsauce.adaopt.AdaOpt.reg_lambda": {"tf": 1}, "mlsauce.adaopt.AdaOpt.reg_alpha": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.reg_lambda": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.reg_lambda": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.reg_lambda": {"tf": 1}, "mlsauce.lasso.LassoRegressor.reg_lambda": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.reg_lambda": {"tf": 1}}, "df": 14, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}}, "df": 4}}}}}}}, "n": {"docs": {}, "df": 0, "c": {"docs": {"mlsauce.nonconformist.RegressorNc": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}}, "df": 6}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.base_model": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.normalizer_model": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.err_func": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.fit": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.score": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}}, "df": 9}}}}}}}}}}}}}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 35}}}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.LSBoostRegressor.replications": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.replications": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.replications": {"tf": 1}}, "df": 3}}}}}}}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.predictioninterval.PredictionInterval.calibrated_residuals_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.scaled_calibrated_residuals_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.calibrated_residuals_scaler_": {"tf": 1}}, "df": 3}}}}}}}}, "o": {"docs": {}, "df": 0, "w": {"docs": {"mlsauce.AdaOpt.row_sample": {"tf": 1}, "mlsauce.LSBoostClassifier.row_sample": {"tf": 1}, "mlsauce.LSBoostRegressor.row_sample": {"tf": 1}, "mlsauce.adaopt.AdaOpt.row_sample": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.row_sample": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.row_sample": {"tf": 1}}, "df": 6}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.RidgeRegressor": {"tf": 1}, "mlsauce.RidgeRegressor.__init__": {"tf": 1}, "mlsauce.RidgeRegressor.reg_lambda": {"tf": 1}, "mlsauce.RidgeRegressor.backend": {"tf": 1}, "mlsauce.RidgeRegressor.fit": {"tf": 1}, "mlsauce.RidgeRegressor.predict": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.__init__": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.reg_lambda": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.backend": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}}, "df": 14}}}}}}}}}}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"mlsauce.AdaOpt.eta": {"tf": 1}, "mlsauce.adaopt.AdaOpt.eta": {"tf": 1}}, "df": 2}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.LSBoostClassifier.n_estimators": {"tf": 1}, "mlsauce.LSBoostRegressor.n_estimators": {"tf": 1}, "mlsauce.LazyBoostingClassifier.estimators": {"tf": 1}, "mlsauce.LazyBoostingRegressor.estimators": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.n_estimators": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.n_estimators": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.estimators": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.estimators": {"tf": 1}}, "df": 8}}}}}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.ElasticNetRegressor": {"tf": 1}, "mlsauce.ElasticNetRegressor.__init__": {"tf": 1}, "mlsauce.ElasticNetRegressor.reg_lambda": {"tf": 1}, "mlsauce.ElasticNetRegressor.alpha": {"tf": 1}, "mlsauce.ElasticNetRegressor.backend": {"tf": 1}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.__init__": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.reg_lambda": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.alpha": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.backend": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}}, "df": 16}}}}}}}}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.nonconformist.RegressorNormalizer.err_func": {"tf": 1}}, "df": 1}}}, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"mlsauce.AdaOpt.gamma": {"tf": 1}, "mlsauce.adaopt.AdaOpt.gamma": {"tf": 1}}, "df": 2}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingClassifier.base_model": {"tf": 1}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.base_model": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1}}, "df": 8}}}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.GenericBoostingRegressor.base_model": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.base_model": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1}}, "df": 10}}}}}}}}}}}}}}}}}}}}}}, "t": {"docs": {"mlsauce.LazyBoostingClassifier.get_best_model": {"tf": 1}, "mlsauce.LazyBoostingRegressor.get_best_model": {"tf": 1}, "mlsauce.get_config": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.get_best_model": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.get_best_model": {"tf": 1}, "mlsauce.utils.get_beta": {"tf": 1}, "mlsauce.utils.get_beta.get_beta": {"tf": 1}}, "df": 7}}}, "k": {"docs": {"mlsauce.AdaOpt.k": {"tf": 1}, "mlsauce.adaopt.AdaOpt.k": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.LSBoostRegressor.kernel": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.kernel": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.kernel": {"tf": 1}}, "df": 3}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.predictioninterval.PredictionInterval.kde_": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.LassoRegressor.tol": {"tf": 1}, "mlsauce.lasso.LassoRegressor.tol": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.tolerance": {"tf": 1}, "mlsauce.LSBoostClassifier.tolerance": {"tf": 1}, "mlsauce.LSBoostRegressor.tolerance": {"tf": 1}, "mlsauce.adaopt.AdaOpt.tolerance": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.tolerance": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.tolerance": {"tf": 1}}, "df": 6}}}}}}}}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.type_dist": {"tf": 1}, "mlsauce.LSBoostRegressor.type_pi": {"tf": 1}, "mlsauce.adaopt.AdaOpt.type_dist": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.type_pi": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.type_pi": {"tf": 1}}, "df": 5}}}, "w": {"docs": {}, "df": 0, "o": {"docs": {"mlsauce.utils.merge_two_dicts": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.utils.Progbar.target": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.AdaOpt.cluster_scaling": {"tf": 1}, "mlsauce.LSBoostClassifier.cluster_scaling": {"tf": 1}, "mlsauce.LSBoostRegressor.cluster_scaling": {"tf": 1}, "mlsauce.adaopt.AdaOpt.cluster_scaling": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.cluster_scaling": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.cluster_scaling": {"tf": 1}, "mlsauce.utils.cluster": {"tf": 1}}, "df": 7, "s": {"docs": {"mlsauce.AdaOpt.n_clusters": {"tf": 1}, "mlsauce.AdaOpt.n_clusters_input": {"tf": 1}, "mlsauce.LSBoostClassifier.n_clusters": {"tf": 1}, "mlsauce.LSBoostRegressor.n_clusters": {"tf": 1}, "mlsauce.adaopt.AdaOpt.n_clusters": {"tf": 1}, "mlsauce.adaopt.AdaOpt.n_clusters_input": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.n_clusters": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.n_clusters": {"tf": 1}}, "df": 8}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.AdaOpt.clustering_method": {"tf": 1}, "mlsauce.LSBoostClassifier.clustering_method": {"tf": 1}, "mlsauce.LSBoostRegressor.clustering_method": {"tf": 1}, "mlsauce.adaopt.AdaOpt.clustering_method": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.clustering_method": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.clustering_method": {"tf": 1}}, "df": 6}}}}}}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.cache": {"tf": 1}, "mlsauce.adaopt.AdaOpt.cache": {"tf": 1}}, "df": 2}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.predictioninterval.PredictionInterval.calibrated_residuals_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.scaled_calibrated_residuals_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.calibrated_residuals_scaler_": {"tf": 1}}, "df": 3}}}}}}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.LSBoostClassifier.col_sample": {"tf": 1}, "mlsauce.LSBoostRegressor.col_sample": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.col_sample": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.col_sample": {"tf": 1}}, "df": 4}, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.get_config": {"tf": 1}, "mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 3}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.config_context": {"tf": 1}}, "df": 1}}}}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"mlsauce.LazyBoostingClassifier.custom_metric": {"tf": 1}, "mlsauce.LazyBoostingRegressor.custom_metric": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.custom_metric": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.custom_metric": {"tf": 1}}, "df": 4}}}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"mlsauce.utils.check_and_install": {"tf": 1}}, "df": 1}}}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"mlsauce.AdaOpt.batch_size": {"tf": 1}, "mlsauce.adaopt.AdaOpt.batch_size": {"tf": 1}}, "df": 2}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.LSBoostClassifier.base_model": {"tf": 1}, "mlsauce.GenericBoostingClassifier.base_model": {"tf": 1}, "mlsauce.GenericBoostingRegressor.base_model": {"tf": 1}, "mlsauce.LSBoostRegressor.base_model": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.base_model": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.base_model": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.base_model": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.base_model": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.base_model": {"tf": 1}}, "df": 9}}, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.LSBoostClassifier.backend": {"tf": 1}, "mlsauce.ElasticNetRegressor.backend": {"tf": 1}, "mlsauce.LassoRegressor.backend": {"tf": 1}, "mlsauce.LSBoostRegressor.backend": {"tf": 1}, "mlsauce.RidgeRegressor.backend": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.backend": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.backend": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.backend": {"tf": 1}, "mlsauce.lasso.LassoRegressor.backend": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.backend": {"tf": 1}}, "df": 10}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.StumpClassifier.bins": {"tf": 1}, "mlsauce.stump.StumpClassifier.bins": {"tf": 1}}, "df": 2}}}, "y": {"docs": {"mlsauce.LazyBoostingClassifier.sort_by": {"tf": 1}, "mlsauce.LazyBoostingRegressor.sort_by": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.sort_by": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.sort_by": {"tf": 1}}, "df": 4}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.LazyBoostingClassifier.best_model_": {"tf": 1}, "mlsauce.LazyBoostingClassifier.get_best_model": {"tf": 1}, "mlsauce.LazyBoostingRegressor.best_model_": {"tf": 1}, "mlsauce.LazyBoostingRegressor.get_best_model": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.best_model_": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.get_best_model": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.best_model_": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.get_best_model": {"tf": 1}}, "df": 8}}, "t": {"docs": {}, "df": 0, "a": {"docs": {"mlsauce.utils.get_beta": {"tf": 1}, "mlsauce.utils.get_beta.get_beta": {"tf": 1}}, "df": 2}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.batch_size": {"tf": 1}, "mlsauce.adaopt.AdaOpt.batch_size": {"tf": 1}}, "df": 2}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.row_sample": {"tf": 1}, "mlsauce.LSBoostClassifier.row_sample": {"tf": 1}, "mlsauce.LSBoostClassifier.col_sample": {"tf": 1}, "mlsauce.LSBoostRegressor.row_sample": {"tf": 1}, "mlsauce.LSBoostRegressor.col_sample": {"tf": 1}, "mlsauce.adaopt.AdaOpt.row_sample": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.row_sample": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.col_sample": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.row_sample": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.col_sample": {"tf": 1}}, "df": 10}}}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.AdaOpt.cluster_scaling": {"tf": 1}, "mlsauce.LSBoostClassifier.cluster_scaling": {"tf": 1}, "mlsauce.LSBoostRegressor.cluster_scaling": {"tf": 1}, "mlsauce.adaopt.AdaOpt.cluster_scaling": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.cluster_scaling": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.cluster_scaling": {"tf": 1}}, "df": 6}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.predictioninterval.PredictionInterval.scaled_calibrated_residuals_": {"tf": 1}}, "df": 1}, "r": {"docs": {"mlsauce.predictioninterval.PredictionInterval.calibrated_residuals_scaler_": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.score": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 22}}}}, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.AdaOpt.seed": {"tf": 1}, "mlsauce.LSBoostClassifier.seed": {"tf": 1}, "mlsauce.LSBoostRegressor.seed": {"tf": 1}, "mlsauce.adaopt.AdaOpt.seed": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.seed": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.seed": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.seed": {"tf": 1}}, "df": 7}}, "t": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.set_config": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 36}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.LSBoostClassifier.solver": {"tf": 1}, "mlsauce.LSBoostRegressor.solver": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.solver": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.solver": {"tf": 1}}, "df": 4}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.LazyBoostingClassifier.sort_by": {"tf": 1}, "mlsauce.LazyBoostingRegressor.sort_by": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.sort_by": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.sort_by": {"tf": 1}}, "df": 4}}}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.StumpClassifier": {"tf": 1}, "mlsauce.StumpClassifier.__init__": {"tf": 1}, "mlsauce.StumpClassifier.bins": {"tf": 1}, "mlsauce.StumpClassifier.obj": {"tf": 1}, "mlsauce.StumpClassifier.fit": {"tf": 1}, "mlsauce.StumpClassifier.predict": {"tf": 1}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier": {"tf": 1}, "mlsauce.stump.StumpClassifier.__init__": {"tf": 1}, "mlsauce.stump.StumpClassifier.bins": {"tf": 1}, "mlsauce.stump.StumpClassifier.obj": {"tf": 1}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 18}}}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.LazyBoostingClassifier.random_state": {"tf": 1}, "mlsauce.LazyBoostingRegressor.random_state": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.random_state": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.random_state": {"tf": 1}}, "df": 4}}}}, "u": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.utils.subsample": {"tf": 1}}, "df": 1}}}}}}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt.type_dist": {"tf": 1}, "mlsauce.adaopt.AdaOpt.type_dist": {"tf": 1}}, "df": 2, "r": {"docs": {"mlsauce.LSBoostClassifier.weights_distr": {"tf": 1}, "mlsauce.LSBoostRegressor.weights_distr": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.weights_distr": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.weights_distr": {"tf": 1}}, "df": 4}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.LSBoostClassifier.direct_link": {"tf": 1}, "mlsauce.LSBoostRegressor.direct_link": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.direct_link": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.direct_link": {"tf": 1}}, "df": 4}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.utils.merge_two_dicts": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.LSBoostClassifier.dropout": {"tf": 1}, "mlsauce.LSBoostRegressor.dropout": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.dropout": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.dropout": {"tf": 1}}, "df": 4}}}}}}, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.LSBoostClassifier.degree": {"tf": 1}, "mlsauce.LSBoostRegressor.degree": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.degree": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.degree": {"tf": 1}}, "df": 4}}}}}, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.download": {"tf": 1}, "mlsauce.datasets.dowload.download": {"tf": 1}}, "df": 2}}}}}}}}, "j": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.AdaOpt.n_jobs": {"tf": 1}, "mlsauce.LazyBoostingClassifier.n_jobs": {"tf": 1}, "mlsauce.LazyBoostingRegressor.n_jobs": {"tf": 1}, "mlsauce.adaopt.AdaOpt.n_jobs": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.n_jobs": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.n_jobs": {"tf": 1}}, "df": 6}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.verbose": {"tf": 1}, "mlsauce.LSBoostClassifier.verbose": {"tf": 1}, "mlsauce.LSBoostRegressor.verbose": {"tf": 1}, "mlsauce.LazyBoostingClassifier.verbose": {"tf": 1}, "mlsauce.LazyBoostingRegressor.verbose": {"tf": 1}, "mlsauce.adaopt.AdaOpt.verbose": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.verbose": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.verbose": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.verbose": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.verbose": {"tf": 1}, "mlsauce.utils.Progbar.verbose": {"tf": 1}}, "df": 11}}}}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.AdaOpt.clustering_method": {"tf": 1}, "mlsauce.LSBoostClassifier.clustering_method": {"tf": 1}, "mlsauce.LSBoostRegressor.clustering_method": {"tf": 1}, "mlsauce.adaopt.AdaOpt.clustering_method": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.clustering_method": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.clustering_method": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.method": {"tf": 1}}, "df": 7}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"mlsauce.LazyBoostingClassifier.custom_metric": {"tf": 1}, "mlsauce.LazyBoostingRegressor.custom_metric": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.custom_metric": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.custom_metric": {"tf": 1}}, "df": 4}}}}, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.utils.merge_two_dicts": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.LSBoostClassifier.base_model": {"tf": 1}, "mlsauce.GenericBoostingClassifier.base_model": {"tf": 1}, "mlsauce.GenericBoostingRegressor.base_model": {"tf": 1}, "mlsauce.LSBoostRegressor.base_model": {"tf": 1}, "mlsauce.LazyBoostingClassifier.best_model_": {"tf": 1}, "mlsauce.LazyBoostingClassifier.get_best_model": {"tf": 1}, "mlsauce.LazyBoostingRegressor.best_model_": {"tf": 1}, "mlsauce.LazyBoostingRegressor.get_best_model": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.base_model": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.base_model": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.base_model": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.base_model": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.best_model_": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.get_best_model": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.best_model_": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.get_best_model": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.base_model": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.normalizer_model": {"tf": 1}}, "df": 18, "s": {"docs": {"mlsauce.LazyBoostingClassifier.models_": {"tf": 1}, "mlsauce.LazyBoostingClassifier.provide_models": {"tf": 1}, "mlsauce.LazyBoostingRegressor.models_": {"tf": 1}, "mlsauce.LazyBoostingRegressor.provide_models": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.models_": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.models_": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 1}}, "df": 8}}}}}, "a": {"docs": {}, "df": 0, "x": {"docs": {"mlsauce.LassoRegressor.max_iter": {"tf": 1}, "mlsauce.lasso.LassoRegressor.max_iter": {"tf": 1}}, "df": 2}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt.fit": {"tf": 1}, "mlsauce.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.StumpClassifier.fit": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.LassoRegressor.fit": {"tf": 1}, "mlsauce.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.RidgeRegressor.fit": {"tf": 1}, "mlsauce.LazyBoostingClassifier.fit": {"tf": 1}, "mlsauce.LazyBoostingRegressor.fit": {"tf": 1}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.fit": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.fit": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.fit": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}}, "df": 26}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.LSBoostClassifier.n_hidden_features": {"tf": 1}, "mlsauce.LSBoostRegressor.n_hidden_features": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.n_hidden_features": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.n_hidden_features": {"tf": 1}}, "df": 4}}}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"mlsauce.nonconformist.RegressorNormalizer.err_func": {"tf": 1}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.utils.flatten": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.utils.is_float": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.utils.is_factor": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt.predict": {"tf": 1}, "mlsauce.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.StumpClassifier.predict": {"tf": 1}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.LassoRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.RidgeRegressor.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1}}, "df": 31, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.LazyBoostingClassifier.predictions": {"tf": 1}, "mlsauce.LazyBoostingRegressor.predictions": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.predictions": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.predictions": {"tf": 1}}, "df": 4}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.predictioninterval.PredictionInterval": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.__init__": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.obj": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.method": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.level": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.type_pi": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.replications": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.kernel": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.agg": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.seed": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.alpha_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.quantile_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.icp_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.calibrated_residuals_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.scaled_calibrated_residuals_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.calibrated_residuals_scaler_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.kde_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}}, "df": 21}}}}}}}}}}}}}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.LazyBoostingClassifier.preprocess": {"tf": 1}, "mlsauce.LazyBoostingRegressor.preprocess": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.preprocess": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.preprocess": {"tf": 1}}, "df": 4}}}}}}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {"mlsauce.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1}}, "df": 6}}, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.LazyBoostingClassifier.provide_models": {"tf": 1}, "mlsauce.LazyBoostingRegressor.provide_models": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 1}}, "df": 4}}}}, "g": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.utils.Progbar": {"tf": 1}, "mlsauce.utils.Progbar.__init__": {"tf": 1}, "mlsauce.utils.Progbar.target": {"tf": 1}, "mlsauce.utils.Progbar.width": {"tf": 1}, "mlsauce.utils.Progbar.verbose": {"tf": 1}, "mlsauce.utils.Progbar.interval": {"tf": 1}, "mlsauce.utils.Progbar.update": {"tf": 1}, "mlsauce.utils.Progbar.add": {"tf": 1}}, "df": 8}}}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"mlsauce.LSBoostClassifier.poly_": {"tf": 1}, "mlsauce.LSBoostRegressor.poly_": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.poly_": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.poly_": {"tf": 1}}, "df": 4}}}, "i": {"docs": {"mlsauce.LSBoostRegressor.type_pi": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.type_pi": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.type_pi": {"tf": 1}}, "df": 3}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.LSBoostClassifier.n_hidden_features": {"tf": 1}, "mlsauce.LSBoostRegressor.n_hidden_features": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.n_hidden_features": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.n_hidden_features": {"tf": 1}}, "df": 4}}}}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "j": {"docs": {"mlsauce.LSBoostClassifier.obj": {"tf": 1}, "mlsauce.StumpClassifier.obj": {"tf": 1}, "mlsauce.LSBoostRegressor.obj": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.obj": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.obj": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.obj": {"tf": 1}, "mlsauce.stump.StumpClassifier.obj": {"tf": 1}}, "df": 7}}}, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.LSBoostClassifier.weights_distr": {"tf": 1}, "mlsauce.LSBoostRegressor.weights_distr": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.weights_distr": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.weights_distr": {"tf": 1}}, "df": 4}}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.LazyBoostingClassifier.ignore_warnings": {"tf": 1}, "mlsauce.LazyBoostingRegressor.ignore_warnings": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.ignore_warnings": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.ignore_warnings": {"tf": 1}}, "df": 4}}}}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"mlsauce.utils.Progbar.width": {"tf": 1}}, "df": 1}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.predictioninterval.PredictionInterval.quantile_": {"tf": 1}}, "df": 1, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"mlsauce.nonconformist.QuantileRegErrFunc": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}}, "df": 3}}}}}}}}}}}}}}}}}}, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.utils.Progbar.update": {"tf": 1}}, "df": 1}}}}}}}}, "fullname": {"root": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.LSBoostClassifier.poly_": {"tf": 1}, "mlsauce.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.StumpClassifier.__init__": {"tf": 1}, "mlsauce.ElasticNetRegressor.__init__": {"tf": 1}, "mlsauce.LassoRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.poly_": {"tf": 1}, "mlsauce.RidgeRegressor.__init__": {"tf": 1}, "mlsauce.LazyBoostingClassifier.__init__": {"tf": 1}, "mlsauce.LazyBoostingClassifier.models_": {"tf": 1}, "mlsauce.LazyBoostingClassifier.best_model_": {"tf": 1}, "mlsauce.LazyBoostingRegressor.__init__": {"tf": 1}, "mlsauce.LazyBoostingRegressor.models_": {"tf": 1}, "mlsauce.LazyBoostingRegressor.best_model_": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.poly_": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.poly_": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.__init__": {"tf": 1}, "mlsauce.lasso.LassoRegressor.__init__": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.__init__": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.models_": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.best_model_": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.__init__": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.models_": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.best_model_": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.__init__": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.__init__": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.__init__": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.alpha_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.quantile_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.icp_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.calibrated_residuals_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.scaled_calibrated_residuals_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.calibrated_residuals_scaler_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.kde_": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.__init__": {"tf": 1}, "mlsauce.stump.StumpClassifier.__init__": {"tf": 1}, "mlsauce.utils.Progbar.__init__": {"tf": 1}}, "df": 47, "m": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce": {"tf": 1}, "mlsauce.AdaOpt": {"tf": 1}, "mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.AdaOpt.n_iterations": {"tf": 1}, "mlsauce.AdaOpt.learning_rate": {"tf": 1}, "mlsauce.AdaOpt.reg_lambda": {"tf": 1}, "mlsauce.AdaOpt.reg_alpha": {"tf": 1}, "mlsauce.AdaOpt.eta": {"tf": 1}, "mlsauce.AdaOpt.gamma": {"tf": 1}, "mlsauce.AdaOpt.k": {"tf": 1}, "mlsauce.AdaOpt.tolerance": {"tf": 1}, "mlsauce.AdaOpt.n_clusters": {"tf": 1}, "mlsauce.AdaOpt.batch_size": {"tf": 1}, "mlsauce.AdaOpt.row_sample": {"tf": 1}, "mlsauce.AdaOpt.type_dist": {"tf": 1}, "mlsauce.AdaOpt.n_jobs": {"tf": 1}, "mlsauce.AdaOpt.cache": {"tf": 1}, "mlsauce.AdaOpt.verbose": {"tf": 1}, "mlsauce.AdaOpt.n_clusters_input": {"tf": 1}, "mlsauce.AdaOpt.clustering_method": {"tf": 1}, "mlsauce.AdaOpt.cluster_scaling": {"tf": 1}, "mlsauce.AdaOpt.seed": {"tf": 1}, "mlsauce.AdaOpt.fit": {"tf": 1}, "mlsauce.AdaOpt.predict": {"tf": 1}, "mlsauce.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.LSBoostClassifier.base_model": {"tf": 1}, "mlsauce.LSBoostClassifier.n_estimators": {"tf": 1}, "mlsauce.LSBoostClassifier.learning_rate": {"tf": 1}, "mlsauce.LSBoostClassifier.n_hidden_features": {"tf": 1}, "mlsauce.LSBoostClassifier.reg_lambda": {"tf": 1}, "mlsauce.LSBoostClassifier.alpha": {"tf": 1}, "mlsauce.LSBoostClassifier.row_sample": {"tf": 1}, "mlsauce.LSBoostClassifier.col_sample": {"tf": 1}, "mlsauce.LSBoostClassifier.dropout": {"tf": 1}, "mlsauce.LSBoostClassifier.tolerance": {"tf": 1}, "mlsauce.LSBoostClassifier.direct_link": {"tf": 1}, "mlsauce.LSBoostClassifier.verbose": {"tf": 1}, "mlsauce.LSBoostClassifier.seed": {"tf": 1}, "mlsauce.LSBoostClassifier.backend": {"tf": 1}, "mlsauce.LSBoostClassifier.obj": {"tf": 1}, "mlsauce.LSBoostClassifier.solver": {"tf": 1}, "mlsauce.LSBoostClassifier.activation": {"tf": 1}, "mlsauce.LSBoostClassifier.n_clusters": {"tf": 1}, "mlsauce.LSBoostClassifier.clustering_method": {"tf": 1}, "mlsauce.LSBoostClassifier.cluster_scaling": {"tf": 1}, "mlsauce.LSBoostClassifier.degree": {"tf": 1}, "mlsauce.LSBoostClassifier.poly_": {"tf": 1}, "mlsauce.LSBoostClassifier.weights_distr": {"tf": 1}, "mlsauce.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingClassifier.base_model": {"tf": 1}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.GenericBoostingRegressor.base_model": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier": {"tf": 1}, "mlsauce.StumpClassifier.__init__": {"tf": 1}, "mlsauce.StumpClassifier.bins": {"tf": 1}, "mlsauce.StumpClassifier.obj": {"tf": 1}, "mlsauce.StumpClassifier.fit": {"tf": 1}, "mlsauce.StumpClassifier.predict": {"tf": 1}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor": {"tf": 1}, "mlsauce.ElasticNetRegressor.__init__": {"tf": 1}, "mlsauce.ElasticNetRegressor.reg_lambda": {"tf": 1}, "mlsauce.ElasticNetRegressor.alpha": {"tf": 1}, "mlsauce.ElasticNetRegressor.backend": {"tf": 1}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor": {"tf": 1}, "mlsauce.LassoRegressor.__init__": {"tf": 1}, "mlsauce.LassoRegressor.reg_lambda": {"tf": 1}, "mlsauce.LassoRegressor.max_iter": {"tf": 1}, "mlsauce.LassoRegressor.tol": {"tf": 1}, "mlsauce.LassoRegressor.backend": {"tf": 1}, "mlsauce.LassoRegressor.fit": {"tf": 1}, "mlsauce.LassoRegressor.predict": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.base_model": {"tf": 1}, "mlsauce.LSBoostRegressor.n_estimators": {"tf": 1}, "mlsauce.LSBoostRegressor.learning_rate": {"tf": 1}, "mlsauce.LSBoostRegressor.n_hidden_features": {"tf": 1}, "mlsauce.LSBoostRegressor.reg_lambda": {"tf": 1}, "mlsauce.LSBoostRegressor.alpha": {"tf": 1}, "mlsauce.LSBoostRegressor.row_sample": {"tf": 1}, "mlsauce.LSBoostRegressor.col_sample": {"tf": 1}, "mlsauce.LSBoostRegressor.dropout": {"tf": 1}, "mlsauce.LSBoostRegressor.tolerance": {"tf": 1}, "mlsauce.LSBoostRegressor.direct_link": {"tf": 1}, "mlsauce.LSBoostRegressor.verbose": {"tf": 1}, "mlsauce.LSBoostRegressor.seed": {"tf": 1}, "mlsauce.LSBoostRegressor.backend": {"tf": 1}, "mlsauce.LSBoostRegressor.obj": {"tf": 1}, "mlsauce.LSBoostRegressor.solver": {"tf": 1}, "mlsauce.LSBoostRegressor.activation": {"tf": 1}, "mlsauce.LSBoostRegressor.type_pi": {"tf": 1}, "mlsauce.LSBoostRegressor.replications": {"tf": 1}, "mlsauce.LSBoostRegressor.kernel": {"tf": 1}, "mlsauce.LSBoostRegressor.n_clusters": {"tf": 1}, "mlsauce.LSBoostRegressor.clustering_method": {"tf": 1}, "mlsauce.LSBoostRegressor.cluster_scaling": {"tf": 1}, "mlsauce.LSBoostRegressor.degree": {"tf": 1}, "mlsauce.LSBoostRegressor.poly_": {"tf": 1}, "mlsauce.LSBoostRegressor.weights_distr": {"tf": 1}, "mlsauce.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor": {"tf": 1}, "mlsauce.RidgeRegressor.__init__": {"tf": 1}, "mlsauce.RidgeRegressor.reg_lambda": {"tf": 1}, "mlsauce.RidgeRegressor.backend": {"tf": 1}, "mlsauce.RidgeRegressor.fit": {"tf": 1}, "mlsauce.RidgeRegressor.predict": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingClassifier.__init__": {"tf": 1}, "mlsauce.LazyBoostingClassifier.verbose": {"tf": 1}, "mlsauce.LazyBoostingClassifier.ignore_warnings": {"tf": 1}, "mlsauce.LazyBoostingClassifier.custom_metric": {"tf": 1}, "mlsauce.LazyBoostingClassifier.predictions": {"tf": 1}, "mlsauce.LazyBoostingClassifier.sort_by": {"tf": 1}, "mlsauce.LazyBoostingClassifier.models_": {"tf": 1}, "mlsauce.LazyBoostingClassifier.best_model_": {"tf": 1}, "mlsauce.LazyBoostingClassifier.random_state": {"tf": 1}, "mlsauce.LazyBoostingClassifier.estimators": {"tf": 1}, "mlsauce.LazyBoostingClassifier.preprocess": {"tf": 1}, "mlsauce.LazyBoostingClassifier.n_jobs": {"tf": 1}, "mlsauce.LazyBoostingClassifier.fit": {"tf": 1}, "mlsauce.LazyBoostingClassifier.get_best_model": {"tf": 1}, "mlsauce.LazyBoostingClassifier.provide_models": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.LazyBoostingRegressor.__init__": {"tf": 1}, "mlsauce.LazyBoostingRegressor.verbose": {"tf": 1}, "mlsauce.LazyBoostingRegressor.ignore_warnings": {"tf": 1}, "mlsauce.LazyBoostingRegressor.custom_metric": {"tf": 1}, "mlsauce.LazyBoostingRegressor.predictions": {"tf": 1}, "mlsauce.LazyBoostingRegressor.sort_by": {"tf": 1}, "mlsauce.LazyBoostingRegressor.models_": {"tf": 1}, "mlsauce.LazyBoostingRegressor.best_model_": {"tf": 1}, "mlsauce.LazyBoostingRegressor.random_state": {"tf": 1}, "mlsauce.LazyBoostingRegressor.estimators": {"tf": 1}, "mlsauce.LazyBoostingRegressor.preprocess": {"tf": 1}, "mlsauce.LazyBoostingRegressor.n_jobs": {"tf": 1}, "mlsauce.LazyBoostingRegressor.fit": {"tf": 1}, "mlsauce.LazyBoostingRegressor.get_best_model": {"tf": 1}, "mlsauce.LazyBoostingRegressor.provide_models": {"tf": 1}, "mlsauce.download": {"tf": 1}, "mlsauce.get_config": {"tf": 1}, "mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}, "mlsauce.adaopt": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.n_iterations": {"tf": 1}, "mlsauce.adaopt.AdaOpt.learning_rate": {"tf": 1}, "mlsauce.adaopt.AdaOpt.reg_lambda": {"tf": 1}, "mlsauce.adaopt.AdaOpt.reg_alpha": {"tf": 1}, "mlsauce.adaopt.AdaOpt.eta": {"tf": 1}, "mlsauce.adaopt.AdaOpt.gamma": {"tf": 1}, "mlsauce.adaopt.AdaOpt.k": {"tf": 1}, "mlsauce.adaopt.AdaOpt.tolerance": {"tf": 1}, "mlsauce.adaopt.AdaOpt.n_clusters": {"tf": 1}, "mlsauce.adaopt.AdaOpt.batch_size": {"tf": 1}, "mlsauce.adaopt.AdaOpt.row_sample": {"tf": 1}, "mlsauce.adaopt.AdaOpt.type_dist": {"tf": 1}, "mlsauce.adaopt.AdaOpt.n_jobs": {"tf": 1}, "mlsauce.adaopt.AdaOpt.cache": {"tf": 1}, "mlsauce.adaopt.AdaOpt.verbose": {"tf": 1}, "mlsauce.adaopt.AdaOpt.n_clusters_input": {"tf": 1}, "mlsauce.adaopt.AdaOpt.clustering_method": {"tf": 1}, "mlsauce.adaopt.AdaOpt.cluster_scaling": {"tf": 1}, "mlsauce.adaopt.AdaOpt.seed": {"tf": 1}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.base_model": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.n_estimators": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.learning_rate": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.n_hidden_features": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.reg_lambda": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.alpha": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.row_sample": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.col_sample": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.dropout": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.tolerance": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.direct_link": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.verbose": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.seed": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.backend": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.obj": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.solver": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.activation": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.n_clusters": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.clustering_method": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.cluster_scaling": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.degree": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.poly_": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.weights_distr": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.base_model": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.n_estimators": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.learning_rate": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.n_hidden_features": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.reg_lambda": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.alpha": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.row_sample": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.col_sample": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.dropout": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.tolerance": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.direct_link": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.verbose": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.seed": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.backend": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.obj": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.solver": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.activation": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.type_pi": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.replications": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.kernel": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.n_clusters": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.clustering_method": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.cluster_scaling": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.degree": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.poly_": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.weights_distr": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.base_model": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.base_model": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.datasets": {"tf": 1}, "mlsauce.datasets.dowload": {"tf": 1}, "mlsauce.datasets.dowload.download": {"tf": 1}, "mlsauce.demo": {"tf": 1}, "mlsauce.elasticnet": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.__init__": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.reg_lambda": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.alpha": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.backend": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso": {"tf": 1}, "mlsauce.lasso.LassoRegressor": {"tf": 1}, "mlsauce.lasso.LassoRegressor.__init__": {"tf": 1}, "mlsauce.lasso.LassoRegressor.reg_lambda": {"tf": 1}, "mlsauce.lasso.LassoRegressor.max_iter": {"tf": 1}, "mlsauce.lasso.LassoRegressor.tol": {"tf": 1}, "mlsauce.lasso.LassoRegressor.backend": {"tf": 1}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.lazybooster": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.__init__": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.verbose": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.ignore_warnings": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.custom_metric": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.predictions": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.sort_by": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.models_": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.best_model_": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.random_state": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.estimators": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.preprocess": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.n_jobs": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.fit": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.get_best_model": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.__init__": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.verbose": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.ignore_warnings": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.custom_metric": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.predictions": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.sort_by": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.models_": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.best_model_": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.random_state": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.estimators": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.preprocess": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.n_jobs": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.fit": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.get_best_model": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 1}, "mlsauce.nonconformist": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.base_model": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.normalizer_model": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.err_func": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.fit": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.score": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.__init__": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.__init__": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.obj": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.method": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.level": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.type_pi": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.replications": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.kernel": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.agg": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.seed": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.alpha_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.quantile_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.icp_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.calibrated_residuals_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.scaled_calibrated_residuals_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.calibrated_residuals_scaler_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.kde_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge": {"tf": 1}, "mlsauce.ridge.RidgeRegressor": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.__init__": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.reg_lambda": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.backend": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.setup": {"tf": 1}, "mlsauce.stump": {"tf": 1}, "mlsauce.stump.StumpClassifier": {"tf": 1}, "mlsauce.stump.StumpClassifier.__init__": {"tf": 1}, "mlsauce.stump.StumpClassifier.bins": {"tf": 1}, "mlsauce.stump.StumpClassifier.obj": {"tf": 1}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.utils": {"tf": 1}, "mlsauce.utils.cluster": {"tf": 1}, "mlsauce.utils.subsample": {"tf": 1}, "mlsauce.utils.merge_two_dicts": {"tf": 1}, "mlsauce.utils.flatten": {"tf": 1}, "mlsauce.utils.is_float": {"tf": 1}, "mlsauce.utils.is_factor": {"tf": 1}, "mlsauce.utils.Progbar": {"tf": 1}, "mlsauce.utils.Progbar.__init__": {"tf": 1}, "mlsauce.utils.Progbar.target": {"tf": 1}, "mlsauce.utils.Progbar.width": {"tf": 1}, "mlsauce.utils.Progbar.verbose": {"tf": 1}, "mlsauce.utils.Progbar.interval": {"tf": 1}, "mlsauce.utils.Progbar.update": {"tf": 1}, "mlsauce.utils.Progbar.add": {"tf": 1}, "mlsauce.utils.get_beta": {"tf": 1}, "mlsauce.utils.check_and_install": {"tf": 1}, "mlsauce.utils.get_beta.get_beta": {"tf": 1}}, "df": 408}}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.AdaOpt.clustering_method": {"tf": 1}, "mlsauce.LSBoostClassifier.clustering_method": {"tf": 1}, "mlsauce.LSBoostRegressor.clustering_method": {"tf": 1}, "mlsauce.adaopt.AdaOpt.clustering_method": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.clustering_method": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.clustering_method": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.method": {"tf": 1}}, "df": 7}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"mlsauce.LazyBoostingClassifier.custom_metric": {"tf": 1}, "mlsauce.LazyBoostingRegressor.custom_metric": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.custom_metric": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.custom_metric": {"tf": 1}}, "df": 4}}}}, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.utils.merge_two_dicts": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.LSBoostClassifier.base_model": {"tf": 1}, "mlsauce.GenericBoostingClassifier.base_model": {"tf": 1}, "mlsauce.GenericBoostingRegressor.base_model": {"tf": 1}, "mlsauce.LSBoostRegressor.base_model": {"tf": 1}, "mlsauce.LazyBoostingClassifier.best_model_": {"tf": 1}, "mlsauce.LazyBoostingClassifier.get_best_model": {"tf": 1}, "mlsauce.LazyBoostingRegressor.best_model_": {"tf": 1}, "mlsauce.LazyBoostingRegressor.get_best_model": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.base_model": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.base_model": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.base_model": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.base_model": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.best_model_": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.get_best_model": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.best_model_": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.get_best_model": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.base_model": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.normalizer_model": {"tf": 1}}, "df": 18, "s": {"docs": {"mlsauce.LazyBoostingClassifier.models_": {"tf": 1}, "mlsauce.LazyBoostingClassifier.provide_models": {"tf": 1}, "mlsauce.LazyBoostingRegressor.models_": {"tf": 1}, "mlsauce.LazyBoostingRegressor.provide_models": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.models_": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.models_": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 1}}, "df": 8}}}}}, "a": {"docs": {}, "df": 0, "x": {"docs": {"mlsauce.LassoRegressor.max_iter": {"tf": 1}, "mlsauce.lasso.LassoRegressor.max_iter": {"tf": 1}}, "df": 2}}}, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.AdaOpt.n_iterations": {"tf": 1}, "mlsauce.AdaOpt.learning_rate": {"tf": 1}, "mlsauce.AdaOpt.reg_lambda": {"tf": 1}, "mlsauce.AdaOpt.reg_alpha": {"tf": 1}, "mlsauce.AdaOpt.eta": {"tf": 1}, "mlsauce.AdaOpt.gamma": {"tf": 1}, "mlsauce.AdaOpt.k": {"tf": 1}, "mlsauce.AdaOpt.tolerance": {"tf": 1}, "mlsauce.AdaOpt.n_clusters": {"tf": 1}, "mlsauce.AdaOpt.batch_size": {"tf": 1}, "mlsauce.AdaOpt.row_sample": {"tf": 1}, "mlsauce.AdaOpt.type_dist": {"tf": 1}, "mlsauce.AdaOpt.n_jobs": {"tf": 1}, "mlsauce.AdaOpt.cache": {"tf": 1}, "mlsauce.AdaOpt.verbose": {"tf": 1}, "mlsauce.AdaOpt.n_clusters_input": {"tf": 1}, "mlsauce.AdaOpt.clustering_method": {"tf": 1}, "mlsauce.AdaOpt.cluster_scaling": {"tf": 1}, "mlsauce.AdaOpt.seed": {"tf": 1}, "mlsauce.AdaOpt.fit": {"tf": 1}, "mlsauce.AdaOpt.predict": {"tf": 1}, "mlsauce.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.adaopt": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.n_iterations": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.learning_rate": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.reg_lambda": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.reg_alpha": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.eta": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.gamma": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.k": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.tolerance": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.n_clusters": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.batch_size": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.row_sample": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.type_dist": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.n_jobs": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.cache": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.verbose": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.n_clusters_input": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.clustering_method": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.cluster_scaling": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.seed": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1.4142135623730951}}, "df": 51}}}}, "d": {"docs": {"mlsauce.utils.Progbar.add": {"tf": 1}}, "df": 1}}, "l": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {"mlsauce.AdaOpt.reg_alpha": {"tf": 1}, "mlsauce.LSBoostClassifier.alpha": {"tf": 1}, "mlsauce.ElasticNetRegressor.alpha": {"tf": 1}, "mlsauce.LSBoostRegressor.alpha": {"tf": 1}, "mlsauce.adaopt.AdaOpt.reg_alpha": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.alpha": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.alpha": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.alpha": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.alpha_": {"tf": 1}}, "df": 9}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.LSBoostClassifier.activation": {"tf": 1}, "mlsauce.LSBoostRegressor.activation": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.activation": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.activation": {"tf": 1}}, "df": 4}}}}}}}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}}, "df": 3}}}}}}}}}}}}}}, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}}, "df": 4}}}}, "g": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.predictioninterval.PredictionInterval.agg": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.utils.check_and_install": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.StumpClassifier.__init__": {"tf": 1}, "mlsauce.ElasticNetRegressor.__init__": {"tf": 1}, "mlsauce.LassoRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.RidgeRegressor.__init__": {"tf": 1}, "mlsauce.LazyBoostingClassifier.__init__": {"tf": 1}, "mlsauce.LazyBoostingRegressor.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.__init__": {"tf": 1}, "mlsauce.lasso.LassoRegressor.__init__": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.__init__": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.__init__": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.__init__": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.__init__": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.__init__": {"tf": 1}, "mlsauce.stump.StumpClassifier.__init__": {"tf": 1}, "mlsauce.utils.Progbar.__init__": {"tf": 1}}, "df": 28}}, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt.n_clusters_input": {"tf": 1}, "mlsauce.adaopt.AdaOpt.n_clusters_input": {"tf": 1}}, "df": 2}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}}, "df": 2}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.utils.Progbar.interval": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.utils.check_and_install": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.LassoRegressor.max_iter": {"tf": 1}, "mlsauce.lasso.LassoRegressor.max_iter": {"tf": 1}}, "df": 2, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.AdaOpt.n_iterations": {"tf": 1}, "mlsauce.adaopt.AdaOpt.n_iterations": {"tf": 1}}, "df": 2}}}}}}}}}, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.LazyBoostingClassifier.ignore_warnings": {"tf": 1}, "mlsauce.LazyBoostingRegressor.ignore_warnings": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.ignore_warnings": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.ignore_warnings": {"tf": 1}}, "df": 4}}}}}, "c": {"docs": {}, "df": 0, "p": {"docs": {"mlsauce.predictioninterval.PredictionInterval.icp_": {"tf": 1}}, "df": 1, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.__init__": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}}, "df": 5}}}}}}}}}}}, "s": {"docs": {"mlsauce.utils.is_float": {"tf": 1}, "mlsauce.utils.is_factor": {"tf": 1}}, "df": 2}}, "n": {"docs": {"mlsauce.AdaOpt.n_iterations": {"tf": 1}, "mlsauce.AdaOpt.n_clusters": {"tf": 1}, "mlsauce.AdaOpt.n_jobs": {"tf": 1}, "mlsauce.AdaOpt.n_clusters_input": {"tf": 1}, "mlsauce.LSBoostClassifier.n_estimators": {"tf": 1}, "mlsauce.LSBoostClassifier.n_hidden_features": {"tf": 1}, "mlsauce.LSBoostClassifier.n_clusters": {"tf": 1}, "mlsauce.LSBoostRegressor.n_estimators": {"tf": 1}, "mlsauce.LSBoostRegressor.n_hidden_features": {"tf": 1}, "mlsauce.LSBoostRegressor.n_clusters": {"tf": 1}, "mlsauce.LazyBoostingClassifier.n_jobs": {"tf": 1}, "mlsauce.LazyBoostingRegressor.n_jobs": {"tf": 1}, "mlsauce.adaopt.AdaOpt.n_iterations": {"tf": 1}, "mlsauce.adaopt.AdaOpt.n_clusters": {"tf": 1}, "mlsauce.adaopt.AdaOpt.n_jobs": {"tf": 1}, "mlsauce.adaopt.AdaOpt.n_clusters_input": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.n_estimators": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.n_hidden_features": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.n_clusters": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.n_estimators": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.n_hidden_features": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.n_clusters": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.n_jobs": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.n_jobs": {"tf": 1}}, "df": 24, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.nonconformist": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.base_model": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.normalizer_model": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.err_func": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.fit": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.score": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.__init__": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}}, "df": 31}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.nonconformist.RegressorNormalizer.normalizer_model": {"tf": 1}}, "df": 1}}}}}}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.AdaOpt.learning_rate": {"tf": 1}, "mlsauce.LSBoostClassifier.learning_rate": {"tf": 1}, "mlsauce.LSBoostRegressor.learning_rate": {"tf": 1}, "mlsauce.adaopt.AdaOpt.learning_rate": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.learning_rate": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.learning_rate": {"tf": 1}}, "df": 6}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.predictioninterval.PredictionInterval.level": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {"mlsauce.AdaOpt.reg_lambda": {"tf": 1}, "mlsauce.LSBoostClassifier.reg_lambda": {"tf": 1}, "mlsauce.ElasticNetRegressor.reg_lambda": {"tf": 1}, "mlsauce.LassoRegressor.reg_lambda": {"tf": 1}, "mlsauce.LSBoostRegressor.reg_lambda": {"tf": 1}, "mlsauce.RidgeRegressor.reg_lambda": {"tf": 1}, "mlsauce.adaopt.AdaOpt.reg_lambda": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.reg_lambda": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.reg_lambda": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.reg_lambda": {"tf": 1}, "mlsauce.lasso.LassoRegressor.reg_lambda": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.reg_lambda": {"tf": 1}}, "df": 12}}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {"mlsauce.lasso": {"tf": 1}, "mlsauce.lasso.LassoRegressor": {"tf": 1}, "mlsauce.lasso.LassoRegressor.__init__": {"tf": 1}, "mlsauce.lasso.LassoRegressor.reg_lambda": {"tf": 1}, "mlsauce.lasso.LassoRegressor.max_iter": {"tf": 1}, "mlsauce.lasso.LassoRegressor.tol": {"tf": 1}, "mlsauce.lasso.LassoRegressor.backend": {"tf": 1}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}}, "df": 10, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.LassoRegressor": {"tf": 1}, "mlsauce.LassoRegressor.__init__": {"tf": 1}, "mlsauce.LassoRegressor.reg_lambda": {"tf": 1}, "mlsauce.LassoRegressor.max_iter": {"tf": 1}, "mlsauce.LassoRegressor.tol": {"tf": 1}, "mlsauce.LassoRegressor.backend": {"tf": 1}, "mlsauce.LassoRegressor.fit": {"tf": 1}, "mlsauce.LassoRegressor.predict": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor": {"tf": 1}, "mlsauce.lasso.LassoRegressor.__init__": {"tf": 1}, "mlsauce.lasso.LassoRegressor.reg_lambda": {"tf": 1}, "mlsauce.lasso.LassoRegressor.max_iter": {"tf": 1}, "mlsauce.lasso.LassoRegressor.tol": {"tf": 1}, "mlsauce.lasso.LassoRegressor.backend": {"tf": 1}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}}, "df": 18}}}}}}}}}}}}, "z": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingClassifier.__init__": {"tf": 1}, "mlsauce.LazyBoostingClassifier.verbose": {"tf": 1}, "mlsauce.LazyBoostingClassifier.ignore_warnings": {"tf": 1}, "mlsauce.LazyBoostingClassifier.custom_metric": {"tf": 1}, "mlsauce.LazyBoostingClassifier.predictions": {"tf": 1}, "mlsauce.LazyBoostingClassifier.sort_by": {"tf": 1}, "mlsauce.LazyBoostingClassifier.models_": {"tf": 1}, "mlsauce.LazyBoostingClassifier.best_model_": {"tf": 1}, "mlsauce.LazyBoostingClassifier.random_state": {"tf": 1}, "mlsauce.LazyBoostingClassifier.estimators": {"tf": 1}, "mlsauce.LazyBoostingClassifier.preprocess": {"tf": 1}, "mlsauce.LazyBoostingClassifier.n_jobs": {"tf": 1}, "mlsauce.LazyBoostingClassifier.fit": {"tf": 1}, "mlsauce.LazyBoostingClassifier.get_best_model": {"tf": 1}, "mlsauce.LazyBoostingClassifier.provide_models": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.__init__": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.verbose": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.ignore_warnings": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.custom_metric": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.predictions": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.sort_by": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.models_": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.best_model_": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.random_state": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.estimators": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.preprocess": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.n_jobs": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.fit": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.get_best_model": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 1}}, "df": 32}}}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.LazyBoostingRegressor.__init__": {"tf": 1}, "mlsauce.LazyBoostingRegressor.verbose": {"tf": 1}, "mlsauce.LazyBoostingRegressor.ignore_warnings": {"tf": 1}, "mlsauce.LazyBoostingRegressor.custom_metric": {"tf": 1}, "mlsauce.LazyBoostingRegressor.predictions": {"tf": 1}, "mlsauce.LazyBoostingRegressor.sort_by": {"tf": 1}, "mlsauce.LazyBoostingRegressor.models_": {"tf": 1}, "mlsauce.LazyBoostingRegressor.best_model_": {"tf": 1}, "mlsauce.LazyBoostingRegressor.random_state": {"tf": 1}, "mlsauce.LazyBoostingRegressor.estimators": {"tf": 1}, "mlsauce.LazyBoostingRegressor.preprocess": {"tf": 1}, "mlsauce.LazyBoostingRegressor.n_jobs": {"tf": 1}, "mlsauce.LazyBoostingRegressor.fit": {"tf": 1}, "mlsauce.LazyBoostingRegressor.get_best_model": {"tf": 1}, "mlsauce.LazyBoostingRegressor.provide_models": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.__init__": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.verbose": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.ignore_warnings": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.custom_metric": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.predictions": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.sort_by": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.models_": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.best_model_": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.random_state": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.estimators": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.preprocess": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.n_jobs": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.fit": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.get_best_model": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 1}}, "df": 32}}}}}}}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.lazybooster": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.__init__": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.verbose": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.ignore_warnings": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.custom_metric": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.predictions": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.sort_by": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.models_": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.best_model_": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.random_state": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.estimators": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.preprocess": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.n_jobs": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.fit": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.get_best_model": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.__init__": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.verbose": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.ignore_warnings": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.custom_metric": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.predictions": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.sort_by": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.models_": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.best_model_": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.random_state": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.estimators": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.preprocess": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.n_jobs": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.fit": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.get_best_model": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 1}}, "df": 33}}}}}}}}}}, "s": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.LSBoostClassifier.base_model": {"tf": 1}, "mlsauce.LSBoostClassifier.n_estimators": {"tf": 1}, "mlsauce.LSBoostClassifier.learning_rate": {"tf": 1}, "mlsauce.LSBoostClassifier.n_hidden_features": {"tf": 1}, "mlsauce.LSBoostClassifier.reg_lambda": {"tf": 1}, "mlsauce.LSBoostClassifier.alpha": {"tf": 1}, "mlsauce.LSBoostClassifier.row_sample": {"tf": 1}, "mlsauce.LSBoostClassifier.col_sample": {"tf": 1}, "mlsauce.LSBoostClassifier.dropout": {"tf": 1}, "mlsauce.LSBoostClassifier.tolerance": {"tf": 1}, "mlsauce.LSBoostClassifier.direct_link": {"tf": 1}, "mlsauce.LSBoostClassifier.verbose": {"tf": 1}, "mlsauce.LSBoostClassifier.seed": {"tf": 1}, "mlsauce.LSBoostClassifier.backend": {"tf": 1}, "mlsauce.LSBoostClassifier.obj": {"tf": 1}, "mlsauce.LSBoostClassifier.solver": {"tf": 1}, "mlsauce.LSBoostClassifier.activation": {"tf": 1}, "mlsauce.LSBoostClassifier.n_clusters": {"tf": 1}, "mlsauce.LSBoostClassifier.clustering_method": {"tf": 1}, "mlsauce.LSBoostClassifier.cluster_scaling": {"tf": 1}, "mlsauce.LSBoostClassifier.degree": {"tf": 1}, "mlsauce.LSBoostClassifier.poly_": {"tf": 1}, "mlsauce.LSBoostClassifier.weights_distr": {"tf": 1}, "mlsauce.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.base_model": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.n_estimators": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.learning_rate": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.n_hidden_features": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.reg_lambda": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.alpha": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.row_sample": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.col_sample": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.dropout": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.tolerance": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.direct_link": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.verbose": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.seed": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.backend": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.obj": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.solver": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.activation": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.n_clusters": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.clustering_method": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.cluster_scaling": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.degree": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.poly_": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.weights_distr": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}}, "df": 58}}}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.base_model": {"tf": 1}, "mlsauce.LSBoostRegressor.n_estimators": {"tf": 1}, "mlsauce.LSBoostRegressor.learning_rate": {"tf": 1}, "mlsauce.LSBoostRegressor.n_hidden_features": {"tf": 1}, "mlsauce.LSBoostRegressor.reg_lambda": {"tf": 1}, "mlsauce.LSBoostRegressor.alpha": {"tf": 1}, "mlsauce.LSBoostRegressor.row_sample": {"tf": 1}, "mlsauce.LSBoostRegressor.col_sample": {"tf": 1}, "mlsauce.LSBoostRegressor.dropout": {"tf": 1}, "mlsauce.LSBoostRegressor.tolerance": {"tf": 1}, "mlsauce.LSBoostRegressor.direct_link": {"tf": 1}, "mlsauce.LSBoostRegressor.verbose": {"tf": 1}, "mlsauce.LSBoostRegressor.seed": {"tf": 1}, "mlsauce.LSBoostRegressor.backend": {"tf": 1}, "mlsauce.LSBoostRegressor.obj": {"tf": 1}, "mlsauce.LSBoostRegressor.solver": {"tf": 1}, "mlsauce.LSBoostRegressor.activation": {"tf": 1}, "mlsauce.LSBoostRegressor.type_pi": {"tf": 1}, "mlsauce.LSBoostRegressor.replications": {"tf": 1}, "mlsauce.LSBoostRegressor.kernel": {"tf": 1}, "mlsauce.LSBoostRegressor.n_clusters": {"tf": 1}, "mlsauce.LSBoostRegressor.clustering_method": {"tf": 1}, "mlsauce.LSBoostRegressor.cluster_scaling": {"tf": 1}, "mlsauce.LSBoostRegressor.degree": {"tf": 1}, "mlsauce.LSBoostRegressor.poly_": {"tf": 1}, "mlsauce.LSBoostRegressor.weights_distr": {"tf": 1}, "mlsauce.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.base_model": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.n_estimators": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.learning_rate": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.n_hidden_features": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.reg_lambda": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.alpha": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.row_sample": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.col_sample": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.dropout": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.tolerance": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.direct_link": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.verbose": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.seed": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.backend": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.obj": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.solver": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.activation": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.type_pi": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.replications": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.kernel": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.n_clusters": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.clustering_method": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.cluster_scaling": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.degree": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.poly_": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.weights_distr": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}}, "df": 64}}}}}}}}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"docs": {"mlsauce.LSBoostClassifier.direct_link": {"tf": 1}, "mlsauce.LSBoostRegressor.direct_link": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.direct_link": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.direct_link": {"tf": 1}}, "df": 4}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.learning_rate": {"tf": 1}, "mlsauce.LSBoostClassifier.learning_rate": {"tf": 1}, "mlsauce.LSBoostRegressor.learning_rate": {"tf": 1}, "mlsauce.adaopt.AdaOpt.learning_rate": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.learning_rate": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.learning_rate": {"tf": 1}}, "df": 6}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"mlsauce.LazyBoostingClassifier.random_state": {"tf": 1}, "mlsauce.LazyBoostingRegressor.random_state": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.random_state": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.random_state": {"tf": 1}}, "df": 4}}}}}, "e": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.AdaOpt.reg_lambda": {"tf": 1}, "mlsauce.AdaOpt.reg_alpha": {"tf": 1}, "mlsauce.LSBoostClassifier.reg_lambda": {"tf": 1}, "mlsauce.ElasticNetRegressor.reg_lambda": {"tf": 1}, "mlsauce.LassoRegressor.reg_lambda": {"tf": 1}, "mlsauce.LSBoostRegressor.reg_lambda": {"tf": 1}, "mlsauce.RidgeRegressor.reg_lambda": {"tf": 1}, "mlsauce.adaopt.AdaOpt.reg_lambda": {"tf": 1}, "mlsauce.adaopt.AdaOpt.reg_alpha": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.reg_lambda": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.reg_lambda": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.reg_lambda": {"tf": 1}, "mlsauce.lasso.LassoRegressor.reg_lambda": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.reg_lambda": {"tf": 1}}, "df": 14, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}}, "df": 4}}}}}}}, "n": {"docs": {}, "df": 0, "c": {"docs": {"mlsauce.nonconformist.RegressorNc": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}}, "df": 6}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.base_model": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.normalizer_model": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.err_func": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.fit": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.score": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}}, "df": 9}}}}}}}}}}}}}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 35}}}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.LSBoostRegressor.replications": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.replications": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.replications": {"tf": 1}}, "df": 3}}}}}}}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.predictioninterval.PredictionInterval.calibrated_residuals_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.scaled_calibrated_residuals_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.calibrated_residuals_scaler_": {"tf": 1}}, "df": 3}}}}}}}}, "o": {"docs": {}, "df": 0, "w": {"docs": {"mlsauce.AdaOpt.row_sample": {"tf": 1}, "mlsauce.LSBoostClassifier.row_sample": {"tf": 1}, "mlsauce.LSBoostRegressor.row_sample": {"tf": 1}, "mlsauce.adaopt.AdaOpt.row_sample": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.row_sample": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.row_sample": {"tf": 1}}, "df": 6}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.ridge": {"tf": 1}, "mlsauce.ridge.RidgeRegressor": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.__init__": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.reg_lambda": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.backend": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}}, "df": 8, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.RidgeRegressor": {"tf": 1}, "mlsauce.RidgeRegressor.__init__": {"tf": 1}, "mlsauce.RidgeRegressor.reg_lambda": {"tf": 1}, "mlsauce.RidgeRegressor.backend": {"tf": 1}, "mlsauce.RidgeRegressor.fit": {"tf": 1}, "mlsauce.RidgeRegressor.predict": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.__init__": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.reg_lambda": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.backend": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}}, "df": 14}}}}}}}}}}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"mlsauce.AdaOpt.eta": {"tf": 1}, "mlsauce.adaopt.AdaOpt.eta": {"tf": 1}}, "df": 2}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.LSBoostClassifier.n_estimators": {"tf": 1}, "mlsauce.LSBoostRegressor.n_estimators": {"tf": 1}, "mlsauce.LazyBoostingClassifier.estimators": {"tf": 1}, "mlsauce.LazyBoostingRegressor.estimators": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.n_estimators": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.n_estimators": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.estimators": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.estimators": {"tf": 1}}, "df": 8}}}}}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.elasticnet": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.__init__": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.reg_lambda": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.alpha": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.backend": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}}, "df": 9, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.ElasticNetRegressor": {"tf": 1}, "mlsauce.ElasticNetRegressor.__init__": {"tf": 1}, "mlsauce.ElasticNetRegressor.reg_lambda": {"tf": 1}, "mlsauce.ElasticNetRegressor.alpha": {"tf": 1}, "mlsauce.ElasticNetRegressor.backend": {"tf": 1}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.__init__": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.reg_lambda": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.alpha": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.backend": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}}, "df": 16}}}}}}}}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.nonconformist.RegressorNormalizer.err_func": {"tf": 1}}, "df": 1}}}, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"mlsauce.AdaOpt.gamma": {"tf": 1}, "mlsauce.adaopt.AdaOpt.gamma": {"tf": 1}}, "df": 2}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingClassifier.base_model": {"tf": 1}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.base_model": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1}}, "df": 8}}}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.GenericBoostingRegressor.base_model": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.base_model": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1}}, "df": 10}}}}}}}}}}}}}}}}}}}}}}, "t": {"docs": {"mlsauce.LazyBoostingClassifier.get_best_model": {"tf": 1}, "mlsauce.LazyBoostingRegressor.get_best_model": {"tf": 1}, "mlsauce.get_config": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.get_best_model": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.get_best_model": {"tf": 1}, "mlsauce.utils.get_beta": {"tf": 1}, "mlsauce.utils.get_beta.get_beta": {"tf": 1.4142135623730951}}, "df": 7}}}, "k": {"docs": {"mlsauce.AdaOpt.k": {"tf": 1}, "mlsauce.adaopt.AdaOpt.k": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.LSBoostRegressor.kernel": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.kernel": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.kernel": {"tf": 1}}, "df": 3}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.predictioninterval.PredictionInterval.kde_": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.LassoRegressor.tol": {"tf": 1}, "mlsauce.lasso.LassoRegressor.tol": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.tolerance": {"tf": 1}, "mlsauce.LSBoostClassifier.tolerance": {"tf": 1}, "mlsauce.LSBoostRegressor.tolerance": {"tf": 1}, "mlsauce.adaopt.AdaOpt.tolerance": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.tolerance": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.tolerance": {"tf": 1}}, "df": 6}}}}}}}}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.type_dist": {"tf": 1}, "mlsauce.LSBoostRegressor.type_pi": {"tf": 1}, "mlsauce.adaopt.AdaOpt.type_dist": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.type_pi": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.type_pi": {"tf": 1}}, "df": 5}}}, "w": {"docs": {}, "df": 0, "o": {"docs": {"mlsauce.utils.merge_two_dicts": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.utils.Progbar.target": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.AdaOpt.cluster_scaling": {"tf": 1}, "mlsauce.LSBoostClassifier.cluster_scaling": {"tf": 1}, "mlsauce.LSBoostRegressor.cluster_scaling": {"tf": 1}, "mlsauce.adaopt.AdaOpt.cluster_scaling": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.cluster_scaling": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.cluster_scaling": {"tf": 1}, "mlsauce.utils.cluster": {"tf": 1}}, "df": 7, "s": {"docs": {"mlsauce.AdaOpt.n_clusters": {"tf": 1}, "mlsauce.AdaOpt.n_clusters_input": {"tf": 1}, "mlsauce.LSBoostClassifier.n_clusters": {"tf": 1}, "mlsauce.LSBoostRegressor.n_clusters": {"tf": 1}, "mlsauce.adaopt.AdaOpt.n_clusters": {"tf": 1}, "mlsauce.adaopt.AdaOpt.n_clusters_input": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.n_clusters": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.n_clusters": {"tf": 1}}, "df": 8}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.AdaOpt.clustering_method": {"tf": 1}, "mlsauce.LSBoostClassifier.clustering_method": {"tf": 1}, "mlsauce.LSBoostRegressor.clustering_method": {"tf": 1}, "mlsauce.adaopt.AdaOpt.clustering_method": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.clustering_method": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.clustering_method": {"tf": 1}}, "df": 6}}}}}}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.cache": {"tf": 1}, "mlsauce.adaopt.AdaOpt.cache": {"tf": 1}}, "df": 2}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.predictioninterval.PredictionInterval.calibrated_residuals_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.scaled_calibrated_residuals_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.calibrated_residuals_scaler_": {"tf": 1}}, "df": 3}}}}}}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.LSBoostClassifier.col_sample": {"tf": 1}, "mlsauce.LSBoostRegressor.col_sample": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.col_sample": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.col_sample": {"tf": 1}}, "df": 4}, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.get_config": {"tf": 1}, "mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 3}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.config_context": {"tf": 1}}, "df": 1}}}}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"mlsauce.LazyBoostingClassifier.custom_metric": {"tf": 1}, "mlsauce.LazyBoostingRegressor.custom_metric": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.custom_metric": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.custom_metric": {"tf": 1}}, "df": 4}}}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"mlsauce.utils.check_and_install": {"tf": 1}}, "df": 1}}}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"mlsauce.AdaOpt.batch_size": {"tf": 1}, "mlsauce.adaopt.AdaOpt.batch_size": {"tf": 1}}, "df": 2}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.LSBoostClassifier.base_model": {"tf": 1}, "mlsauce.GenericBoostingClassifier.base_model": {"tf": 1}, "mlsauce.GenericBoostingRegressor.base_model": {"tf": 1}, "mlsauce.LSBoostRegressor.base_model": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.base_model": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.base_model": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.base_model": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.base_model": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.base_model": {"tf": 1}}, "df": 9}}, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.LSBoostClassifier.backend": {"tf": 1}, "mlsauce.ElasticNetRegressor.backend": {"tf": 1}, "mlsauce.LassoRegressor.backend": {"tf": 1}, "mlsauce.LSBoostRegressor.backend": {"tf": 1}, "mlsauce.RidgeRegressor.backend": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.backend": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.backend": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.backend": {"tf": 1}, "mlsauce.lasso.LassoRegressor.backend": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.backend": {"tf": 1}}, "df": 10}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.StumpClassifier.bins": {"tf": 1}, "mlsauce.stump.StumpClassifier.bins": {"tf": 1}}, "df": 2}}}, "y": {"docs": {"mlsauce.LazyBoostingClassifier.sort_by": {"tf": 1}, "mlsauce.LazyBoostingRegressor.sort_by": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.sort_by": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.sort_by": {"tf": 1}}, "df": 4}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.LazyBoostingClassifier.best_model_": {"tf": 1}, "mlsauce.LazyBoostingClassifier.get_best_model": {"tf": 1}, "mlsauce.LazyBoostingRegressor.best_model_": {"tf": 1}, "mlsauce.LazyBoostingRegressor.get_best_model": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.best_model_": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.get_best_model": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.best_model_": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.get_best_model": {"tf": 1}}, "df": 8}}, "t": {"docs": {}, "df": 0, "a": {"docs": {"mlsauce.utils.get_beta": {"tf": 1}, "mlsauce.utils.get_beta.get_beta": {"tf": 1.4142135623730951}}, "df": 2}}}, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.booster": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.base_model": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.n_estimators": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.learning_rate": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.n_hidden_features": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.reg_lambda": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.alpha": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.row_sample": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.col_sample": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.dropout": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.tolerance": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.direct_link": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.verbose": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.seed": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.backend": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.obj": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.solver": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.activation": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.n_clusters": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.clustering_method": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.cluster_scaling": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.degree": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.poly_": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.weights_distr": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.base_model": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.n_estimators": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.learning_rate": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.n_hidden_features": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.reg_lambda": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.alpha": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.row_sample": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.col_sample": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.dropout": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.tolerance": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.direct_link": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.verbose": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.seed": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.backend": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.obj": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.solver": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.activation": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.type_pi": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.replications": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.kernel": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.n_clusters": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.clustering_method": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.cluster_scaling": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.degree": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.poly_": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.weights_distr": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.base_model": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.base_model": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1}}, "df": 71}}}}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.batch_size": {"tf": 1}, "mlsauce.adaopt.AdaOpt.batch_size": {"tf": 1}}, "df": 2}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.row_sample": {"tf": 1}, "mlsauce.LSBoostClassifier.row_sample": {"tf": 1}, "mlsauce.LSBoostClassifier.col_sample": {"tf": 1}, "mlsauce.LSBoostRegressor.row_sample": {"tf": 1}, "mlsauce.LSBoostRegressor.col_sample": {"tf": 1}, "mlsauce.adaopt.AdaOpt.row_sample": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.row_sample": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.col_sample": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.row_sample": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.col_sample": {"tf": 1}}, "df": 10}}}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.AdaOpt.cluster_scaling": {"tf": 1}, "mlsauce.LSBoostClassifier.cluster_scaling": {"tf": 1}, "mlsauce.LSBoostRegressor.cluster_scaling": {"tf": 1}, "mlsauce.adaopt.AdaOpt.cluster_scaling": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.cluster_scaling": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.cluster_scaling": {"tf": 1}}, "df": 6}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.predictioninterval.PredictionInterval.scaled_calibrated_residuals_": {"tf": 1}}, "df": 1}, "r": {"docs": {"mlsauce.predictioninterval.PredictionInterval.calibrated_residuals_scaler_": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.score": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 22}}}}, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.AdaOpt.seed": {"tf": 1}, "mlsauce.LSBoostClassifier.seed": {"tf": 1}, "mlsauce.LSBoostRegressor.seed": {"tf": 1}, "mlsauce.adaopt.AdaOpt.seed": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.seed": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.seed": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.seed": {"tf": 1}}, "df": 7}}, "t": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.set_config": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 36, "u": {"docs": {}, "df": 0, "p": {"docs": {"mlsauce.setup": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.LSBoostClassifier.solver": {"tf": 1}, "mlsauce.LSBoostRegressor.solver": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.solver": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.solver": {"tf": 1}}, "df": 4}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.LazyBoostingClassifier.sort_by": {"tf": 1}, "mlsauce.LazyBoostingRegressor.sort_by": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.sort_by": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.sort_by": {"tf": 1}}, "df": 4}}}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {"mlsauce.stump": {"tf": 1}, "mlsauce.stump.StumpClassifier": {"tf": 1}, "mlsauce.stump.StumpClassifier.__init__": {"tf": 1}, "mlsauce.stump.StumpClassifier.bins": {"tf": 1}, "mlsauce.stump.StumpClassifier.obj": {"tf": 1}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 10, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.StumpClassifier": {"tf": 1}, "mlsauce.StumpClassifier.__init__": {"tf": 1}, "mlsauce.StumpClassifier.bins": {"tf": 1}, "mlsauce.StumpClassifier.obj": {"tf": 1}, "mlsauce.StumpClassifier.fit": {"tf": 1}, "mlsauce.StumpClassifier.predict": {"tf": 1}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier": {"tf": 1}, "mlsauce.stump.StumpClassifier.__init__": {"tf": 1}, "mlsauce.stump.StumpClassifier.bins": {"tf": 1}, "mlsauce.stump.StumpClassifier.obj": {"tf": 1}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 18}}}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.LazyBoostingClassifier.random_state": {"tf": 1}, "mlsauce.LazyBoostingRegressor.random_state": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.random_state": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.random_state": {"tf": 1}}, "df": 4}}}}, "u": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.utils.subsample": {"tf": 1}}, "df": 1}}}}}}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt.type_dist": {"tf": 1}, "mlsauce.adaopt.AdaOpt.type_dist": {"tf": 1}}, "df": 2, "r": {"docs": {"mlsauce.LSBoostClassifier.weights_distr": {"tf": 1}, "mlsauce.LSBoostRegressor.weights_distr": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.weights_distr": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.weights_distr": {"tf": 1}}, "df": 4}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.LSBoostClassifier.direct_link": {"tf": 1}, "mlsauce.LSBoostRegressor.direct_link": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.direct_link": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.direct_link": {"tf": 1}}, "df": 4}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.utils.merge_two_dicts": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.LSBoostClassifier.dropout": {"tf": 1}, "mlsauce.LSBoostRegressor.dropout": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.dropout": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.dropout": {"tf": 1}}, "df": 4}}}}}}, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.LSBoostClassifier.degree": {"tf": 1}, "mlsauce.LSBoostRegressor.degree": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.degree": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.degree": {"tf": 1}}, "df": 4}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {"mlsauce.demo": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.download": {"tf": 1}, "mlsauce.datasets.dowload.download": {"tf": 1}}, "df": 2}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.datasets.dowload": {"tf": 1}, "mlsauce.datasets.dowload.download": {"tf": 1}}, "df": 2}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.datasets": {"tf": 1}, "mlsauce.datasets.dowload": {"tf": 1}, "mlsauce.datasets.dowload.download": {"tf": 1}}, "df": 3}}}}}}}}, "j": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.AdaOpt.n_jobs": {"tf": 1}, "mlsauce.LazyBoostingClassifier.n_jobs": {"tf": 1}, "mlsauce.LazyBoostingRegressor.n_jobs": {"tf": 1}, "mlsauce.adaopt.AdaOpt.n_jobs": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.n_jobs": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.n_jobs": {"tf": 1}}, "df": 6}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.verbose": {"tf": 1}, "mlsauce.LSBoostClassifier.verbose": {"tf": 1}, "mlsauce.LSBoostRegressor.verbose": {"tf": 1}, "mlsauce.LazyBoostingClassifier.verbose": {"tf": 1}, "mlsauce.LazyBoostingRegressor.verbose": {"tf": 1}, "mlsauce.adaopt.AdaOpt.verbose": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.verbose": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.verbose": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.verbose": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.verbose": {"tf": 1}, "mlsauce.utils.Progbar.verbose": {"tf": 1}}, "df": 11}}}}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt.fit": {"tf": 1}, "mlsauce.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.StumpClassifier.fit": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.LassoRegressor.fit": {"tf": 1}, "mlsauce.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.RidgeRegressor.fit": {"tf": 1}, "mlsauce.LazyBoostingClassifier.fit": {"tf": 1}, "mlsauce.LazyBoostingRegressor.fit": {"tf": 1}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.fit": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.fit": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.fit": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}}, "df": 26}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.LSBoostClassifier.n_hidden_features": {"tf": 1}, "mlsauce.LSBoostRegressor.n_hidden_features": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.n_hidden_features": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.n_hidden_features": {"tf": 1}}, "df": 4}}}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"mlsauce.nonconformist.RegressorNormalizer.err_func": {"tf": 1}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.utils.flatten": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.utils.is_float": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.utils.is_factor": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt.predict": {"tf": 1}, "mlsauce.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.StumpClassifier.predict": {"tf": 1}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.LassoRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.RidgeRegressor.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1}}, "df": 31, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.LazyBoostingClassifier.predictions": {"tf": 1}, "mlsauce.LazyBoostingRegressor.predictions": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.predictions": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.predictions": {"tf": 1}}, "df": 4}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.predictioninterval": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.__init__": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.obj": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.method": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.level": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.type_pi": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.replications": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.kernel": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.agg": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.seed": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.alpha_": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.quantile_": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.icp_": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.calibrated_residuals_": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.scaled_calibrated_residuals_": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.calibrated_residuals_scaler_": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.kde_": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1.4142135623730951}}, "df": 22}}}}}}}}}}}}}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.LazyBoostingClassifier.preprocess": {"tf": 1}, "mlsauce.LazyBoostingRegressor.preprocess": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.preprocess": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.preprocess": {"tf": 1}}, "df": 4}}}}}}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {"mlsauce.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1}}, "df": 6}}, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.LazyBoostingClassifier.provide_models": {"tf": 1}, "mlsauce.LazyBoostingRegressor.provide_models": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 1}}, "df": 4}}}}, "g": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.utils.Progbar": {"tf": 1}, "mlsauce.utils.Progbar.__init__": {"tf": 1}, "mlsauce.utils.Progbar.target": {"tf": 1}, "mlsauce.utils.Progbar.width": {"tf": 1}, "mlsauce.utils.Progbar.verbose": {"tf": 1}, "mlsauce.utils.Progbar.interval": {"tf": 1}, "mlsauce.utils.Progbar.update": {"tf": 1}, "mlsauce.utils.Progbar.add": {"tf": 1}}, "df": 8}}}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"mlsauce.LSBoostClassifier.poly_": {"tf": 1}, "mlsauce.LSBoostRegressor.poly_": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.poly_": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.poly_": {"tf": 1}}, "df": 4}}}, "i": {"docs": {"mlsauce.LSBoostRegressor.type_pi": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.type_pi": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.type_pi": {"tf": 1}}, "df": 3}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.LSBoostClassifier.n_hidden_features": {"tf": 1}, "mlsauce.LSBoostRegressor.n_hidden_features": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.n_hidden_features": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.n_hidden_features": {"tf": 1}}, "df": 4}}}}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "j": {"docs": {"mlsauce.LSBoostClassifier.obj": {"tf": 1}, "mlsauce.StumpClassifier.obj": {"tf": 1}, "mlsauce.LSBoostRegressor.obj": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.obj": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.obj": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.obj": {"tf": 1}, "mlsauce.stump.StumpClassifier.obj": {"tf": 1}}, "df": 7}}}, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.LSBoostClassifier.weights_distr": {"tf": 1}, "mlsauce.LSBoostRegressor.weights_distr": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.weights_distr": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.weights_distr": {"tf": 1}}, "df": 4}}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.LazyBoostingClassifier.ignore_warnings": {"tf": 1}, "mlsauce.LazyBoostingRegressor.ignore_warnings": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.ignore_warnings": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.ignore_warnings": {"tf": 1}}, "df": 4}}}}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"mlsauce.utils.Progbar.width": {"tf": 1}}, "df": 1}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.predictioninterval.PredictionInterval.quantile_": {"tf": 1}}, "df": 1, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"mlsauce.nonconformist.QuantileRegErrFunc": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}}, "df": 3}}}}}}}}}}}}}}}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.utils": {"tf": 1}, "mlsauce.utils.cluster": {"tf": 1}, "mlsauce.utils.subsample": {"tf": 1}, "mlsauce.utils.merge_two_dicts": {"tf": 1}, "mlsauce.utils.flatten": {"tf": 1}, "mlsauce.utils.is_float": {"tf": 1}, "mlsauce.utils.is_factor": {"tf": 1}, "mlsauce.utils.Progbar": {"tf": 1}, "mlsauce.utils.Progbar.__init__": {"tf": 1}, "mlsauce.utils.Progbar.target": {"tf": 1}, "mlsauce.utils.Progbar.width": {"tf": 1}, "mlsauce.utils.Progbar.verbose": {"tf": 1}, "mlsauce.utils.Progbar.interval": {"tf": 1}, "mlsauce.utils.Progbar.update": {"tf": 1}, "mlsauce.utils.Progbar.add": {"tf": 1}, "mlsauce.utils.get_beta": {"tf": 1}, "mlsauce.utils.check_and_install": {"tf": 1}, "mlsauce.utils.get_beta.get_beta": {"tf": 1}}, "df": 18}}}}, "p": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.utils.Progbar.update": {"tf": 1}}, "df": 1}}}}}}}}, "annotation": {"root": {"docs": {}, "df": 0}}, "default_value": {"root": {"docs": {}, "df": 0}}, "signature": {"root": {"0": {"0": {"0": {"1": {"docs": {"mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.__init__": {"tf": 1}}, "df": 8}, "docs": {}, "df": 0}, "1": {"docs": {"mlsauce.LassoRegressor.__init__": {"tf": 1}, "mlsauce.lasso.LassoRegressor.__init__": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "1": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1.4142135623730951}}, "df": 2}, "5": {"docs": {"mlsauce.utils.Progbar.__init__": {"tf": 1}}, "df": 1}, "6": {"docs": {"mlsauce.nonconformist.RegressorNc.__init__": {"tf": 1}}, "df": 1}, "docs": {"mlsauce.AdaOpt.__init__": {"tf": 3.1622776601683795}, "mlsauce.LSBoostClassifier.__init__": {"tf": 2.449489742783178}, "mlsauce.GenericBoostingClassifier.__init__": {"tf": 2.449489742783178}, "mlsauce.GenericBoostingRegressor.__init__": {"tf": 2.449489742783178}, "mlsauce.ElasticNetRegressor.__init__": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.__init__": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.__init__": {"tf": 2.449489742783178}, "mlsauce.RidgeRegressor.__init__": {"tf": 1}, "mlsauce.LazyBoostingClassifier.__init__": {"tf": 1}, "mlsauce.LazyBoostingRegressor.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 3.1622776601683795}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 2.449489742783178}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 2.449489742783178}, "mlsauce.booster.GenericBoostingClassifier.__init__": {"tf": 2.449489742783178}, "mlsauce.booster.GenericBoostingRegressor.__init__": {"tf": 2.449489742783178}, "mlsauce.elasticnet.ElasticNetRegressor.__init__": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.__init__": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier.__init__": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.__init__": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.__init__": {"tf": 1}, "mlsauce.utils.subsample": {"tf": 1}, "mlsauce.utils.Progbar.__init__": {"tf": 1}}, "df": 22}, "1": {"0": {"0": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.__init__": {"tf": 1}}, "df": 10}, "docs": {"mlsauce.LassoRegressor.__init__": {"tf": 1}, "mlsauce.lasso.LassoRegressor.__init__": {"tf": 1}}, "df": 2}, "2": {"3": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.__init__": {"tf": 1}, "mlsauce.utils.cluster": {"tf": 1}, "mlsauce.utils.subsample": {"tf": 1}}, "df": 13}, "docs": {}, "df": 0}, "docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.LSBoostClassifier.__init__": {"tf": 2.449489742783178}, "mlsauce.GenericBoostingClassifier.__init__": {"tf": 2.449489742783178}, "mlsauce.GenericBoostingRegressor.__init__": {"tf": 2.449489742783178}, "mlsauce.ElasticNetRegressor.__init__": {"tf": 1}, "mlsauce.LassoRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 2.449489742783178}, "mlsauce.RidgeRegressor.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 2.449489742783178}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 2.449489742783178}, "mlsauce.booster.GenericBoostingClassifier.__init__": {"tf": 2.449489742783178}, "mlsauce.booster.GenericBoostingRegressor.__init__": {"tf": 2.449489742783178}, "mlsauce.elasticnet.ElasticNetRegressor.__init__": {"tf": 1}, "mlsauce.lasso.LassoRegressor.__init__": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.__init__": {"tf": 1}, "mlsauce.utils.Progbar.__init__": {"tf": 1}}, "df": 17, "e": {"docs": {"mlsauce.nonconformist.RegressorNc.__init__": {"tf": 1}}, "df": 1}}, "3": {"0": {"docs": {"mlsauce.utils.Progbar.__init__": {"tf": 1}}, "df": 1}, "9": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 2.449489742783178}, "mlsauce.LSBoostClassifier.__init__": {"tf": 3.4641016151377544}, "mlsauce.GenericBoostingClassifier.__init__": {"tf": 3.4641016151377544}, "mlsauce.GenericBoostingRegressor.__init__": {"tf": 3.4641016151377544}, "mlsauce.StumpClassifier.__init__": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.__init__": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.__init__": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.__init__": {"tf": 3.4641016151377544}, "mlsauce.RidgeRegressor.__init__": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingClassifier.__init__": {"tf": 2}, "mlsauce.LazyBoostingRegressor.__init__": {"tf": 2}, "mlsauce.download": {"tf": 2.449489742783178}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 2.449489742783178}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 3.4641016151377544}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 3.4641016151377544}, "mlsauce.booster.GenericBoostingClassifier.__init__": {"tf": 3.4641016151377544}, "mlsauce.booster.GenericBoostingRegressor.__init__": {"tf": 3.4641016151377544}, "mlsauce.datasets.dowload.download": {"tf": 2.449489742783178}, "mlsauce.elasticnet.ElasticNetRegressor.__init__": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.__init__": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier.__init__": {"tf": 2}, "mlsauce.lazybooster.LazyBoostingRegressor.__init__": {"tf": 2}, "mlsauce.predictioninterval.PredictionInterval.__init__": {"tf": 2.449489742783178}, "mlsauce.ridge.RidgeRegressor.__init__": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.__init__": {"tf": 1.4142135623730951}, "mlsauce.utils.cluster": {"tf": 2}}, "df": 26}, "docs": {"mlsauce.AdaOpt.__init__": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1.4142135623730951}}, "df": 2}, "4": {"2": {"docs": {"mlsauce.LazyBoostingClassifier.__init__": {"tf": 1}, "mlsauce.LazyBoostingRegressor.__init__": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.__init__": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.__init__": {"tf": 1}}, "df": 4}, "docs": {}, "df": 0}, "5": {"0": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}}, "df": 2}, "docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.LSBoostClassifier.__init__": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingClassifier.__init__": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor.__init__": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingClassifier.__init__": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor.__init__": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.__init__": {"tf": 1}}, "df": 12}, "8": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}, "mlsauce.utils.subsample": {"tf": 1}}, "df": 3}, "9": {"5": {"docs": {"mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.__init__": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {"mlsauce.AdaOpt.__init__": {"tf": 13.45362404707371}, "mlsauce.AdaOpt.fit": {"tf": 4.898979485566356}, "mlsauce.AdaOpt.predict": {"tf": 4.47213595499958}, "mlsauce.AdaOpt.predict_proba": {"tf": 4.47213595499958}, "mlsauce.AdaOpt.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.LSBoostClassifier.__init__": {"tf": 14.317821063276353}, "mlsauce.LSBoostClassifier.fit": {"tf": 4.898979485566356}, "mlsauce.LSBoostClassifier.predict": {"tf": 4.47213595499958}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 4.47213595499958}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.GenericBoostingClassifier.__init__": {"tf": 14.177446878757825}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.GenericBoostingRegressor.__init__": {"tf": 15.0996688705415}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 3.1622776601683795}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.StumpClassifier.__init__": {"tf": 3.7416573867739413}, "mlsauce.StumpClassifier.fit": {"tf": 5.656854249492381}, "mlsauce.StumpClassifier.predict": {"tf": 4.47213595499958}, "mlsauce.StumpClassifier.predict_proba": {"tf": 4.47213595499958}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 3.1622776601683795}, "mlsauce.StumpClassifier.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.ElasticNetRegressor.__init__": {"tf": 5.477225575051661}, "mlsauce.ElasticNetRegressor.fit": {"tf": 4.898979485566356}, "mlsauce.ElasticNetRegressor.predict": {"tf": 4.47213595499958}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.LassoRegressor.__init__": {"tf": 6.164414002968976}, "mlsauce.LassoRegressor.fit": {"tf": 4.898979485566356}, "mlsauce.LassoRegressor.predict": {"tf": 4.47213595499958}, "mlsauce.LassoRegressor.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.LSBoostRegressor.__init__": {"tf": 15.231546211727817}, "mlsauce.LSBoostRegressor.fit": {"tf": 4.898979485566356}, "mlsauce.LSBoostRegressor.predict": {"tf": 6}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 3.1622776601683795}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.RidgeRegressor.__init__": {"tf": 4.69041575982343}, "mlsauce.RidgeRegressor.fit": {"tf": 4.898979485566356}, "mlsauce.RidgeRegressor.predict": {"tf": 4.47213595499958}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.LazyBoostingClassifier.__init__": {"tf": 9.433981132056603}, "mlsauce.LazyBoostingClassifier.fit": {"tf": 5.656854249492381}, "mlsauce.LazyBoostingClassifier.get_best_model": {"tf": 3.1622776601683795}, "mlsauce.LazyBoostingClassifier.provide_models": {"tf": 5.0990195135927845}, "mlsauce.LazyBoostingRegressor.__init__": {"tf": 9.433981132056603}, "mlsauce.LazyBoostingRegressor.fit": {"tf": 5.656854249492381}, "mlsauce.LazyBoostingRegressor.get_best_model": {"tf": 3.1622776601683795}, "mlsauce.LazyBoostingRegressor.provide_models": {"tf": 5.0990195135927845}, "mlsauce.download": {"tf": 6.782329983125268}, "mlsauce.get_config": {"tf": 2.6457513110645907}, "mlsauce.set_config": {"tf": 6.48074069840786}, "mlsauce.config_context": {"tf": 3.4641016151377544}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 13.45362404707371}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 4.898979485566356}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 4.47213595499958}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 4.47213595499958}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 14.317821063276353}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 4.898979485566356}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 4.47213595499958}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 4.47213595499958}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 15.231546211727817}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 4.898979485566356}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 6}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 3.1622776601683795}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.booster.GenericBoostingClassifier.__init__": {"tf": 14.177446878757825}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.booster.GenericBoostingRegressor.__init__": {"tf": 15.0996688705415}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 3.1622776601683795}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.datasets.dowload.download": {"tf": 6.782329983125268}, "mlsauce.elasticnet.ElasticNetRegressor.__init__": {"tf": 5.477225575051661}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 4.898979485566356}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 4.47213595499958}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.lasso.LassoRegressor.__init__": {"tf": 6.164414002968976}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 4.898979485566356}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 4.47213595499958}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.lazybooster.LazyBoostingClassifier.__init__": {"tf": 9.433981132056603}, "mlsauce.lazybooster.LazyBoostingClassifier.fit": {"tf": 5.656854249492381}, "mlsauce.lazybooster.LazyBoostingClassifier.get_best_model": {"tf": 3.1622776601683795}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 5.0990195135927845}, "mlsauce.lazybooster.LazyBoostingRegressor.__init__": {"tf": 9.433981132056603}, "mlsauce.lazybooster.LazyBoostingRegressor.fit": {"tf": 5.656854249492381}, "mlsauce.lazybooster.LazyBoostingRegressor.get_best_model": {"tf": 3.1622776601683795}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 5.0990195135927845}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 4.242640687119285}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 4.242640687119285}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 4.242640687119285}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 4.242640687119285}, "mlsauce.nonconformist.RegressorAdapter.__init__": {"tf": 4}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 3.1622776601683795}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 3.1622776601683795}, "mlsauce.nonconformist.RegressorNc.__init__": {"tf": 7.280109889280518}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 5.0990195135927845}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 3.1622776601683795}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 3.1622776601683795}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.nonconformist.RegressorNormalizer.__init__": {"tf": 4}, "mlsauce.nonconformist.RegressorNormalizer.fit": {"tf": 4.242640687119285}, "mlsauce.nonconformist.RegressorNormalizer.score": {"tf": 4.69041575982343}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 3.1622776601683795}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.nonconformist.IcpRegressor.__init__": {"tf": 4}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 4.69041575982343}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 3.1622776601683795}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 3.1622776601683795}, "mlsauce.predictioninterval.PredictionInterval.__init__": {"tf": 8.831760866327848}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 4.242640687119285}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 4.69041575982343}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 3.1622776601683795}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.ridge.RidgeRegressor.__init__": {"tf": 4.69041575982343}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 4.898979485566356}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 4.47213595499958}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.stump.StumpClassifier.__init__": {"tf": 3.7416573867739413}, "mlsauce.stump.StumpClassifier.fit": {"tf": 5.656854249492381}, "mlsauce.stump.StumpClassifier.predict": {"tf": 4.47213595499958}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 4.47213595499958}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 3.1622776601683795}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.utils.cluster": {"tf": 9.327379053088816}, "mlsauce.utils.subsample": {"tf": 5.0990195135927845}, "mlsauce.utils.merge_two_dicts": {"tf": 3.7416573867739413}, "mlsauce.utils.flatten": {"tf": 3.1622776601683795}, "mlsauce.utils.is_float": {"tf": 3.1622776601683795}, "mlsauce.utils.is_factor": {"tf": 3.1622776601683795}, "mlsauce.utils.Progbar.__init__": {"tf": 6.324555320336759}, "mlsauce.utils.Progbar.update": {"tf": 4.69041575982343}, "mlsauce.utils.Progbar.add": {"tf": 4.69041575982343}, "mlsauce.utils.get_beta": {"tf": 3.7416573867739413}, "mlsauce.utils.check_and_install": {"tf": 3.1622776601683795}, "mlsauce.utils.get_beta.get_beta": {"tf": 3.7416573867739413}}, "df": 135, "n": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 2}, "mlsauce.LSBoostClassifier.__init__": {"tf": 1.7320508075688772}, "mlsauce.GenericBoostingClassifier.__init__": {"tf": 1.7320508075688772}, "mlsauce.GenericBoostingRegressor.__init__": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1.7320508075688772}, "mlsauce.LazyBoostingClassifier.__init__": {"tf": 1}, "mlsauce.LazyBoostingRegressor.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 2}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1.7320508075688772}, "mlsauce.booster.GenericBoostingClassifier.__init__": {"tf": 1.7320508075688772}, "mlsauce.booster.GenericBoostingRegressor.__init__": {"tf": 1.7320508075688772}, "mlsauce.lazybooster.LazyBoostingClassifier.__init__": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.__init__": {"tf": 1}, "mlsauce.utils.cluster": {"tf": 1}, "mlsauce.utils.Progbar.add": {"tf": 1}}, "df": 16, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.LSBoostClassifier.__init__": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingRegressor.__init__": {"tf": 2}, "mlsauce.StumpClassifier.fit": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 2.23606797749979}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.LazyBoostingClassifier.__init__": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor.__init__": {"tf": 1.4142135623730951}, "mlsauce.set_config": {"tf": 2}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 2.23606797749979}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.__init__": {"tf": 2}, "mlsauce.lazybooster.LazyBoostingClassifier.__init__": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor.__init__": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.score": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.__init__": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.__init__": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1}, "mlsauce.utils.cluster": {"tf": 2}, "mlsauce.utils.Progbar.__init__": {"tf": 1}, "mlsauce.utils.Progbar.update": {"tf": 1}, "mlsauce.utils.Progbar.add": {"tf": 1}}, "df": 30}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.nonconformist.RegressorNc.__init__": {"tf": 1}}, "df": 1}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.nonconformist.RegressorNc.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.__init__": {"tf": 1}}, "df": 2}}}}}}}}}, "e": {"docs": {}, "df": 0, "w": {"docs": {"mlsauce.config_context": {"tf": 1}}, "df": 1}}, "c": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.__init__": {"tf": 1}}, "df": 5}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.utils.check_and_install": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.LassoRegressor.__init__": {"tf": 1}, "mlsauce.lasso.LassoRegressor.__init__": {"tf": 1}}, "df": 2, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}}, "df": 2}}}}}}}}}, "n": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}}, "df": 2}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.utils.Progbar.__init__": {"tf": 1}}, "df": 1}}}}}}}, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.LazyBoostingClassifier.__init__": {"tf": 1}, "mlsauce.LazyBoostingRegressor.__init__": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.__init__": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.__init__": {"tf": 1}}, "df": 4}}}}}}, "l": {"docs": {"mlsauce.utils.flatten": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.__init__": {"tf": 1}}, "df": 10}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.__init__": {"tf": 1}}, "df": 3}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.ElasticNetRegressor.__init__": {"tf": 1}, "mlsauce.LassoRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.RidgeRegressor.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.__init__": {"tf": 1}, "mlsauce.lasso.LassoRegressor.__init__": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.__init__": {"tf": 1}}, "df": 16}}}}, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.utils.cluster": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"docs": {"mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.__init__": {"tf": 1}}, "df": 8}}}, "t": {"docs": {"mlsauce.nonconformist.RegressorNc.__init__": {"tf": 1}}, "df": 1}}, "r": {"docs": {"mlsauce.download": {"tf": 1}, "mlsauce.datasets.dowload.download": {"tf": 1}}, "df": 2, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.__init__": {"tf": 1}}, "df": 10}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"mlsauce.LazyBoostingClassifier.__init__": {"tf": 1}, "mlsauce.LazyBoostingRegressor.__init__": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.__init__": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.__init__": {"tf": 1}}, "df": 4}}}}}, "e": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.ElasticNetRegressor.__init__": {"tf": 1}, "mlsauce.LassoRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.RidgeRegressor.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.__init__": {"tf": 1}, "mlsauce.lasso.LassoRegressor.__init__": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.__init__": {"tf": 1}}, "df": 16}, "l": {"docs": {}, "df": 0, "u": {"docs": {"mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.__init__": {"tf": 1}}, "df": 8}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.__init__": {"tf": 1}}, "df": 5}}}}}}}}}}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "w": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.utils.subsample": {"tf": 1}}, "df": 11}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.__init__": {"tf": 1}}, "df": 8}}}}, "m": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.LazyBoostingRegressor.__init__": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.__init__": {"tf": 1}}, "df": 2}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.ElasticNetRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.__init__": {"tf": 1}}, "df": 12}}}, "l": {"docs": {"mlsauce.LazyBoostingClassifier.__init__": {"tf": 1}, "mlsauce.LazyBoostingRegressor.__init__": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.__init__": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.__init__": {"tf": 1}}, "df": 4}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.__init__": {"tf": 1}}, "df": 8}}}}}}}}, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "y": {"docs": {"mlsauce.LazyBoostingClassifier.__init__": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.__init__": {"tf": 1}}, "df": 2}}}}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {"mlsauce.StumpClassifier.__init__": {"tf": 1}, "mlsauce.stump.StumpClassifier.__init__": {"tf": 1}}, "df": 2}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.set_config": {"tf": 1}}, "df": 1}}}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"mlsauce.nonconformist.RegressorNc.__init__": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}, "g": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.predictioninterval.PredictionInterval.__init__": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}}, "df": 2}}, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}}, "df": 2}}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.LazyBoostingClassifier.__init__": {"tf": 1}, "mlsauce.LazyBoostingRegressor.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.__init__": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.__init__": {"tf": 1}}, "df": 12}}}}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.nonconformist.RegressorNc.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.__init__": {"tf": 1}}, "df": 2}}, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.utils.cluster": {"tf": 1}}, "df": 1}}}}}}}, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}}, "df": 2}}}}, "t": {"docs": {"mlsauce.nonconformist.RegressorNc.__init__": {"tf": 1}}, "df": 1}}, "k": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}}, "df": 2, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.utils.cluster": {"tf": 1}}, "df": 11}}}}}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.AdaOpt.fit": {"tf": 1}, "mlsauce.AdaOpt.predict": {"tf": 1}, "mlsauce.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.StumpClassifier.fit": {"tf": 1}, "mlsauce.StumpClassifier.predict": {"tf": 1}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.LassoRegressor.fit": {"tf": 1}, "mlsauce.LassoRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.RidgeRegressor.fit": {"tf": 1}, "mlsauce.RidgeRegressor.predict": {"tf": 1}, "mlsauce.LazyBoostingClassifier.fit": {"tf": 1}, "mlsauce.LazyBoostingRegressor.fit": {"tf": 1}, "mlsauce.download": {"tf": 1}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.datasets.dowload.download": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.fit": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.fit": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1}}, "df": 40}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.__init__": {"tf": 1}}, "df": 5}}}}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.LassoRegressor.__init__": {"tf": 1}, "mlsauce.lasso.LassoRegressor.__init__": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.__init__": {"tf": 1}}, "df": 10}}}}}}}}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.__init__": {"tf": 1}, "mlsauce.utils.cluster": {"tf": 1}}, "df": 8}}}, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.LazyBoostingClassifier.__init__": {"tf": 1}, "mlsauce.LazyBoostingRegressor.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.__init__": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.__init__": {"tf": 1}, "mlsauce.utils.cluster": {"tf": 1}}, "df": 7}}, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.LazyBoostingClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingClassifier.provide_models": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor.provide_models": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 1.4142135623730951}}, "df": 8, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.utils.cluster": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.LazyBoostingClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingClassifier.provide_models": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor.provide_models": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 1.4142135623730951}}, "df": 8}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.utils.Progbar.__init__": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.__init__": {"tf": 1}}, "df": 10, "s": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.utils.cluster": {"tf": 1}}, "df": 11}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.__init__": {"tf": 1}}, "df": 10}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.utils.cluster": {"tf": 1}}, "df": 1}}}}}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}}, "df": 2}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.__init__": {"tf": 1}}, "df": 8}, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.config_context": {"tf": 1}}, "df": 1}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.nonconformist.IcpRegressor.__init__": {"tf": 1}}, "df": 1}}}}}}}}, "p": {"docs": {}, "df": 0, "u": {"docs": {"mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.ElasticNetRegressor.__init__": {"tf": 1}, "mlsauce.LassoRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.RidgeRegressor.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.__init__": {"tf": 1}, "mlsauce.lasso.LassoRegressor.__init__": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.__init__": {"tf": 1}}, "df": 14}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"mlsauce.LazyBoostingClassifier.__init__": {"tf": 1}, "mlsauce.LazyBoostingRegressor.__init__": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.__init__": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.__init__": {"tf": 1}}, "df": 4}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.utils.Progbar.update": {"tf": 1}}, "df": 1}}}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.set_config": {"tf": 1}}, "df": 1}}}}}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}}, "df": 2}}}, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.ElasticNetRegressor.__init__": {"tf": 1}, "mlsauce.LassoRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.RidgeRegressor.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.__init__": {"tf": 1}, "mlsauce.lasso.LassoRegressor.__init__": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.__init__": {"tf": 1}}, "df": 14}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.__init__": {"tf": 1}}, "df": 5}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.StumpClassifier.__init__": {"tf": 1}, "mlsauce.stump.StumpClassifier.__init__": {"tf": 1}}, "df": 2}}}, "y": {"docs": {"mlsauce.LazyBoostingClassifier.__init__": {"tf": 1}, "mlsauce.LazyBoostingRegressor.__init__": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.__init__": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.__init__": {"tf": 1}}, "df": 4}, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.download": {"tf": 1}, "mlsauce.datasets.dowload.download": {"tf": 1}}, "df": 2}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {"mlsauce.predictioninterval.PredictionInterval.__init__": {"tf": 1}}, "df": 1}}}}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"mlsauce.nonconformist.RegressorNc.__init__": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}}, "df": 2}}, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}}, "df": 4}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.LSBoostClassifier.__init__": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingClassifier.__init__": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor.__init__": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.fit": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingClassifier.__init__": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor.__init__": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1}, "mlsauce.utils.subsample": {"tf": 1}}, "df": 13}}}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.utils.cluster": {"tf": 1}}, "df": 11}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.utils.cluster": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.utils.cluster": {"tf": 1}}, "df": 11}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.LazyBoostingClassifier.__init__": {"tf": 1}, "mlsauce.LazyBoostingRegressor.__init__": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.__init__": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.__init__": {"tf": 1}}, "df": 4, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.utils.Progbar.__init__": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.__init__": {"tf": 1}, "mlsauce.utils.cluster": {"tf": 1}, "mlsauce.utils.subsample": {"tf": 1}}, "df": 13}}, "l": {"docs": {}, "df": 0, "f": {"docs": {"mlsauce.AdaOpt.fit": {"tf": 1}, "mlsauce.AdaOpt.predict": {"tf": 1}, "mlsauce.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.StumpClassifier.fit": {"tf": 1}, "mlsauce.StumpClassifier.predict": {"tf": 1}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.LassoRegressor.fit": {"tf": 1}, "mlsauce.LassoRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.RidgeRegressor.fit": {"tf": 1}, "mlsauce.RidgeRegressor.predict": {"tf": 1}, "mlsauce.LazyBoostingClassifier.fit": {"tf": 1}, "mlsauce.LazyBoostingClassifier.get_best_model": {"tf": 1}, "mlsauce.LazyBoostingClassifier.provide_models": {"tf": 1}, "mlsauce.LazyBoostingRegressor.fit": {"tf": 1}, "mlsauce.LazyBoostingRegressor.get_best_model": {"tf": 1}, "mlsauce.LazyBoostingRegressor.provide_models": {"tf": 1}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.fit": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.get_best_model": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.fit": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.get_best_model": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.fit": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.score": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.utils.Progbar.update": {"tf": 1}, "mlsauce.utils.Progbar.add": {"tf": 1}}, "df": 58}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.__init__": {"tf": 1}}, "df": 8}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.LazyBoostingClassifier.__init__": {"tf": 1}, "mlsauce.LazyBoostingRegressor.__init__": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.__init__": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.__init__": {"tf": 1}}, "df": 4}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.download": {"tf": 1}, "mlsauce.datasets.dowload.download": {"tf": 1}}, "df": 2}}}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.predictioninterval.PredictionInterval.__init__": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}}, "df": 2, "r": {"docs": {"mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.__init__": {"tf": 1}}, "df": 8}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"mlsauce.set_config": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.__init__": {"tf": 1}}, "df": 8}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.__init__": {"tf": 1}}, "df": 8}}}}}}, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.__init__": {"tf": 1}}, "df": 8}}}}, "v": {"docs": {"mlsauce.download": {"tf": 1}, "mlsauce.datasets.dowload.download": {"tf": 1}}, "df": 2}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.download": {"tf": 1}, "mlsauce.datasets.dowload.download": {"tf": 1}}, "df": 2}}}}}}}, "f": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.__init__": {"tf": 1}}, "df": 8}}}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.LazyBoostingClassifier.__init__": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor.__init__": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier.__init__": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor.__init__": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}}, "df": 5}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.set_config": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {"mlsauce.nonconformist.RegressorAdapter.__init__": {"tf": 1}}, "df": 1}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"mlsauce.nonconformist.RegressorNc.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.__init__": {"tf": 1}}, "df": 2, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.nonconformist.IcpRegressor.__init__": {"tf": 1}}, "df": 1}}}}}}}}, "j": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.LazyBoostingClassifier.__init__": {"tf": 1}, "mlsauce.LazyBoostingRegressor.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.__init__": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.__init__": {"tf": 1}}, "df": 6}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.LazyBoostingClassifier.__init__": {"tf": 1}, "mlsauce.LazyBoostingRegressor.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.__init__": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.__init__": {"tf": 1}, "mlsauce.utils.Progbar.__init__": {"tf": 1}}, "df": 15}}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.utils.Progbar.update": {"tf": 1}, "mlsauce.utils.Progbar.add": {"tf": 1}}, "df": 2}}}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.__init__": {"tf": 1}, "mlsauce.utils.cluster": {"tf": 1}}, "df": 14}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"mlsauce.LazyBoostingClassifier.__init__": {"tf": 1}, "mlsauce.LazyBoostingRegressor.__init__": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.__init__": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.__init__": {"tf": 1}}, "df": 4, "s": {"docs": {"mlsauce.utils.Progbar.__init__": {"tf": 1}}, "df": 1}}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"mlsauce.set_config": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.predictioninterval.PredictionInterval.__init__": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.__init__": {"tf": 1.4142135623730951}}, "df": 7}}}}, "a": {"docs": {}, "df": 0, "x": {"docs": {"mlsauce.LassoRegressor.__init__": {"tf": 1}, "mlsauce.lasso.LassoRegressor.__init__": {"tf": 1}}, "df": 2}, "s": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.download": {"tf": 1}, "mlsauce.datasets.dowload.download": {"tf": 1}}, "df": 2}}}, "l": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.nonconformist.RegressorNc.__init__": {"tf": 1}}, "df": 1}}}}}}}, "x": {"docs": {"mlsauce.AdaOpt.fit": {"tf": 1}, "mlsauce.AdaOpt.predict": {"tf": 1}, "mlsauce.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.StumpClassifier.fit": {"tf": 1}, "mlsauce.StumpClassifier.predict": {"tf": 1}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.LassoRegressor.fit": {"tf": 1}, "mlsauce.LassoRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.RidgeRegressor.fit": {"tf": 1}, "mlsauce.RidgeRegressor.predict": {"tf": 1}, "mlsauce.LazyBoostingClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingClassifier.provide_models": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor.provide_models": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.fit": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.score": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.utils.cluster": {"tf": 1}, "mlsauce.utils.merge_two_dicts": {"tf": 1}, "mlsauce.utils.is_float": {"tf": 1}, "mlsauce.utils.get_beta": {"tf": 1}, "mlsauce.utils.get_beta.get_beta": {"tf": 1}}, "df": 53}, "y": {"docs": {"mlsauce.AdaOpt.fit": {"tf": 1}, "mlsauce.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.StumpClassifier.fit": {"tf": 1}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.LassoRegressor.fit": {"tf": 1}, "mlsauce.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.RidgeRegressor.fit": {"tf": 1}, "mlsauce.LazyBoostingClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingClassifier.provide_models": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor.provide_models": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.fit": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.score": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1}, "mlsauce.utils.subsample": {"tf": 1}, "mlsauce.utils.merge_two_dicts": {"tf": 1}, "mlsauce.utils.is_factor": {"tf": 1}, "mlsauce.utils.get_beta": {"tf": 1}, "mlsauce.utils.get_beta.get_beta": {"tf": 1}}, "df": 32}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 35}}}}}, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {"mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.__init__": {"tf": 1}}, "df": 8}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.download": {"tf": 1}, "mlsauce.datasets.dowload.download": {"tf": 1}}, "df": 2}}}}}}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.__init__": {"tf": 1}}, "df": 8}}}}}, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, ":": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.download": {"tf": 1}, "mlsauce.datasets.dowload.download": {"tf": 1}}, "df": 2}}}}}}}}}}}}, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.StumpClassifier.fit": {"tf": 1}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1}}, "df": 2, "s": {"docs": {"mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.__init__": {"tf": 1}}, "df": 8}}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.LazyBoostingClassifier.__init__": {"tf": 1}, "mlsauce.LazyBoostingRegressor.__init__": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.__init__": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.__init__": {"tf": 1}}, "df": 4}}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.set_config": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"mlsauce.utils.Progbar.__init__": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "j": {"docs": {"mlsauce.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.__init__": {"tf": 1}}, "df": 5, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.nonconformist.RegressorNc.__init__": {"tf": 1}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"mlsauce.set_config": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "i": {"docs": {"mlsauce.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.__init__": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}}, "df": 6}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1}}, "df": 2, "s": {"docs": {"mlsauce.LazyBoostingClassifier.__init__": {"tf": 1}, "mlsauce.LazyBoostingRegressor.__init__": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.__init__": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.__init__": {"tf": 1}}, "df": 4}}}}}}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.LazyBoostingClassifier.__init__": {"tf": 1}, "mlsauce.LazyBoostingRegressor.__init__": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.__init__": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.__init__": {"tf": 1}}, "df": 4}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.set_config": {"tf": 1}}, "df": 1}}}}, "k": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.download": {"tf": 1}, "mlsauce.datasets.dowload.download": {"tf": 1}}, "df": 2}}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.nonconformist.RegressorAdapter.__init__": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.utils.check_and_install": {"tf": 1}}, "df": 1}}}}}}}}}, "bases": {"root": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier": {"tf": 1.4142135623730951}}, "df": 19}}}}}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier": {"tf": 1.4142135623730951}}, "df": 21, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.StumpClassifier": {"tf": 1}, "mlsauce.ElasticNetRegressor": {"tf": 1}, "mlsauce.LassoRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.RidgeRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1}, "mlsauce.lasso.LassoRegressor": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}, "mlsauce.ridge.RidgeRegressor": {"tf": 1}, "mlsauce.stump.StumpClassifier": {"tf": 1}}, "df": 15}}}}}}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {}, "df": 0, "c": {"docs": {"mlsauce.nonconformist.RegressorNc": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "p": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1.4142135623730951}}, "df": 4}}}}}}}, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}}, "df": 2, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.StumpClassifier": {"tf": 1}, "mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.stump.StumpClassifier": {"tf": 1}}, "df": 8}}}}}}}}}}}}}}}, "m": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNc": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1.4142135623730951}}, "df": 10}}}}}}}, "l": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}}, "df": 2}}}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}}, "df": 2}}}}}}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}}, "df": 2, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.ElasticNetRegressor": {"tf": 1}, "mlsauce.LassoRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.RidgeRegressor": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1}, "mlsauce.lasso.LassoRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}, "mlsauce.ridge.RidgeRegressor": {"tf": 1}}, "df": 12}}}}}}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc": {"tf": 1}}, "df": 2}}}}}}}}}}}}}}}}}, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNc": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1.4142135623730951}}, "df": 6}}}}}}}}}}}}, "c": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc": {"tf": 1}, "mlsauce.nonconformist.RegressorNc": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 4}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "p": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 1}}, "df": 1}}}}}, "doc": {"root": {"0": {"1": {"docs": {"mlsauce.nonconformist.RegressorNc.predict": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1.4142135623730951}}, "df": 2}, "2": {"docs": {"mlsauce.nonconformist.RegressorNc.predict": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1.4142135623730951}}, "df": 2}, "3": {"6": {"2": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 35}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 2.6457513110645907}, "mlsauce.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor": {"tf": 1.7320508075688772}, "mlsauce.ElasticNetRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 2.8284271247461903}, "mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.set_config": {"tf": 3.3166247903554}, "mlsauce.config_context": {"tf": 2.23606797749979}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 2.6457513110645907}, "mlsauce.booster.LSBoostRegressor": {"tf": 2.8284271247461903}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1.7320508075688772}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 2.8284271247461903}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 2.8284271247461903}, "mlsauce.utils.Progbar": {"tf": 1}}, "df": 26}, "1": {"0": {"2": {"4": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 1}}, "df": 1}, "1": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 1}}, "df": 1}, "2": {"3": {"docs": {"mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "3": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}}, "df": 2}, "4": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 1}}, "df": 1}, "5": {"0": {"2": {"9": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}}, "df": 4}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 1}}, "df": 1}, "6": {"0": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}}, "df": 35}, "docs": {}, "df": 0}, "docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 2}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 2}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.utils.Progbar": {"tf": 1}}, "df": 59, "e": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 2}, "mlsauce.booster.LSBoostClassifier": {"tf": 2}}, "df": 2}}, "2": {"0": {"0": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 2}, "docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 1}}, "df": 1}, "7": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 1}}, "df": 1}, "9": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 1}}, "df": 1}, "docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 3.605551275463989}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 3.605551275463989}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 2.6457513110645907}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 2.6457513110645907}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 2}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.utils.Progbar": {"tf": 1}}, "df": 51}, "3": {"1": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 1}}, "df": 1}, "6": {"2": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 35}, "docs": {}, "df": 0}, "9": {"docs": {"mlsauce.LSBoostRegressor": {"tf": 2}, "mlsauce.config_context": {"tf": 2}, "mlsauce.booster.LSBoostRegressor": {"tf": 2}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1.4142135623730951}}, "df": 5}, "docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 2}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.set_config": {"tf": 2.23606797749979}, "mlsauce.config_context": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 2}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 2.449489742783178}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 2.449489742783178}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 2}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 46, "d": {"docs": {"mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}}, "df": 2}}, "4": {"2": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}}, "df": 4}, "docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 2}, "5": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}}, "df": 2}, "6": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 1.4142135623730951}}, "df": 1}, "7": {"3": {"4": {"5": {"6": {"3": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.4142135623730951}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"6": {"1": {"7": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}}, "df": 35}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"9": {"4": {"2": {"3": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.4142135623730951}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 1}}, "df": 1}, "9": {"0": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}}, "df": 2}, "5": {"docs": {"mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}}, "df": 3}, "9": {"docs": {"mlsauce.nonconformist.RegressorNc.predict": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1.7320508075688772}}, "df": 2}, "docs": {"mlsauce.LSBoostRegressor": {"tf": 2}, "mlsauce.booster.LSBoostRegressor": {"tf": 2}}, "df": 2}, "docs": {"mlsauce": {"tf": 1.7320508075688772}, "mlsauce.AdaOpt": {"tf": 3.1622776601683795}, "mlsauce.AdaOpt.__init__": {"tf": 1.7320508075688772}, "mlsauce.AdaOpt.n_iterations": {"tf": 1.7320508075688772}, "mlsauce.AdaOpt.learning_rate": {"tf": 1.7320508075688772}, "mlsauce.AdaOpt.reg_lambda": {"tf": 1.7320508075688772}, "mlsauce.AdaOpt.reg_alpha": {"tf": 1.7320508075688772}, "mlsauce.AdaOpt.eta": {"tf": 1.7320508075688772}, "mlsauce.AdaOpt.gamma": {"tf": 1.7320508075688772}, "mlsauce.AdaOpt.k": {"tf": 1.7320508075688772}, "mlsauce.AdaOpt.tolerance": {"tf": 1.7320508075688772}, "mlsauce.AdaOpt.n_clusters": {"tf": 1.7320508075688772}, "mlsauce.AdaOpt.batch_size": {"tf": 1.7320508075688772}, "mlsauce.AdaOpt.row_sample": {"tf": 1.7320508075688772}, "mlsauce.AdaOpt.type_dist": {"tf": 1.7320508075688772}, "mlsauce.AdaOpt.n_jobs": {"tf": 1.7320508075688772}, "mlsauce.AdaOpt.cache": {"tf": 1.7320508075688772}, "mlsauce.AdaOpt.verbose": {"tf": 1.7320508075688772}, "mlsauce.AdaOpt.n_clusters_input": {"tf": 1.7320508075688772}, "mlsauce.AdaOpt.clustering_method": {"tf": 1.7320508075688772}, "mlsauce.AdaOpt.cluster_scaling": {"tf": 1.7320508075688772}, "mlsauce.AdaOpt.seed": {"tf": 1.7320508075688772}, "mlsauce.AdaOpt.fit": {"tf": 4.123105625617661}, "mlsauce.AdaOpt.predict": {"tf": 4.123105625617661}, "mlsauce.AdaOpt.predict_proba": {"tf": 4.123105625617661}, "mlsauce.AdaOpt.set_score_request": {"tf": 9}, "mlsauce.LSBoostClassifier": {"tf": 9.746794344808963}, "mlsauce.LSBoostClassifier.__init__": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.base_model": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.n_estimators": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.learning_rate": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.n_hidden_features": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.reg_lambda": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.alpha": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.row_sample": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.col_sample": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.dropout": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.tolerance": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.direct_link": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.verbose": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.seed": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.backend": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.obj": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.solver": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.activation": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.n_clusters": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.clustering_method": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.cluster_scaling": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.degree": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.poly_": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.weights_distr": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.fit": {"tf": 4.123105625617661}, "mlsauce.LSBoostClassifier.predict": {"tf": 4.123105625617661}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 4.123105625617661}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 9}, "mlsauce.GenericBoostingClassifier": {"tf": 3.1622776601683795}, "mlsauce.GenericBoostingClassifier.__init__": {"tf": 1.7320508075688772}, "mlsauce.GenericBoostingClassifier.base_model": {"tf": 1.7320508075688772}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 9}, "mlsauce.GenericBoostingRegressor": {"tf": 3.3166247903554}, "mlsauce.GenericBoostingRegressor.__init__": {"tf": 1.7320508075688772}, "mlsauce.GenericBoostingRegressor.base_model": {"tf": 1.7320508075688772}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 9}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 9}, "mlsauce.StumpClassifier": {"tf": 3.1622776601683795}, "mlsauce.StumpClassifier.__init__": {"tf": 1.7320508075688772}, "mlsauce.StumpClassifier.bins": {"tf": 1.7320508075688772}, "mlsauce.StumpClassifier.obj": {"tf": 1.7320508075688772}, "mlsauce.StumpClassifier.fit": {"tf": 4.123105625617661}, "mlsauce.StumpClassifier.predict": {"tf": 4.123105625617661}, "mlsauce.StumpClassifier.predict_proba": {"tf": 4.123105625617661}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 9}, "mlsauce.StumpClassifier.set_score_request": {"tf": 9}, "mlsauce.ElasticNetRegressor": {"tf": 3.1622776601683795}, "mlsauce.ElasticNetRegressor.__init__": {"tf": 1.7320508075688772}, "mlsauce.ElasticNetRegressor.reg_lambda": {"tf": 1.7320508075688772}, "mlsauce.ElasticNetRegressor.alpha": {"tf": 1.7320508075688772}, "mlsauce.ElasticNetRegressor.backend": {"tf": 1.7320508075688772}, "mlsauce.ElasticNetRegressor.fit": {"tf": 4.123105625617661}, "mlsauce.ElasticNetRegressor.predict": {"tf": 4.123105625617661}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 9}, "mlsauce.LassoRegressor": {"tf": 3.1622776601683795}, "mlsauce.LassoRegressor.__init__": {"tf": 1.7320508075688772}, "mlsauce.LassoRegressor.reg_lambda": {"tf": 1.7320508075688772}, "mlsauce.LassoRegressor.max_iter": {"tf": 1.7320508075688772}, "mlsauce.LassoRegressor.tol": {"tf": 1.7320508075688772}, "mlsauce.LassoRegressor.backend": {"tf": 1.7320508075688772}, "mlsauce.LassoRegressor.fit": {"tf": 4.123105625617661}, "mlsauce.LassoRegressor.predict": {"tf": 4.123105625617661}, "mlsauce.LassoRegressor.set_score_request": {"tf": 9}, "mlsauce.LSBoostRegressor": {"tf": 25.826343140289914}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.base_model": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.n_estimators": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.learning_rate": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.n_hidden_features": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.reg_lambda": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.alpha": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.row_sample": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.col_sample": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.dropout": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.tolerance": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.direct_link": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.verbose": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.seed": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.backend": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.obj": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.solver": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.activation": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.type_pi": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.replications": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.kernel": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.n_clusters": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.clustering_method": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.cluster_scaling": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.degree": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.poly_": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.weights_distr": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.fit": {"tf": 4.123105625617661}, "mlsauce.LSBoostRegressor.predict": {"tf": 4.123105625617661}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 9}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 9}, "mlsauce.RidgeRegressor": {"tf": 3.1622776601683795}, "mlsauce.RidgeRegressor.__init__": {"tf": 1.7320508075688772}, "mlsauce.RidgeRegressor.reg_lambda": {"tf": 1.7320508075688772}, "mlsauce.RidgeRegressor.backend": {"tf": 1.7320508075688772}, "mlsauce.RidgeRegressor.fit": {"tf": 4.123105625617661}, "mlsauce.RidgeRegressor.predict": {"tf": 4.123105625617661}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 9}, "mlsauce.LazyBoostingClassifier": {"tf": 18.439088914585774}, "mlsauce.LazyBoostingClassifier.__init__": {"tf": 1.7320508075688772}, "mlsauce.LazyBoostingClassifier.verbose": {"tf": 1.7320508075688772}, "mlsauce.LazyBoostingClassifier.ignore_warnings": {"tf": 1.7320508075688772}, "mlsauce.LazyBoostingClassifier.custom_metric": {"tf": 1.7320508075688772}, "mlsauce.LazyBoostingClassifier.predictions": {"tf": 1.7320508075688772}, "mlsauce.LazyBoostingClassifier.sort_by": {"tf": 1.7320508075688772}, "mlsauce.LazyBoostingClassifier.models_": {"tf": 1.7320508075688772}, "mlsauce.LazyBoostingClassifier.best_model_": {"tf": 1.7320508075688772}, "mlsauce.LazyBoostingClassifier.random_state": {"tf": 1.7320508075688772}, "mlsauce.LazyBoostingClassifier.estimators": {"tf": 1.7320508075688772}, "mlsauce.LazyBoostingClassifier.preprocess": {"tf": 1.7320508075688772}, "mlsauce.LazyBoostingClassifier.n_jobs": {"tf": 1.7320508075688772}, "mlsauce.LazyBoostingClassifier.fit": {"tf": 4.123105625617661}, "mlsauce.LazyBoostingClassifier.get_best_model": {"tf": 3.1622776601683795}, "mlsauce.LazyBoostingClassifier.provide_models": {"tf": 4.898979485566356}, "mlsauce.LazyBoostingRegressor": {"tf": 17.029386365926403}, "mlsauce.LazyBoostingRegressor.__init__": {"tf": 1.7320508075688772}, "mlsauce.LazyBoostingRegressor.verbose": {"tf": 1.7320508075688772}, "mlsauce.LazyBoostingRegressor.ignore_warnings": {"tf": 1.7320508075688772}, "mlsauce.LazyBoostingRegressor.custom_metric": {"tf": 1.7320508075688772}, "mlsauce.LazyBoostingRegressor.predictions": {"tf": 1.7320508075688772}, "mlsauce.LazyBoostingRegressor.sort_by": {"tf": 1.7320508075688772}, "mlsauce.LazyBoostingRegressor.models_": {"tf": 1.7320508075688772}, "mlsauce.LazyBoostingRegressor.best_model_": {"tf": 1.7320508075688772}, "mlsauce.LazyBoostingRegressor.random_state": {"tf": 1.7320508075688772}, "mlsauce.LazyBoostingRegressor.estimators": {"tf": 1.7320508075688772}, "mlsauce.LazyBoostingRegressor.preprocess": {"tf": 1.7320508075688772}, "mlsauce.LazyBoostingRegressor.n_jobs": {"tf": 1.7320508075688772}, "mlsauce.LazyBoostingRegressor.fit": {"tf": 4.795831523312719}, "mlsauce.LazyBoostingRegressor.get_best_model": {"tf": 3.1622776601683795}, "mlsauce.LazyBoostingRegressor.provide_models": {"tf": 4.58257569495584}, "mlsauce.download": {"tf": 1.7320508075688772}, "mlsauce.get_config": {"tf": 4.242640687119285}, "mlsauce.set_config": {"tf": 7.615773105863909}, "mlsauce.config_context": {"tf": 14}, "mlsauce.adaopt": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt": {"tf": 3.1622776601683795}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.n_iterations": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.learning_rate": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.reg_lambda": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.reg_alpha": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.eta": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.gamma": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.k": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.tolerance": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.n_clusters": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.batch_size": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.row_sample": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.type_dist": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.n_jobs": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.cache": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.verbose": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.n_clusters_input": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.clustering_method": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.cluster_scaling": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.seed": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 4.123105625617661}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 4.123105625617661}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 4.123105625617661}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 9}, "mlsauce.booster": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier": {"tf": 9.746794344808963}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.base_model": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.n_estimators": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.learning_rate": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.n_hidden_features": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.reg_lambda": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.alpha": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.row_sample": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.col_sample": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.dropout": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.tolerance": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.direct_link": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.verbose": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.seed": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.backend": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.obj": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.solver": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.activation": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.n_clusters": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.clustering_method": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.cluster_scaling": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.degree": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.poly_": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.weights_distr": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 4.123105625617661}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 4.123105625617661}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 4.123105625617661}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 9}, "mlsauce.booster.LSBoostRegressor": {"tf": 25.826343140289914}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.base_model": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.n_estimators": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.learning_rate": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.n_hidden_features": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.reg_lambda": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.alpha": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.row_sample": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.col_sample": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.dropout": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.tolerance": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.direct_link": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.verbose": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.seed": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.backend": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.obj": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.solver": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.activation": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.type_pi": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.replications": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.kernel": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.n_clusters": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.clustering_method": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.cluster_scaling": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.degree": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.poly_": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.weights_distr": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 4.123105625617661}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 4.123105625617661}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 9}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 9}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 3.1622776601683795}, "mlsauce.booster.GenericBoostingClassifier.__init__": {"tf": 1.7320508075688772}, "mlsauce.booster.GenericBoostingClassifier.base_model": {"tf": 1.7320508075688772}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 9}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 3.3166247903554}, "mlsauce.booster.GenericBoostingRegressor.__init__": {"tf": 1.7320508075688772}, "mlsauce.booster.GenericBoostingRegressor.base_model": {"tf": 1.7320508075688772}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 9}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 9}, "mlsauce.datasets": {"tf": 1.7320508075688772}, "mlsauce.datasets.dowload": {"tf": 1.7320508075688772}, "mlsauce.datasets.dowload.download": {"tf": 1.7320508075688772}, "mlsauce.demo": {"tf": 1.7320508075688772}, "mlsauce.elasticnet": {"tf": 1.7320508075688772}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 3.1622776601683795}, "mlsauce.elasticnet.ElasticNetRegressor.__init__": {"tf": 1.7320508075688772}, "mlsauce.elasticnet.ElasticNetRegressor.reg_lambda": {"tf": 1.7320508075688772}, "mlsauce.elasticnet.ElasticNetRegressor.alpha": {"tf": 1.7320508075688772}, "mlsauce.elasticnet.ElasticNetRegressor.backend": {"tf": 1.7320508075688772}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 4.123105625617661}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 4.123105625617661}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 9}, "mlsauce.lasso": {"tf": 1.7320508075688772}, "mlsauce.lasso.LassoRegressor": {"tf": 3.1622776601683795}, "mlsauce.lasso.LassoRegressor.__init__": {"tf": 1.7320508075688772}, "mlsauce.lasso.LassoRegressor.reg_lambda": {"tf": 1.7320508075688772}, "mlsauce.lasso.LassoRegressor.max_iter": {"tf": 1.7320508075688772}, "mlsauce.lasso.LassoRegressor.tol": {"tf": 1.7320508075688772}, "mlsauce.lasso.LassoRegressor.backend": {"tf": 1.7320508075688772}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 4.123105625617661}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 4.123105625617661}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 9}, "mlsauce.lazybooster": {"tf": 1.7320508075688772}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 18.439088914585774}, "mlsauce.lazybooster.LazyBoostingClassifier.__init__": {"tf": 1.7320508075688772}, "mlsauce.lazybooster.LazyBoostingClassifier.verbose": {"tf": 1.7320508075688772}, "mlsauce.lazybooster.LazyBoostingClassifier.ignore_warnings": {"tf": 1.7320508075688772}, "mlsauce.lazybooster.LazyBoostingClassifier.custom_metric": {"tf": 1.7320508075688772}, "mlsauce.lazybooster.LazyBoostingClassifier.predictions": {"tf": 1.7320508075688772}, "mlsauce.lazybooster.LazyBoostingClassifier.sort_by": {"tf": 1.7320508075688772}, "mlsauce.lazybooster.LazyBoostingClassifier.models_": {"tf": 1.7320508075688772}, "mlsauce.lazybooster.LazyBoostingClassifier.best_model_": {"tf": 1.7320508075688772}, "mlsauce.lazybooster.LazyBoostingClassifier.random_state": {"tf": 1.7320508075688772}, "mlsauce.lazybooster.LazyBoostingClassifier.estimators": {"tf": 1.7320508075688772}, "mlsauce.lazybooster.LazyBoostingClassifier.preprocess": {"tf": 1.7320508075688772}, "mlsauce.lazybooster.LazyBoostingClassifier.n_jobs": {"tf": 1.7320508075688772}, "mlsauce.lazybooster.LazyBoostingClassifier.fit": {"tf": 4.123105625617661}, "mlsauce.lazybooster.LazyBoostingClassifier.get_best_model": {"tf": 3.1622776601683795}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 4.898979485566356}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 17.029386365926403}, "mlsauce.lazybooster.LazyBoostingRegressor.__init__": {"tf": 1.7320508075688772}, "mlsauce.lazybooster.LazyBoostingRegressor.verbose": {"tf": 1.7320508075688772}, "mlsauce.lazybooster.LazyBoostingRegressor.ignore_warnings": {"tf": 1.7320508075688772}, "mlsauce.lazybooster.LazyBoostingRegressor.custom_metric": {"tf": 1.7320508075688772}, "mlsauce.lazybooster.LazyBoostingRegressor.predictions": {"tf": 1.7320508075688772}, "mlsauce.lazybooster.LazyBoostingRegressor.sort_by": {"tf": 1.7320508075688772}, "mlsauce.lazybooster.LazyBoostingRegressor.models_": {"tf": 1.7320508075688772}, "mlsauce.lazybooster.LazyBoostingRegressor.best_model_": {"tf": 1.7320508075688772}, "mlsauce.lazybooster.LazyBoostingRegressor.random_state": {"tf": 1.7320508075688772}, "mlsauce.lazybooster.LazyBoostingRegressor.estimators": {"tf": 1.7320508075688772}, "mlsauce.lazybooster.LazyBoostingRegressor.preprocess": {"tf": 1.7320508075688772}, "mlsauce.lazybooster.LazyBoostingRegressor.n_jobs": {"tf": 1.7320508075688772}, "mlsauce.lazybooster.LazyBoostingRegressor.fit": {"tf": 4.795831523312719}, "mlsauce.lazybooster.LazyBoostingRegressor.get_best_model": {"tf": 3.1622776601683795}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 4.58257569495584}, "mlsauce.nonconformist": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.AbsErrorErrFunc": {"tf": 3.3166247903554}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 4.358898943540674}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 4.358898943540674}, "mlsauce.nonconformist.QuantileRegErrFunc": {"tf": 3}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 4.358898943540674}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 4.358898943540674}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 21.61018278497431}, "mlsauce.nonconformist.RegressorAdapter.__init__": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 9}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 9}, "mlsauce.nonconformist.RegressorNc": {"tf": 5.916079783099616}, "mlsauce.nonconformist.RegressorNc.__init__": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 5.0990195135927845}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 9}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 9}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 9}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 21.61018278497431}, "mlsauce.nonconformist.RegressorNormalizer.__init__": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNormalizer.base_model": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNormalizer.normalizer_model": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNormalizer.err_func": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNormalizer.fit": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNormalizer.score": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 9}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 9}, "mlsauce.nonconformist.IcpRegressor": {"tf": 22.360679774997898}, "mlsauce.nonconformist.IcpRegressor.__init__": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 4.795831523312719}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 9}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 9}, "mlsauce.predictioninterval": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 3.3166247903554}, "mlsauce.predictioninterval.PredictionInterval.__init__": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval.obj": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval.method": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval.level": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval.type_pi": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval.replications": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval.kernel": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval.agg": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval.seed": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval.alpha_": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval.quantile_": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval.icp_": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval.calibrated_residuals_": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval.scaled_calibrated_residuals_": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval.calibrated_residuals_scaler_": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval.kde_": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 3.605551275463989}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 3.1622776601683795}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 9}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 9}, "mlsauce.ridge": {"tf": 1.7320508075688772}, "mlsauce.ridge.RidgeRegressor": {"tf": 3.1622776601683795}, "mlsauce.ridge.RidgeRegressor.__init__": {"tf": 1.7320508075688772}, "mlsauce.ridge.RidgeRegressor.reg_lambda": {"tf": 1.7320508075688772}, "mlsauce.ridge.RidgeRegressor.backend": {"tf": 1.7320508075688772}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 4.123105625617661}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 4.123105625617661}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 9}, "mlsauce.setup": {"tf": 1.7320508075688772}, "mlsauce.stump": {"tf": 1.7320508075688772}, "mlsauce.stump.StumpClassifier": {"tf": 3.1622776601683795}, "mlsauce.stump.StumpClassifier.__init__": {"tf": 1.7320508075688772}, "mlsauce.stump.StumpClassifier.bins": {"tf": 1.7320508075688772}, "mlsauce.stump.StumpClassifier.obj": {"tf": 1.7320508075688772}, "mlsauce.stump.StumpClassifier.fit": {"tf": 4.123105625617661}, "mlsauce.stump.StumpClassifier.predict": {"tf": 4.123105625617661}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 4.123105625617661}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 9}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 9}, "mlsauce.utils": {"tf": 1.7320508075688772}, "mlsauce.utils.cluster": {"tf": 1.7320508075688772}, "mlsauce.utils.subsample": {"tf": 1.7320508075688772}, "mlsauce.utils.merge_two_dicts": {"tf": 1.7320508075688772}, "mlsauce.utils.flatten": {"tf": 1.7320508075688772}, "mlsauce.utils.is_float": {"tf": 1.7320508075688772}, "mlsauce.utils.is_factor": {"tf": 1.7320508075688772}, "mlsauce.utils.Progbar": {"tf": 3.1622776601683795}, "mlsauce.utils.Progbar.__init__": {"tf": 1.7320508075688772}, "mlsauce.utils.Progbar.target": {"tf": 1.7320508075688772}, "mlsauce.utils.Progbar.width": {"tf": 1.7320508075688772}, "mlsauce.utils.Progbar.verbose": {"tf": 1.7320508075688772}, "mlsauce.utils.Progbar.interval": {"tf": 1.7320508075688772}, "mlsauce.utils.Progbar.update": {"tf": 3.4641016151377544}, "mlsauce.utils.Progbar.add": {"tf": 1.7320508075688772}, "mlsauce.utils.get_beta": {"tf": 1.7320508075688772}, "mlsauce.utils.check_and_install": {"tf": 1.7320508075688772}, "mlsauce.utils.get_beta.get_beta": {"tf": 1.7320508075688772}}, "df": 408, "a": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.AdaOpt.set_score_request": {"tf": 2.23606797749979}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 2.23606797749979}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 2.23606797749979}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 2.23606797749979}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 2.23606797749979}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 2.23606797749979}, "mlsauce.StumpClassifier.set_score_request": {"tf": 2.23606797749979}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 2.23606797749979}, "mlsauce.LassoRegressor.set_score_request": {"tf": 2.23606797749979}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 2.23606797749979}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 2.23606797749979}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 2.23606797749979}, "mlsauce.LazyBoostingClassifier": {"tf": 1.7320508075688772}, "mlsauce.LazyBoostingClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingClassifier.provide_models": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1.7320508075688772}, "mlsauce.LazyBoostingRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor.provide_models": {"tf": 1}, "mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 2.23606797749979}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 2.23606797749979}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 2.23606797749979}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 2.23606797749979}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 2.23606797749979}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 2.23606797749979}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 2.23606797749979}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 2.23606797749979}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 2.23606797749979}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1.7320508075688772}, "mlsauce.lazybooster.LazyBoostingClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1.7320508075688772}, "mlsauce.lazybooster.LazyBoostingRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 2.23606797749979}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 2.23606797749979}, "mlsauce.nonconformist.RegressorNc": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 2.23606797749979}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 2.23606797749979}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 2.23606797749979}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 2.23606797749979}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 2.23606797749979}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 2.23606797749979}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 2}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 2.23606797749979}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 2.23606797749979}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 2.23606797749979}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 2.23606797749979}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 2.23606797749979}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 2.23606797749979}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 2.23606797749979}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 2.23606797749979}, "mlsauce.utils.Progbar": {"tf": 1}, "mlsauce.utils.check_and_install": {"tf": 1}}, "df": 62, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.AdaOpt.fit": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1}}, "df": 4}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.AdaOpt.fit": {"tf": 1}, "mlsauce.AdaOpt.predict": {"tf": 1}, "mlsauce.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.StumpClassifier.predict": {"tf": 1}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.LassoRegressor.fit": {"tf": 1}, "mlsauce.LassoRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.RidgeRegressor.fit": {"tf": 1}, "mlsauce.RidgeRegressor.predict": {"tf": 1}, "mlsauce.LazyBoostingClassifier.fit": {"tf": 1}, "mlsauce.LazyBoostingRegressor.fit": {"tf": 1}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.fit": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.fit": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1}}, "df": 36}}}}}}}}, "j": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}}, "df": 2}}}}}}}, "t": {"docs": {"mlsauce.AdaOpt": {"tf": 3.1622776601683795}, "mlsauce.LSBoostClassifier": {"tf": 1.7320508075688772}, "mlsauce.GenericBoostingClassifier": {"tf": 1.7320508075688772}, "mlsauce.GenericBoostingRegressor": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt": {"tf": 3.1622776601683795}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.7320508075688772}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1.7320508075688772}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}}, "df": 14, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.StumpClassifier": {"tf": 1}, "mlsauce.ElasticNetRegressor": {"tf": 1}, "mlsauce.LassoRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.RidgeRegressor": {"tf": 1}, "mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1}, "mlsauce.lasso.LassoRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}, "mlsauce.nonconformist.RegressorNc": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}, "mlsauce.ridge.RidgeRegressor": {"tf": 1}, "mlsauce.stump.StumpClassifier": {"tf": 1}}, "df": 25}}}}}}}, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 2}}}}}}, "l": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.ElasticNetRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1}}, "df": 12}}}, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "m": {"docs": {"mlsauce.LassoRegressor": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor": {"tf": 1.4142135623730951}}, "df": 2, "s": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.LazyBoostingRegressor.fit": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.fit": {"tf": 1}}, "df": 6}}}}, "g": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}}, "df": 4}}}}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}}, "df": 4}}}}, "l": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 2.449489742783178}, "mlsauce.LazyBoostingClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingClassifier.provide_models": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 2.449489742783178}, "mlsauce.LazyBoostingRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor.provide_models": {"tf": 1}, "mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 2.23606797749979}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 2.449489742783178}, "mlsauce.lazybooster.LazyBoostingClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 2.449489742783178}, "mlsauce.lazybooster.LazyBoostingRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}, "mlsauce.utils.Progbar": {"tf": 1}}, "df": 19, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}}, "df": 2}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "y": {"docs": {"mlsauce.LazyBoostingRegressor.provide_models": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 1}}, "df": 2}}}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {"mlsauce.get_config": {"tf": 1}, "mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}, "mlsauce.nonconformist.RegressorNc": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1}}, "df": 5}}}, "s": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.LazyBoostingClassifier": {"tf": 2.23606797749979}, "mlsauce.LazyBoostingClassifier.provide_models": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 2.23606797749979}, "mlsauce.LazyBoostingRegressor.provide_models": {"tf": 1.4142135623730951}, "mlsauce.set_config": {"tf": 1.4142135623730951}, "mlsauce.config_context": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 2.23606797749979}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 2.23606797749979}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.AbsErrorErrFunc": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.utils.Progbar": {"tf": 1}, "mlsauce.utils.Progbar.update": {"tf": 1}}, "df": 63, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 2}}, "df": 2}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.config_context": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.LazyBoostingClassifier": {"tf": 2.449489742783178}, "mlsauce.LazyBoostingRegressor": {"tf": 2.449489742783178}, "mlsauce.get_config": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 2.449489742783178}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 2.449489742783178}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 52}, "g": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.AdaOpt.fit": {"tf": 1}, "mlsauce.AdaOpt.predict": {"tf": 1}, "mlsauce.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.StumpClassifier.fit": {"tf": 1}, "mlsauce.StumpClassifier.predict": {"tf": 1}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.LassoRegressor.fit": {"tf": 1}, "mlsauce.LassoRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.RidgeRegressor.fit": {"tf": 1}, "mlsauce.RidgeRegressor.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1}}, "df": 38}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.LazyBoostingClassifier.fit": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.fit": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.utils.Progbar": {"tf": 1}, "mlsauce.utils.Progbar.update": {"tf": 1}}, "df": 6}}}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"mlsauce.AdaOpt.fit": {"tf": 1.4142135623730951}, "mlsauce.AdaOpt.predict": {"tf": 1.4142135623730951}, "mlsauce.AdaOpt.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.fit": {"tf": 1.7320508075688772}, "mlsauce.StumpClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingClassifier.fit": {"tf": 2}, "mlsauce.LazyBoostingClassifier.provide_models": {"tf": 2}, "mlsauce.LazyBoostingRegressor.fit": {"tf": 2}, "mlsauce.LazyBoostingRegressor.provide_models": {"tf": 2}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier.fit": {"tf": 2}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 2}, "mlsauce.lazybooster.LazyBoostingRegressor.fit": {"tf": 2}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 2}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 2}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 2}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1.7320508075688772}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1.4142135623730951}}, "df": 53, "s": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 2}}}}}, "n": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}, "mlsauce.nonconformist.RegressorNc": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1.7320508075688772}, "mlsauce.utils.Progbar.update": {"tf": 1}}, "df": 5, "d": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.AdaOpt.fit": {"tf": 1}, "mlsauce.AdaOpt.predict": {"tf": 1}, "mlsauce.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 2}, "mlsauce.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1.7320508075688772}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 2}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.fit": {"tf": 1}, "mlsauce.StumpClassifier.predict": {"tf": 1}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor": {"tf": 1}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.fit": {"tf": 1}, "mlsauce.LassoRegressor.predict": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 2.23606797749979}, "mlsauce.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.fit": {"tf": 1}, "mlsauce.RidgeRegressor.predict": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingClassifier.fit": {"tf": 2.449489742783178}, "mlsauce.LazyBoostingClassifier.provide_models": {"tf": 2.23606797749979}, "mlsauce.LazyBoostingRegressor": {"tf": 1.7320508075688772}, "mlsauce.LazyBoostingRegressor.fit": {"tf": 2.449489742783178}, "mlsauce.LazyBoostingRegressor.provide_models": {"tf": 2.23606797749979}, "mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 2}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 2.23606797749979}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1.7320508075688772}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 2}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier.fit": {"tf": 2.449489742783178}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 2.23606797749979}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1.7320508075688772}, "mlsauce.lazybooster.LazyBoostingRegressor.fit": {"tf": 2.449489742783178}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 2.23606797749979}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 2}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 2.449489742783178}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 2}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 2.23606797749979}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 105}, "y": {"docs": {"mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}}, "df": 6}}, "c": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 35}}, "s": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 35}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "y": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1.7320508075688772}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1.7320508075688772}}, "df": 2}}}}}}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 35}}}, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1.4142135623730951}}, "df": 8}}}}}}}}}, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}}, "df": 4}}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}}, "df": 4}}}}}}}, "o": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 2}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.utils.Progbar.update": {"tf": 1}}, "df": 1, "d": {"docs": {"mlsauce.utils.Progbar": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "u": {"docs": {}, "df": 0, "c": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}}, "df": 2}}, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}}, "df": 4}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.nonconformist.RegressorNc": {"tf": 1}}, "df": 1}}}}}}}}}}, "c": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 2, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 2}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 2}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 40, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier": {"tf": 1}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.LassoRegressor.fit": {"tf": 1}, "mlsauce.RidgeRegressor.fit": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1}, "mlsauce.stump.StumpClassifier": {"tf": 1}}, "df": 16, "s": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingClassifier.fit": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.fit": {"tf": 1}}, "df": 4}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}}, "df": 4}}}}}}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1}}, "df": 2}}}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}}, "df": 10, "s": {"docs": {"mlsauce.AdaOpt": {"tf": 2}, "mlsauce.LSBoostClassifier": {"tf": 2.449489742783178}, "mlsauce.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt": {"tf": 2}, "mlsauce.booster.LSBoostClassifier": {"tf": 2.449489742783178}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.7320508075688772}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1.4142135623730951}}, "df": 10}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.AdaOpt": {"tf": 2.23606797749979}, "mlsauce.LSBoostClassifier": {"tf": 2.23606797749979}, "mlsauce.GenericBoostingClassifier": {"tf": 2.23606797749979}, "mlsauce.GenericBoostingRegressor": {"tf": 2.23606797749979}, "mlsauce.LSBoostRegressor": {"tf": 2.23606797749979}, "mlsauce.adaopt.AdaOpt": {"tf": 2.23606797749979}, "mlsauce.booster.LSBoostClassifier": {"tf": 2.23606797749979}, "mlsauce.booster.LSBoostRegressor": {"tf": 2.23606797749979}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 2.23606797749979}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 2.23606797749979}}, "df": 10}}}}}}}}, "f": {"2": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 2.449489742783178}, "mlsauce.booster.LSBoostClassifier": {"tf": 2.449489742783178}}, "df": 2}, "docs": {"mlsauce.LSBoostClassifier": {"tf": 2.449489742783178}, "mlsauce.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 2.449489742783178}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1.4142135623730951}}, "df": 4}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.AdaOpt": {"tf": 2}, "mlsauce.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt": {"tf": 2}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1.4142135623730951}}, "df": 10}}}}, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.get_config": {"tf": 1.4142135623730951}, "mlsauce.set_config": {"tf": 1.7320508075688772}, "mlsauce.config_context": {"tf": 2.449489742783178}}, "df": 3}}}, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.config_context": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1.4142135623730951}}, "df": 3}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.predictioninterval.PredictionInterval": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}}, "df": 2}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}}, "df": 9}}}, "s": {"docs": {"mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}}, "df": 1}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.LassoRegressor": {"tf": 1}, "mlsauce.lasso.LassoRegressor": {"tf": 1}}, "df": 2}}}}}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}}, "df": 3}}}}}, "g": {"docs": {"mlsauce.get_config": {"tf": 2.23606797749979}, "mlsauce.set_config": {"tf": 1.4142135623730951}, "mlsauce.config_context": {"tf": 2.23606797749979}}, "df": 3, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.get_config": {"tf": 1.7320508075688772}, "mlsauce.set_config": {"tf": 1.7320508075688772}, "mlsauce.config_context": {"tf": 1.7320508075688772}}, "df": 3}}}}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}}, "df": 4, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.nonconformist.QuantileRegErrFunc": {"tf": 1}}, "df": 1}}}}}}}}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt": {"tf": 1.4142135623730951}}, "df": 2}}}}, "o": {"docs": {}, "df": 0, "k": {"docs": {"mlsauce.AdaOpt.fit": {"tf": 1}, "mlsauce.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.LassoRegressor.fit": {"tf": 1}, "mlsauce.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.RidgeRegressor.fit": {"tf": 1}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1}}, "df": 20}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 35}}}}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc": {"tf": 1}}, "df": 2}}}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.ElasticNetRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1}}, "df": 10}}}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 2}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}}, "df": 1}}}}}}}}}}, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}}, "df": 4}}}}}}}}}, "l": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.7320508075688772}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}}, "df": 8, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.LazyBoostingClassifier.fit": {"tf": 2}, "mlsauce.LazyBoostingClassifier.provide_models": {"tf": 2}, "mlsauce.LazyBoostingRegressor.fit": {"tf": 2}, "mlsauce.LazyBoostingRegressor.provide_models": {"tf": 2}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.fit": {"tf": 2}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 2}, "mlsauce.lazybooster.LazyBoostingRegressor.fit": {"tf": 2}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 2}}, "df": 16}}}}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}}, "df": 12}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.utils.check_and_install": {"tf": 1}}, "df": 38}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}}, "df": 4}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 2}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.set_config": {"tf": 1.4142135623730951}, "mlsauce.config_context": {"tf": 1.4142135623730951}}, "df": 2}}}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.get_config": {"tf": 1}, "mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}, "mlsauce.utils.Progbar.update": {"tf": 1.4142135623730951}}, "df": 4, "l": {"docs": {}, "df": 0, "y": {"docs": {"mlsauce.AdaOpt": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier": {"tf": 2.449489742783178}, "mlsauce.GenericBoostingClassifier": {"tf": 2.449489742783178}, "mlsauce.GenericBoostingRegressor": {"tf": 2.449489742783178}, "mlsauce.LSBoostRegressor": {"tf": 2.449489742783178}, "mlsauce.adaopt.AdaOpt": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier": {"tf": 2.449489742783178}, "mlsauce.booster.LSBoostRegressor": {"tf": 2.449489742783178}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 2.449489742783178}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 2.449489742783178}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1.4142135623730951}}, "df": 11}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 2.23606797749979}, "mlsauce.LazyBoostingRegressor": {"tf": 2.449489742783178}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 2.23606797749979}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 2.449489742783178}}, "df": 4, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}}, "df": 2, "s": {"docs": {"mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}}, "df": 2}}}}}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 2.6457513110645907}}, "df": 1, "c": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.RegressorNc": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1.4142135623730951}}, "df": 4, "d": {"docs": {"mlsauce.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt": {"tf": 1.4142135623730951}}, "df": 2}, "s": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.nonconformist.RegressorNc": {"tf": 1}}, "df": 1}}}}}}}}, "l": {"docs": {"mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.LazyBoostingRegressor.provide_models": {"tf": 1}, "mlsauce.config_context": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 1}}, "df": 5, "s": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}}, "df": 2}, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingClassifier.provide_models": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor.provide_models": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 1}}, "df": 8}}}, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}}, "df": 4}}}, "e": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 1}}, "df": 1}}}}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}}, "df": 4, "d": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}}, "df": 2}}}}, "n": {"docs": {"mlsauce.get_config": {"tf": 1}, "mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 5, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 2.449489742783178}, "mlsauce.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 2.449489742783178}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1.4142135623730951}}, "df": 4}}}}}, "p": {"docs": {}, "df": 0, "u": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.ElasticNetRegressor": {"tf": 1}, "mlsauce.LassoRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.RidgeRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1}, "mlsauce.lasso.LassoRegressor": {"tf": 1}, "mlsauce.ridge.RidgeRegressor": {"tf": 1}}, "df": 14, "s": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}}, "df": 2}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 35, "d": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}}, "df": 35}}}}}, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}}, "df": 4}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 2}}}}}}}, "n": {"docs": {"mlsauce.AdaOpt": {"tf": 2}, "mlsauce.AdaOpt.fit": {"tf": 2.23606797749979}, "mlsauce.AdaOpt.predict": {"tf": 2}, "mlsauce.AdaOpt.predict_proba": {"tf": 2}, "mlsauce.LSBoostClassifier": {"tf": 2.6457513110645907}, "mlsauce.LSBoostClassifier.fit": {"tf": 2.23606797749979}, "mlsauce.LSBoostClassifier.predict": {"tf": 2}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 2}, "mlsauce.GenericBoostingClassifier": {"tf": 1.7320508075688772}, "mlsauce.GenericBoostingRegressor": {"tf": 1.7320508075688772}, "mlsauce.StumpClassifier.fit": {"tf": 2.449489742783178}, "mlsauce.StumpClassifier.predict": {"tf": 2}, "mlsauce.StumpClassifier.predict_proba": {"tf": 2}, "mlsauce.ElasticNetRegressor.fit": {"tf": 2.23606797749979}, "mlsauce.ElasticNetRegressor.predict": {"tf": 2}, "mlsauce.LassoRegressor.fit": {"tf": 2.23606797749979}, "mlsauce.LassoRegressor.predict": {"tf": 2}, "mlsauce.LSBoostRegressor": {"tf": 2}, "mlsauce.LSBoostRegressor.fit": {"tf": 2.23606797749979}, "mlsauce.LSBoostRegressor.predict": {"tf": 2}, "mlsauce.RidgeRegressor.fit": {"tf": 2.23606797749979}, "mlsauce.RidgeRegressor.predict": {"tf": 2}, "mlsauce.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt": {"tf": 2}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 2.23606797749979}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 2}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 2}, "mlsauce.booster.LSBoostClassifier": {"tf": 2.6457513110645907}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 2.23606797749979}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 2}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 2}, "mlsauce.booster.LSBoostRegressor": {"tf": 2}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 2.23606797749979}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 2}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1.7320508075688772}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1.7320508075688772}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 2.23606797749979}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 2}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 2.23606797749979}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 2}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 2}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 2}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 2}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 2}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 2.23606797749979}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 2}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 2.23606797749979}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 2}, "mlsauce.stump.StumpClassifier.fit": {"tf": 2.449489742783178}, "mlsauce.stump.StumpClassifier.predict": {"tf": 2}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 2}}, "df": 57, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.AdaOpt": {"tf": 2.23606797749979}, "mlsauce.AdaOpt.fit": {"tf": 1.4142135623730951}, "mlsauce.AdaOpt.predict": {"tf": 1.4142135623730951}, "mlsauce.AdaOpt.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingClassifier": {"tf": 1.7320508075688772}, "mlsauce.GenericBoostingRegressor": {"tf": 2}, "mlsauce.StumpClassifier": {"tf": 1}, "mlsauce.StumpClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor": {"tf": 1}, "mlsauce.LassoRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 2}, "mlsauce.LSBoostRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingClassifier.fit": {"tf": 2.8284271247461903}, "mlsauce.LazyBoostingClassifier.provide_models": {"tf": 2.8284271247461903}, "mlsauce.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor.fit": {"tf": 2.8284271247461903}, "mlsauce.LazyBoostingRegressor.provide_models": {"tf": 2.8284271247461903}, "mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 2.23606797749979}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 2}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1.7320508075688772}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 2}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor": {"tf": 1}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier.fit": {"tf": 2.8284271247461903}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 2.8284271247461903}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor.fit": {"tf": 2.8284271247461903}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 2.8284271247461903}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier": {"tf": 1}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.utils.Progbar": {"tf": 1}}, "df": 66}}}, "p": {"docs": {}, "df": 0, "y": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.StumpClassifier": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier": {"tf": 1}}, "df": 15}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt": {"tf": 1.7320508075688772}}, "df": 2}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.AdaOpt": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt": {"tf": 1.7320508075688772}}, "df": 2}}}}}}}, "w": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.set_config": {"tf": 2.23606797749979}, "mlsauce.config_context": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 37}, "t": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}}, "df": 4}, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}}, "df": 4}}}}}, "o": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 12, "n": {"docs": {"mlsauce.set_config": {"tf": 1.4142135623730951}, "mlsauce.config_context": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc": {"tf": 1}}, "df": 3, "e": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}, "mlsauce.utils.Progbar": {"tf": 1}}, "df": 18}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.QuantileRegErrFunc": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc": {"tf": 2}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 2}}, "df": 9}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 1.7320508075688772}}, "df": 1}}}}}}}}}}}, "t": {"docs": {"mlsauce.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.LazyBoostingRegressor.provide_models": {"tf": 1}, "mlsauce.config_context": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}, "mlsauce.utils.Progbar": {"tf": 1}, "mlsauce.utils.check_and_install": {"tf": 1}}, "df": 20, "e": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.config_context": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 38}, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "k": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 2}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1.7320508075688772}, "mlsauce.GenericBoostingClassifier": {"tf": 1.7320508075688772}, "mlsauce.GenericBoostingRegressor": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.7320508075688772}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1.7320508075688772}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1.7320508075688772}}, "df": 10}}}, "w": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}}, "df": 4}, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.nonconformist.RegressorNc": {"tf": 1}}, "df": 1}, "d": {"docs": {"mlsauce.nonconformist.RegressorNc": {"tf": 1.4142135623730951}}, "df": 1, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"mlsauce.nonconformist.RegressorNc": {"tf": 1}}, "df": 1}}}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.nonconformist.RegressorNc": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingClassifier.provide_models": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor.provide_models": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.utils.Progbar.update": {"tf": 1.4142135623730951}}, "df": 44, "s": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.get_config": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.utils.Progbar": {"tf": 1}}, "df": 8}}}, "n": {"docs": {"mlsauce.config_context": {"tf": 1.7320508075688772}}, "df": 1}}, "p": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 2.449489742783178}, "mlsauce.LSBoostRegressor": {"tf": 2.8284271247461903}, "mlsauce.booster.LSBoostClassifier": {"tf": 2.449489742783178}, "mlsauce.booster.LSBoostRegressor": {"tf": 2.8284271247461903}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 2}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 2}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1.4142135623730951}}, "df": 7}, "c": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 2.6457513110645907}}, "df": 5}}, "i": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}}, "df": 3, "t": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingClassifier.provide_models": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.utils.check_and_install": {"tf": 1}}, "df": 42, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.LassoRegressor": {"tf": 1}, "mlsauce.lasso.LassoRegressor": {"tf": 1}}, "df": 2, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.LassoRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}, "mlsauce.lasso.LassoRegressor": {"tf": 1}}, "df": 12}}}}}, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.utils.Progbar": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}}, "df": 4}}, "n": {"docs": {"mlsauce.AdaOpt": {"tf": 2.449489742783178}, "mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 2.8284271247461903}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 2.8284271247461903}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 3.4641016151377544}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 3.4641016151377544}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.LazyBoostingRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor.provide_models": {"tf": 1}, "mlsauce.set_config": {"tf": 2.6457513110645907}, "mlsauce.config_context": {"tf": 2}, "mlsauce.adaopt.AdaOpt": {"tf": 2.449489742783178}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 2.8284271247461903}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 3.4641016151377544}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 2.8284271247461903}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 3.4641016151377544}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 2}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 2}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.utils.Progbar": {"tf": 1.4142135623730951}, "mlsauce.utils.Progbar.update": {"tf": 1}}, "df": 73, "t": {"docs": {"mlsauce.AdaOpt": {"tf": 2.8284271247461903}, "mlsauce.LSBoostClassifier": {"tf": 2.449489742783178}, "mlsauce.GenericBoostingClassifier": {"tf": 2.449489742783178}, "mlsauce.GenericBoostingRegressor": {"tf": 2.6457513110645907}, "mlsauce.StumpClassifier": {"tf": 1}, "mlsauce.LassoRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 2.6457513110645907}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.LazyBoostingClassifier": {"tf": 2}, "mlsauce.LazyBoostingRegressor": {"tf": 2}, "mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 2.8284271247461903}, "mlsauce.booster.LSBoostClassifier": {"tf": 2.449489742783178}, "mlsauce.booster.LSBoostRegressor": {"tf": 2.6457513110645907}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 2.449489742783178}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 2.6457513110645907}, "mlsauce.lasso.LassoRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 2}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 2}, "mlsauce.nonconformist.IcpRegressor": {"tf": 2}, "mlsauce.stump.StumpClassifier": {"tf": 1}}, "df": 23, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}}, "df": 8}}}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}, "mlsauce.utils.Progbar": {"tf": 1.4142135623730951}}, "df": 11, "s": {"docs": {"mlsauce.nonconformist.RegressorNc.predict": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}}, "df": 4}}}}}, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.predictioninterval.PredictionInterval": {"tf": 1.4142135623730951}}, "df": 1}}}}, "o": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}}, "df": 4}}, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.config_context": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}}, "df": 4, "s": {"docs": {"mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}}, "df": 3}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}}, "df": 8}}}}}, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}}, "df": 4}}}}}}}, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "x": {"docs": {"mlsauce.utils.Progbar.update": {"tf": 1}}, "df": 1}}}, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}}, "df": 8, "d": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}}, "df": 8}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.nonconformist.RegressorNc": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.utils.check_and_install": {"tf": 1}}, "df": 3, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.utils.check_and_install": {"tf": 1}}, "df": 1}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}}, "df": 3}}}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 2}}}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1.4142135623730951}}, "df": 2}}}, "f": {"docs": {"mlsauce.AdaOpt": {"tf": 1.7320508075688772}, "mlsauce.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingClassifier.provide_models": {"tf": 1}, "mlsauce.LazyBoostingRegressor.provide_models": {"tf": 1}, "mlsauce.set_config": {"tf": 2.449489742783178}, "mlsauce.config_context": {"tf": 2.449489742783178}, "mlsauce.adaopt.AdaOpt": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.utils.Progbar": {"tf": 1}, "mlsauce.utils.Progbar.update": {"tf": 1}, "mlsauce.utils.check_and_install": {"tf": 1.4142135623730951}}, "df": 55}, "s": {"docs": {"mlsauce.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.AdaOpt.fit": {"tf": 1.4142135623730951}, "mlsauce.AdaOpt.predict": {"tf": 1.4142135623730951}, "mlsauce.AdaOpt.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingClassifier.fit": {"tf": 2.8284271247461903}, "mlsauce.LazyBoostingClassifier.provide_models": {"tf": 2.8284271247461903}, "mlsauce.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor.fit": {"tf": 2.8284271247461903}, "mlsauce.LazyBoostingRegressor.provide_models": {"tf": 3}, "mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 2}, "mlsauce.adaopt.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier.fit": {"tf": 2.8284271247461903}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 2.8284271247461903}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor.fit": {"tf": 2.8284271247461903}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 3}, "mlsauce.nonconformist.AbsErrorErrFunc": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 2.23606797749979}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.utils.Progbar": {"tf": 1}, "mlsauce.utils.Progbar.update": {"tf": 1.4142135623730951}, "mlsauce.utils.check_and_install": {"tf": 1}}, "df": 105}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 3.1622776601683795}, "mlsauce.LSBoostRegressor": {"tf": 3.4641016151377544}, "mlsauce.LazyBoostingClassifier": {"tf": 2.23606797749979}, "mlsauce.LazyBoostingRegressor": {"tf": 2}, "mlsauce.config_context": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 3.1622776601683795}, "mlsauce.booster.LSBoostRegressor": {"tf": 3.4641016151377544}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 2.23606797749979}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 2}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor": {"tf": 2.449489742783178}}, "df": 12}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 2}}}}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 3.3166247903554}, "mlsauce.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 3.3166247903554}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1.4142135623730951}}, "df": 4}}}, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1.4142135623730951}}, "df": 4, "d": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}}, "df": 4}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}}, "df": 4}}}}}}}, "s": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 2}}, "x": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 2.8284271247461903}}, "df": 1}}, "c": {"docs": {}, "df": 0, "p": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 2.23606797749979}}, "df": 1, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 1}}, "df": 1}}}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}}}, "o": {"docs": {}, "df": 0, "f": {"docs": {"mlsauce.AdaOpt": {"tf": 3}, "mlsauce.AdaOpt.fit": {"tf": 1.4142135623730951}, "mlsauce.AdaOpt.predict": {"tf": 1.4142135623730951}, "mlsauce.AdaOpt.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.AdaOpt.set_score_request": {"tf": 2.23606797749979}, "mlsauce.LSBoostClassifier": {"tf": 3.3166247903554}, "mlsauce.LSBoostClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 2.23606797749979}, "mlsauce.GenericBoostingClassifier": {"tf": 3.3166247903554}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 2.23606797749979}, "mlsauce.GenericBoostingRegressor": {"tf": 3.4641016151377544}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 2.23606797749979}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 2.23606797749979}, "mlsauce.StumpClassifier": {"tf": 1}, "mlsauce.StumpClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 2.23606797749979}, "mlsauce.StumpClassifier.set_score_request": {"tf": 2.23606797749979}, "mlsauce.ElasticNetRegressor": {"tf": 1}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 2.23606797749979}, "mlsauce.LassoRegressor": {"tf": 2}, "mlsauce.LassoRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.set_score_request": {"tf": 2.23606797749979}, "mlsauce.LSBoostRegressor": {"tf": 3.4641016151377544}, "mlsauce.LSBoostRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.predict": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 2.23606797749979}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 2.23606797749979}, "mlsauce.RidgeRegressor": {"tf": 1}, "mlsauce.RidgeRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 2.23606797749979}, "mlsauce.LazyBoostingClassifier": {"tf": 2.23606797749979}, "mlsauce.LazyBoostingClassifier.fit": {"tf": 3.1622776601683795}, "mlsauce.LazyBoostingClassifier.provide_models": {"tf": 3}, "mlsauce.LazyBoostingRegressor": {"tf": 2.23606797749979}, "mlsauce.LazyBoostingRegressor.fit": {"tf": 3.1622776601683795}, "mlsauce.LazyBoostingRegressor.provide_models": {"tf": 3}, "mlsauce.set_config": {"tf": 2}, "mlsauce.config_context": {"tf": 2}, "mlsauce.adaopt.AdaOpt": {"tf": 3}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 2.23606797749979}, "mlsauce.booster.LSBoostClassifier": {"tf": 3.3166247903554}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 2.23606797749979}, "mlsauce.booster.LSBoostRegressor": {"tf": 3.4641016151377544}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 2.23606797749979}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 2.23606797749979}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 3.3166247903554}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 2.23606797749979}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 3.4641016151377544}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 2.23606797749979}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 2.23606797749979}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 2.23606797749979}, "mlsauce.lasso.LassoRegressor": {"tf": 2}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 2.23606797749979}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 2.23606797749979}, "mlsauce.lazybooster.LazyBoostingClassifier.fit": {"tf": 3.1622776601683795}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 3}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 2.23606797749979}, "mlsauce.lazybooster.LazyBoostingRegressor.fit": {"tf": 3.1622776601683795}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 3}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 2.23606797749979}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 2.23606797749979}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 2.23606797749979}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 2.23606797749979}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 2.6457513110645907}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 2.23606797749979}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 2.23606797749979}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 2.23606797749979}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 2.23606797749979}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 2.23606797749979}, "mlsauce.nonconformist.IcpRegressor": {"tf": 2.23606797749979}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 2.449489742783178}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 2.23606797749979}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 2.23606797749979}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 2}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 2.23606797749979}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 2.23606797749979}, "mlsauce.ridge.RidgeRegressor": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 2.23606797749979}, "mlsauce.stump.StumpClassifier": {"tf": 1}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 2.23606797749979}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 2.23606797749979}, "mlsauce.utils.Progbar": {"tf": 1.7320508075688772}, "mlsauce.utils.Progbar.update": {"tf": 1.7320508075688772}}, "df": 115, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 2}}}}, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.AdaOpt": {"tf": 2}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 2}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}}, "df": 10}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 2.8284271247461903}, "mlsauce.LazyBoostingRegressor": {"tf": 2.8284271247461903}, "mlsauce.set_config": {"tf": 2}, "mlsauce.config_context": {"tf": 2}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 2.8284271247461903}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 2.8284271247461903}}, "df": 6}}, "s": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}}, "df": 4}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 2}}}}}}}}}, "r": {"docs": {"mlsauce.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor": {"tf": 2}, "mlsauce.LSBoostRegressor": {"tf": 2}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 2}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 2}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}}, "df": 22, "g": {"docs": {}, "df": 0, "/": {"3": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 35}}}}}}}}}}}}}}}}}}, "docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 35}}}}}}}}}}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}}, "df": 8}}}}}}}, "b": {"docs": {}, "df": 0, "j": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 7.745966692414834}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 3.4641016151377544}, "mlsauce.booster.LSBoostClassifier": {"tf": 7.745966692414834}, "mlsauce.booster.LSBoostRegressor": {"tf": 3.4641016151377544}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}}, "df": 7, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt.fit": {"tf": 1}, "mlsauce.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.fit": {"tf": 1}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.LassoRegressor.fit": {"tf": 1}, "mlsauce.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.RidgeRegressor.fit": {"tf": 1}, "mlsauce.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingClassifier.get_best_model": {"tf": 1}, "mlsauce.LazyBoostingClassifier.provide_models": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor.get_best_model": {"tf": 1}, "mlsauce.LazyBoostingRegressor.provide_models": {"tf": 1}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier.get_best_model": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor.get_best_model": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 1}, "mlsauce.nonconformist.RegressorNc": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1}}, "df": 31, "s": {"docs": {"mlsauce.LazyBoostingClassifier.provide_models": {"tf": 1}, "mlsauce.LazyBoostingRegressor.provide_models": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 1}}, "df": 4}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.StumpClassifier.fit": {"tf": 1}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1}}, "df": 2}}}}}}}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.predictioninterval.PredictionInterval": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}}, "df": 2}}}}}}}, "s": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}}, "df": 8}, "n": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingClassifier.fit": {"tf": 1}, "mlsauce.LazyBoostingClassifier.get_best_model": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor.fit": {"tf": 1}, "mlsauce.LazyBoostingRegressor.get_best_model": {"tf": 1.4142135623730951}, "mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.fit": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.get_best_model": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor.fit": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.get_best_model": {"tf": 1.4142135623730951}, "mlsauce.utils.Progbar": {"tf": 1}}, "df": 15, "l": {"docs": {}, "df": 0, "y": {"docs": {"mlsauce.GenericBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.set_config": {"tf": 1.7320508075688772}, "mlsauce.config_context": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}}, "df": 10}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}}, "df": 5, "s": {"docs": {"mlsauce.utils.Progbar": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1.7320508075688772}}, "df": 6, "s": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 1}}, "df": 1}}}}}}, "w": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 2}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.utils.Progbar": {"tf": 1}, "mlsauce.utils.Progbar.update": {"tf": 1}}, "df": 2}}}}, "t": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 2.8284271247461903}, "mlsauce.LazyBoostingClassifier.provide_models": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 2.8284271247461903}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 1}}, "df": 4, "h": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt": {"tf": 3.3166247903554}, "mlsauce.AdaOpt.fit": {"tf": 1.4142135623730951}, "mlsauce.AdaOpt.predict": {"tf": 1.4142135623730951}, "mlsauce.AdaOpt.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.AdaOpt.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.LSBoostClassifier": {"tf": 3}, "mlsauce.LSBoostClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.GenericBoostingClassifier": {"tf": 3}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.GenericBoostingRegressor": {"tf": 3}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 3.1622776601683795}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.StumpClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 3.1622776601683795}, "mlsauce.StumpClassifier.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.LassoRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.LSBoostRegressor": {"tf": 3}, "mlsauce.LSBoostRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 3.1622776601683795}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.RidgeRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.LazyBoostingClassifier": {"tf": 2.8284271247461903}, "mlsauce.LazyBoostingClassifier.fit": {"tf": 3.3166247903554}, "mlsauce.LazyBoostingClassifier.get_best_model": {"tf": 2}, "mlsauce.LazyBoostingClassifier.provide_models": {"tf": 3.3166247903554}, "mlsauce.LazyBoostingRegressor": {"tf": 3}, "mlsauce.LazyBoostingRegressor.fit": {"tf": 3.3166247903554}, "mlsauce.LazyBoostingRegressor.get_best_model": {"tf": 2}, "mlsauce.LazyBoostingRegressor.provide_models": {"tf": 3.1622776601683795}, "mlsauce.set_config": {"tf": 2.23606797749979}, "mlsauce.config_context": {"tf": 2.23606797749979}, "mlsauce.adaopt.AdaOpt": {"tf": 3.3166247903554}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.booster.LSBoostClassifier": {"tf": 3}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.booster.LSBoostRegressor": {"tf": 3}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 3.1622776601683795}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 3}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 3}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 3.1622776601683795}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 2.8284271247461903}, "mlsauce.lazybooster.LazyBoostingClassifier.fit": {"tf": 3.3166247903554}, "mlsauce.lazybooster.LazyBoostingClassifier.get_best_model": {"tf": 2}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 3.3166247903554}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 3}, "mlsauce.lazybooster.LazyBoostingRegressor.fit": {"tf": 3.3166247903554}, "mlsauce.lazybooster.LazyBoostingRegressor.get_best_model": {"tf": 2}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 3.1622776601683795}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 3.1622776601683795}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 3.1622776601683795}, "mlsauce.nonconformist.RegressorNc": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 2.6457513110645907}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 3.1622776601683795}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 3.1622776601683795}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 3.1622776601683795}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 2.23606797749979}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 3.1622776601683795}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 3.1622776601683795}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 2}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 3.1622776601683795}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 3.1622776601683795}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.utils.Progbar": {"tf": 1}, "mlsauce.utils.Progbar.update": {"tf": 1.4142135623730951}}, "df": 111, "i": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.config_context": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 7}}, "n": {"docs": {"mlsauce.LazyBoostingClassifier.provide_models": {"tf": 1}, "mlsauce.LazyBoostingRegressor.provide_models": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1.7320508075688772}}, "df": 6}, "r": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.predictioninterval.PredictionInterval": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.LazyBoostingClassifier.get_best_model": {"tf": 1}, "mlsauce.LazyBoostingRegressor.get_best_model": {"tf": 1}, "mlsauce.LazyBoostingRegressor.provide_models": {"tf": 1}, "mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.get_best_model": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.get_best_model": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.utils.Progbar": {"tf": 1}}, "df": 46}}, "a": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.get_config": {"tf": 1}, "mlsauce.set_config": {"tf": 1.4142135623730951}, "mlsauce.config_context": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.utils.Progbar": {"tf": 1}}, "df": 10}}, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.config_context": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.config_context": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 6}, "mlsauce.LSBoostRegressor": {"tf": 2.8284271247461903}, "mlsauce.LazyBoostingClassifier": {"tf": 2.449489742783178}, "mlsauce.LazyBoostingClassifier.fit": {"tf": 2}, "mlsauce.LazyBoostingClassifier.provide_models": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor": {"tf": 2.8284271247461903}, "mlsauce.LazyBoostingRegressor.fit": {"tf": 2}, "mlsauce.LazyBoostingRegressor.provide_models": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 6}, "mlsauce.booster.LSBoostRegressor": {"tf": 2.8284271247461903}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 2.449489742783178}, "mlsauce.lazybooster.LazyBoostingClassifier.fit": {"tf": 2}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 2.8284271247461903}, "mlsauce.lazybooster.LazyBoostingRegressor.fit": {"tf": 2}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1.7320508075688772}}, "df": 17, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.AdaOpt": {"tf": 2.8284271247461903}, "mlsauce.AdaOpt.fit": {"tf": 1.7320508075688772}, "mlsauce.AdaOpt.predict": {"tf": 1}, "mlsauce.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 2.6457513110645907}, "mlsauce.LSBoostClassifier.fit": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 2.449489742783178}, "mlsauce.GenericBoostingRegressor": {"tf": 2.449489742783178}, "mlsauce.StumpClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.predict": {"tf": 1}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1.7320508075688772}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.LassoRegressor.fit": {"tf": 1.7320508075688772}, "mlsauce.LassoRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 2.6457513110645907}, "mlsauce.LSBoostRegressor.fit": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.RidgeRegressor.fit": {"tf": 1.7320508075688772}, "mlsauce.RidgeRegressor.predict": {"tf": 1}, "mlsauce.LazyBoostingClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingClassifier.provide_models": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor.provide_models": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt": {"tf": 2.8284271247461903}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 2.6457513110645907}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 2.6457513110645907}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 2.449489742783178}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 2.449489742783178}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1.7320508075688772}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1.7320508075688772}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1.7320508075688772}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1}}, "df": 53}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.LazyBoostingClassifier.provide_models": {"tf": 1}, "mlsauce.LazyBoostingRegressor.provide_models": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 1}}, "df": 4}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"mlsauce.config_context": {"tf": 1}}, "df": 1}}}}}}}, "u": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.LazyBoostingClassifier": {"tf": 2}, "mlsauce.LazyBoostingRegressor": {"tf": 2.449489742783178}, "mlsauce.set_config": {"tf": 1.7320508075688772}, "mlsauce.config_context": {"tf": 2.449489742783178}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 2}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 2.449489742783178}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 56}}, "e": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1}}, "df": 5}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt": {"tf": 3.1622776601683795}, "mlsauce.LSBoostClassifier": {"tf": 6.708203932499369}, "mlsauce.GenericBoostingClassifier": {"tf": 1.7320508075688772}, "mlsauce.GenericBoostingRegressor": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor": {"tf": 3.605551275463989}, "mlsauce.LazyBoostingClassifier": {"tf": 2}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.set_config": {"tf": 1.4142135623730951}, "mlsauce.config_context": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt": {"tf": 3.1622776601683795}, "mlsauce.booster.LSBoostClassifier": {"tf": 6.708203932499369}, "mlsauce.booster.LSBoostRegressor": {"tf": 3.605551275463989}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1.7320508075688772}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1.7320508075688772}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 2}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}, "mlsauce.utils.Progbar": {"tf": 1}, "mlsauce.utils.Progbar.update": {"tf": 1}}, "df": 18}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt": {"tf": 1.7320508075688772}, "mlsauce.AdaOpt.predict": {"tf": 1}, "mlsauce.AdaOpt.predict_proba": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier": {"tf": 6.557438524302}, "mlsauce.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1.7320508075688772}, "mlsauce.StumpClassifier.predict": {"tf": 1}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1.7320508075688772}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.LassoRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 3.3166247903554}, "mlsauce.LSBoostRegressor.predict": {"tf": 1.7320508075688772}, "mlsauce.RidgeRegressor.predict": {"tf": 1}, "mlsauce.LazyBoostingClassifier": {"tf": 2.6457513110645907}, "mlsauce.LazyBoostingClassifier.fit": {"tf": 2}, "mlsauce.LazyBoostingClassifier.provide_models": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor": {"tf": 3}, "mlsauce.LazyBoostingRegressor.fit": {"tf": 2}, "mlsauce.LazyBoostingRegressor.provide_models": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier": {"tf": 6.557438524302}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor": {"tf": 3.3166247903554}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1.7320508075688772}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 2.6457513110645907}, "mlsauce.lazybooster.LazyBoostingClassifier.fit": {"tf": 2}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 3}, "mlsauce.lazybooster.LazyBoostingRegressor.fit": {"tf": 2}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 2.23606797749979}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1.7320508075688772}}, "df": 41, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.LazyBoostingClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingClassifier.provide_models": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor.provide_models": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}}, "df": 9}}}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 2}}}}}}}, "x": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.set_config": {"tf": 2.23606797749979}, "mlsauce.config_context": {"tf": 2.23606797749979}}, "df": 2, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 2}}}}}, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 2}}}}}}}}, "o": {"docs": {"mlsauce.AdaOpt.fit": {"tf": 1.7320508075688772}, "mlsauce.AdaOpt.predict": {"tf": 1.4142135623730951}, "mlsauce.AdaOpt.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostClassifier.fit": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.fit": {"tf": 1}, "mlsauce.StumpClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1.7320508075688772}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.fit": {"tf": 1.7320508075688772}, "mlsauce.LassoRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor.fit": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.fit": {"tf": 1.7320508075688772}, "mlsauce.RidgeRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingClassifier": {"tf": 2.449489742783178}, "mlsauce.LazyBoostingClassifier.fit": {"tf": 1.7320508075688772}, "mlsauce.LazyBoostingClassifier.provide_models": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 2.449489742783178}, "mlsauce.LazyBoostingRegressor.fit": {"tf": 1.7320508075688772}, "mlsauce.get_config": {"tf": 1}, "mlsauce.set_config": {"tf": 2.23606797749979}, "mlsauce.config_context": {"tf": 2.23606797749979}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1.7320508075688772}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1.7320508075688772}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 2.449489742783178}, "mlsauce.lazybooster.LazyBoostingClassifier.fit": {"tf": 1.7320508075688772}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 2.449489742783178}, "mlsauce.lazybooster.LazyBoostingRegressor.fit": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1.7320508075688772}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}}, "df": 96, "l": {"docs": {"mlsauce.LassoRegressor": {"tf": 1}, "mlsauce.lasso.LassoRegressor": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 2.23606797749979}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.LassoRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 2.23606797749979}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}, "mlsauce.lasso.LassoRegressor": {"tf": 1}}, "df": 12}}}}}}}, "p": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.GenericBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1.4142135623730951}}, "df": 4}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.utils.Progbar": {"tf": 1}}, "df": 1}}}}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor": {"tf": 2.23606797749979}, "mlsauce.ElasticNetRegressor": {"tf": 1}, "mlsauce.LassoRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 2.23606797749979}, "mlsauce.RidgeRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 2.23606797749979}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 2.23606797749979}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1}, "mlsauce.lasso.LassoRegressor": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor": {"tf": 1}}, "df": 17}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt.fit": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 2.23606797749979}, "mlsauce.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.StumpClassifier.fit": {"tf": 1}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.LassoRegressor.fit": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.RidgeRegressor.fit": {"tf": 1}, "mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 2.23606797749979}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1}, "mlsauce.utils.Progbar": {"tf": 1}}, "df": 25}}}}, "n": {"docs": {}, "df": 0, "h": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}}, "df": 8}}, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}}, "df": 2}}}}, "p": {"docs": {}, "df": 0, "u": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.ElasticNetRegressor": {"tf": 1}, "mlsauce.LassoRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.RidgeRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1}, "mlsauce.lasso.LassoRegressor": {"tf": 1}, "mlsauce.ridge.RidgeRegressor": {"tf": 1}}, "df": 14}}, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}}, "df": 1, "s": {"docs": {"mlsauce.utils.Progbar.update": {"tf": 1}}, "df": 1}}}}}}, "l": {"1": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.ElasticNetRegressor": {"tf": 1}, "mlsauce.LassoRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1}, "mlsauce.lasso.LassoRegressor": {"tf": 1}}, "df": 14}, "2": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1}}, "df": 12}, "docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1.4142135623730951}}, "df": 10}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}}, "df": 8}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 2}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.LSBoostRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1.4142135623730951}}, "df": 9, "s": {"docs": {"mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}}, "df": 2}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.ElasticNetRegressor": {"tf": 1}, "mlsauce.LassoRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.RidgeRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1}, "mlsauce.lasso.LassoRegressor": {"tf": 1}, "mlsauce.ridge.RidgeRegressor": {"tf": 1}}, "df": 16}}}}, "y": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}}, "df": 8, "s": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1.4142135623730951}}, "df": 12}}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.LassoRegressor": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}, "mlsauce.lasso.LassoRegressor": {"tf": 1.7320508075688772}}, "df": 10}}, "t": {"docs": {"mlsauce.config_context": {"tf": 1}, "mlsauce.utils.Progbar.update": {"tf": 1.4142135623730951}}, "df": 2}}, "z": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}}, "df": 2}}}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}}, "df": 2}}}}}}}}}}}}}}}}}}}, "b": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1}}, "df": 2}}}}}, "i": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.fit": {"tf": 1.4142135623730951}, "mlsauce.AdaOpt.predict": {"tf": 1.4142135623730951}, "mlsauce.AdaOpt.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.fit": {"tf": 1.7320508075688772}, "mlsauce.StumpClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingClassifier.fit": {"tf": 2}, "mlsauce.LazyBoostingClassifier.provide_models": {"tf": 2}, "mlsauce.LazyBoostingRegressor.fit": {"tf": 2}, "mlsauce.LazyBoostingRegressor.provide_models": {"tf": 2}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier.fit": {"tf": 2}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 2}, "mlsauce.lazybooster.LazyBoostingRegressor.fit": {"tf": 2}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 2}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1.7320508075688772}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1.4142135623730951}}, "df": 44}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.utils.Progbar": {"tf": 1}, "mlsauce.utils.Progbar.update": {"tf": 1}}, "df": 41}}, "n": {"docs": {}, "df": 0, "k": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}}, "df": 8}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 2}}}}, "s": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}}, "df": 6}}}}}}, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 3}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingClassifier": {"tf": 3}, "mlsauce.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 3}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 3}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1.4142135623730951}}, "df": 9}}, "s": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 3.1622776601683795}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 3.1622776601683795}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}}, "df": 4}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}}, "df": 3}}}}}}}}}}}}, "w": {"docs": {"mlsauce.nonconformist.QuantileRegErrFunc": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 2}}, "r": {"docs": {"mlsauce.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1.4142135623730951}}, "df": 2, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}}, "df": 12}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 2.23606797749979}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 2.23606797749979}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}}, "df": 10}}}}}, "e": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.ElasticNetRegressor": {"tf": 1}, "mlsauce.LassoRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.RidgeRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1}, "mlsauce.lasso.LassoRegressor": {"tf": 1}, "mlsauce.ridge.RidgeRegressor": {"tf": 1}}, "df": 16, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor": {"tf": 1}, "mlsauce.ridge.RidgeRegressor": {"tf": 1}}, "df": 16}}}}}}}}}}}, "r": {"docs": {"mlsauce.LSBoostRegressor": {"tf": 1.7320508075688772}, "mlsauce.LazyBoostingRegressor": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.7320508075688772}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1.7320508075688772}}, "df": 4, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1}}, "df": 7, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.nonconformist.RegressorNc": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}, "n": {"docs": {}, "df": 0, "c": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 1.4142135623730951}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.LazyBoostingRegressor.fit": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.fit": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc": {"tf": 1}, "mlsauce.nonconformist.RegressorNc": {"tf": 1.4142135623730951}}, "df": 7, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"mlsauce.nonconformist.RegressorNc": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}}, "df": 2}}, "e": {"docs": {"mlsauce.get_config": {"tf": 1}, "mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 3}}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.LazyBoostingClassifier.provide_models": {"tf": 1}, "mlsauce.LazyBoostingRegressor.provide_models": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}}, "df": 9, "s": {"docs": {"mlsauce.AdaOpt.fit": {"tf": 1}, "mlsauce.AdaOpt.predict": {"tf": 1}, "mlsauce.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.StumpClassifier.fit": {"tf": 1}, "mlsauce.StumpClassifier.predict": {"tf": 1}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.LassoRegressor.fit": {"tf": 1}, "mlsauce.LassoRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.RidgeRegressor.fit": {"tf": 1}, "mlsauce.RidgeRegressor.predict": {"tf": 1}, "mlsauce.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingClassifier.fit": {"tf": 1.7320508075688772}, "mlsauce.LazyBoostingClassifier.get_best_model": {"tf": 1.7320508075688772}, "mlsauce.LazyBoostingClassifier.provide_models": {"tf": 1.7320508075688772}, "mlsauce.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor.fit": {"tf": 1.7320508075688772}, "mlsauce.LazyBoostingRegressor.get_best_model": {"tf": 1.7320508075688772}, "mlsauce.LazyBoostingRegressor.provide_models": {"tf": 1.7320508075688772}, "mlsauce.get_config": {"tf": 1}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier.fit": {"tf": 1.7320508075688772}, "mlsauce.lazybooster.LazyBoostingClassifier.get_best_model": {"tf": 1.7320508075688772}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 1.7320508075688772}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor.fit": {"tf": 1.7320508075688772}, "mlsauce.lazybooster.LazyBoostingRegressor.get_best_model": {"tf": 1.7320508075688772}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1}}, "df": 57}, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.config_context": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 41}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}}, "df": 4}}}}}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}}, "df": 11}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}}, "df": 4}}}}}}}}}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 2}}}}}}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.GenericBoostingRegressor": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.7320508075688772}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1.4142135623730951}}, "df": 5}}}}}}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1.7320508075688772}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1.7320508075688772}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1.7320508075688772}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1.7320508075688772}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1.7320508075688772}}, "df": 35, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 35}}}}}}}, "f": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 36}}}}}}}}, "l": {"docs": {}, "df": 0, "u": {"6": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}}, "df": 8}, "docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}}, "df": 8}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}}, "df": 4}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.config_context": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 2}}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}}, "df": 1}}}}}}}}, "o": {"docs": {}, "df": 0, "w": {"docs": {"mlsauce.AdaOpt": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.7320508075688772}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}}, "df": 10, "s": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.LazyBoostingClassifier.fit": {"tf": 2}, "mlsauce.LazyBoostingClassifier.provide_models": {"tf": 2}, "mlsauce.LazyBoostingRegressor.fit": {"tf": 2}, "mlsauce.LazyBoostingRegressor.provide_models": {"tf": 2}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.fit": {"tf": 2}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 2}, "mlsauce.lazybooster.LazyBoostingRegressor.fit": {"tf": 2}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 2}}, "df": 18}}, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}}, "df": 10}}}}, "c": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}}, "df": 2}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 2}}}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1.7320508075688772}, "mlsauce.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.RidgeRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}, "mlsauce.ridge.RidgeRegressor": {"tf": 1}}, "df": 10}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1.4142135623730951}}, "df": 4}}, "m": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1.4142135623730951}}, "df": 2}}}}, "f": {"1": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}}, "df": 2}, "docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}}, "df": 4, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt": {"tf": 2.6457513110645907}, "mlsauce.LSBoostClassifier": {"tf": 2.6457513110645907}, "mlsauce.GenericBoostingClassifier": {"tf": 2.6457513110645907}, "mlsauce.GenericBoostingRegressor": {"tf": 2.6457513110645907}, "mlsauce.ElasticNetRegressor": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 2.6457513110645907}, "mlsauce.RidgeRegressor": {"tf": 1}, "mlsauce.config_context": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt": {"tf": 2.6457513110645907}, "mlsauce.booster.LSBoostClassifier": {"tf": 2.6457513110645907}, "mlsauce.booster.LSBoostRegressor": {"tf": 2.6457513110645907}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 2.6457513110645907}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 2.6457513110645907}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.RegressorNc": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}, "mlsauce.ridge.RidgeRegressor": {"tf": 1}}, "df": 23}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.AdaOpt": {"tf": 3.605551275463989}, "mlsauce.AdaOpt.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier": {"tf": 2.449489742783178}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingClassifier": {"tf": 2.449489742783178}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor": {"tf": 3}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 3}, "mlsauce.LSBoostRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingClassifier": {"tf": 2}, "mlsauce.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.get_config": {"tf": 1.4142135623730951}, "mlsauce.set_config": {"tf": 2}, "mlsauce.config_context": {"tf": 2}, "mlsauce.adaopt.AdaOpt": {"tf": 3.605551275463989}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 2.449489742783178}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 3}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 2.449489742783178}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 3}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 2}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.AbsErrorErrFunc": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.QuantileRegErrFunc": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 2.449489742783178}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 2.23606797749979}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.utils.Progbar.update": {"tf": 1.4142135623730951}}, "df": 78}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.AdaOpt": {"tf": 2}, "mlsauce.adaopt.AdaOpt": {"tf": 2}}, "df": 2}}}}, "l": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.LazyBoostingClassifier": {"tf": 1.7320508075688772}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.set_config": {"tf": 1.4142135623730951}, "mlsauce.config_context": {"tf": 2}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1.7320508075688772}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}}, "df": 15}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 3.1622776601683795}, "mlsauce.GenericBoostingClassifier": {"tf": 1.7320508075688772}, "mlsauce.GenericBoostingRegressor": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor": {"tf": 3}, "mlsauce.LazyBoostingClassifier": {"tf": 1.7320508075688772}, "mlsauce.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.config_context": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 3.1622776601683795}, "mlsauce.booster.LSBoostRegressor": {"tf": 3}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1.7320508075688772}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1.7320508075688772}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1.7320508075688772}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor": {"tf": 2.23606797749979}}, "df": 18}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}}, "df": 2}}}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 2}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}}, "df": 2}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 2.6457513110645907}}, "df": 2, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.set_config": {"tf": 1.4142135623730951}, "mlsauce.config_context": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}}, "t": {"docs": {"mlsauce.AdaOpt.fit": {"tf": 1}, "mlsauce.AdaOpt.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier": {"tf": 3.1622776601683795}, "mlsauce.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1.7320508075688772}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.StumpClassifier.fit": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1.7320508075688772}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.LassoRegressor.fit": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.RidgeRegressor.fit": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingClassifier.provide_models": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.LazyBoostingRegressor.fit": {"tf": 1}, "mlsauce.LazyBoostingRegressor.provide_models": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier": {"tf": 3.1622776601683795}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1.7320508075688772}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.fit": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1.7320508075688772}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1.7320508075688772}}, "df": 70, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}}, "df": 13}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}}, "df": 3}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 2}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 2, "s": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.AdaOpt.fit": {"tf": 1.7320508075688772}, "mlsauce.AdaOpt.predict": {"tf": 1.7320508075688772}, "mlsauce.AdaOpt.predict_proba": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier": {"tf": 2}, "mlsauce.LSBoostClassifier.fit": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.predict": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1.7320508075688772}, "mlsauce.GenericBoostingClassifier": {"tf": 2}, "mlsauce.GenericBoostingRegressor": {"tf": 2}, "mlsauce.StumpClassifier.fit": {"tf": 1.7320508075688772}, "mlsauce.StumpClassifier.predict": {"tf": 1.7320508075688772}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1.7320508075688772}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1.7320508075688772}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1.7320508075688772}, "mlsauce.LassoRegressor.fit": {"tf": 1.7320508075688772}, "mlsauce.LassoRegressor.predict": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor": {"tf": 2}, "mlsauce.LSBoostRegressor.fit": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.predict": {"tf": 1.7320508075688772}, "mlsauce.RidgeRegressor.fit": {"tf": 1.7320508075688772}, "mlsauce.RidgeRegressor.predict": {"tf": 1.7320508075688772}, "mlsauce.LazyBoostingClassifier.fit": {"tf": 2}, "mlsauce.LazyBoostingClassifier.provide_models": {"tf": 2}, "mlsauce.LazyBoostingRegressor.fit": {"tf": 2}, "mlsauce.LazyBoostingRegressor.provide_models": {"tf": 2}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier": {"tf": 2}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor": {"tf": 2}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1.7320508075688772}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 2}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 2}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1.7320508075688772}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1.7320508075688772}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1.7320508075688772}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1.7320508075688772}, "mlsauce.lazybooster.LazyBoostingClassifier.fit": {"tf": 2}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 2}, "mlsauce.lazybooster.LazyBoostingRegressor.fit": {"tf": 2}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 2}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1.7320508075688772}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1.7320508075688772}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1.7320508075688772}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1.7320508075688772}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1.7320508075688772}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1.7320508075688772}}, "df": 57}}}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"mlsauce.nonconformist.RegressorNc": {"tf": 1.4142135623730951}}, "df": 1, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 2}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 2}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 2}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 2}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 2}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 2}, "mlsauce.StumpClassifier.set_score_request": {"tf": 2}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 2}, "mlsauce.LassoRegressor.set_score_request": {"tf": 2}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 2}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 2}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 2}, "mlsauce.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingClassifier.get_best_model": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor.get_best_model": {"tf": 1}, "mlsauce.LazyBoostingRegressor.provide_models": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 2}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 2}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 2}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 2}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 2}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 2}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 2}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 2}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 2}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier.get_best_model": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor.get_best_model": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 2}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 2}, "mlsauce.nonconformist.RegressorNc": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 2}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 2}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 2}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 2}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 2}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 2}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 2}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 2}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 2}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 2}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 2}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 2}}, "df": 60}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 2}}}}, "s": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingClassifier.provide_models": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}}, "df": 15, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}}, "df": 10}}, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "y": {"docs": {"mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 4}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 2.6457513110645907}, "mlsauce.LSBoostRegressor": {"tf": 1.7320508075688772}, "mlsauce.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 2.6457513110645907}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.7320508075688772}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}}, "df": 9, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}}, "df": 3}}}}}}}}}}}}}, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1.4142135623730951}}, "df": 10}}}}}}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}}, "df": 2}}}}}}}, "e": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}}, "df": 2}}}}}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}}, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}}, "df": 4}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}}, "df": 2}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.utils.Progbar.update": {"tf": 1.7320508075688772}}, "df": 3, "s": {"docs": {"mlsauce.utils.Progbar": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}}, "df": 10}}}}}}, "r": {"docs": {"mlsauce.AdaOpt": {"tf": 1.7320508075688772}, "mlsauce.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier": {"tf": 2.449489742783178}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingClassifier": {"tf": 2.449489742783178}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor": {"tf": 2.6457513110645907}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 2.6457513110645907}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 2.449489742783178}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 2.6457513110645907}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 2.449489742783178}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 2.6457513110645907}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}}, "df": 53, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}}, "df": 2}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1.4142135623730951}, "mlsauce.utils.Progbar": {"tf": 1}}, "df": 6, "s": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 35}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}}, "df": 10}}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 6.324555320336759}, "mlsauce.LSBoostRegressor": {"tf": 2.8284271247461903}, "mlsauce.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 6.324555320336759}, "mlsauce.booster.LSBoostRegressor": {"tf": 2.8284271247461903}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1.4142135623730951}}, "df": 6}}, "t": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1.4142135623730951}}, "df": 4, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.utils.Progbar": {"tf": 1}, "mlsauce.utils.Progbar.update": {"tf": 1}}, "df": 2}}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {"mlsauce.StumpClassifier": {"tf": 1}, "mlsauce.StumpClassifier.fit": {"tf": 1}, "mlsauce.stump.StumpClassifier": {"tf": 1}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1}}, "df": 4}}}}, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier": {"tf": 2.23606797749979}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.set_config": {"tf": 1.4142135623730951}, "mlsauce.config_context": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier": {"tf": 2.23606797749979}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 2.23606797749979}}, "df": 13}}, "m": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}}, "df": 10, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}}, "df": 4}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.predictioninterval.PredictionInterval": {"tf": 1}}, "df": 1}}}}}}}, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 35}}}}}, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 2.6457513110645907}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 2.6457513110645907}}, "df": 5}}}}}}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}}, "df": 8}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.utils.Progbar": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}}, "df": 8}}}}}}, "f": {"docs": {"mlsauce.AdaOpt.fit": {"tf": 1.4142135623730951}, "mlsauce.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 2.449489742783178}, "mlsauce.StumpClassifier.fit": {"tf": 1}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 2.449489742783178}, "mlsauce.LSBoostRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.RidgeRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 2.449489742783178}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 2.449489742783178}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 2.6457513110645907}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 2.6457513110645907}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1}}, "df": 28}}, "t": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.AdaOpt.fit": {"tf": 1}, "mlsauce.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier": {"tf": 2}, "mlsauce.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingClassifier": {"tf": 1.7320508075688772}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor": {"tf": 1.7320508075688772}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.fit": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 2}, "mlsauce.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.fit": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingClassifier": {"tf": 1.7320508075688772}, "mlsauce.LazyBoostingRegressor": {"tf": 1.7320508075688772}, "mlsauce.get_config": {"tf": 2.23606797749979}, "mlsauce.set_config": {"tf": 1.7320508075688772}, "mlsauce.config_context": {"tf": 2}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 2}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 2}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1.7320508075688772}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1.7320508075688772}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1.7320508075688772}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}}, "df": 79, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 2, "s": {"docs": {"mlsauce.config_context": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {"mlsauce.get_config": {"tf": 1}, "mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}, "mlsauce.nonconformist.RegressorNc": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1}}, "df": 5, "d": {"docs": {"mlsauce.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier": {"tf": 2.6457513110645907}, "mlsauce.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 1.7320508075688772}, "mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 2.6457513110645907}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.7320508075688772}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}}, "df": 15}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.utils.Progbar": {"tf": 1}}, "df": 3}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 2}}}}}}}}}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {"mlsauce.utils.Progbar": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.fit": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 2.449489742783178}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 2.449489742783178}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 49, "s": {"docs": {"mlsauce.AdaOpt.fit": {"tf": 2}, "mlsauce.AdaOpt.predict": {"tf": 1.7320508075688772}, "mlsauce.AdaOpt.predict_proba": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.fit": {"tf": 2}, "mlsauce.LSBoostClassifier.predict": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1.7320508075688772}, "mlsauce.StumpClassifier.fit": {"tf": 2.23606797749979}, "mlsauce.StumpClassifier.predict": {"tf": 1.7320508075688772}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1.7320508075688772}, "mlsauce.ElasticNetRegressor.fit": {"tf": 2}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1.7320508075688772}, "mlsauce.LassoRegressor.fit": {"tf": 2}, "mlsauce.LassoRegressor.predict": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.fit": {"tf": 2}, "mlsauce.LSBoostRegressor.predict": {"tf": 1.7320508075688772}, "mlsauce.RidgeRegressor.fit": {"tf": 2}, "mlsauce.RidgeRegressor.predict": {"tf": 1.7320508075688772}, "mlsauce.LazyBoostingClassifier.fit": {"tf": 2}, "mlsauce.LazyBoostingClassifier.provide_models": {"tf": 2}, "mlsauce.LazyBoostingRegressor.fit": {"tf": 2}, "mlsauce.LazyBoostingRegressor.provide_models": {"tf": 2}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 2}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 2}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 2}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1.7320508075688772}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 2}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1.7320508075688772}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 2}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1.7320508075688772}, "mlsauce.lazybooster.LazyBoostingClassifier.fit": {"tf": 2}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 2}, "mlsauce.lazybooster.LazyBoostingRegressor.fit": {"tf": 2}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 2}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 2}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 2}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 2}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1.7320508075688772}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 2}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1.7320508075688772}, "mlsauce.stump.StumpClassifier.fit": {"tf": 2.23606797749979}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1.7320508075688772}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1.7320508075688772}}, "df": 50}}}}, "e": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}}, "df": 4}}, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.set_config": {"tf": 1.4142135623730951}, "mlsauce.config_context": {"tf": 1.4142135623730951}}, "df": 2}}}}, "f": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.config_context": {"tf": 1}}, "df": 1}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1.4142135623730951}}, "df": 10}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 3.3166247903554}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingClassifier.fit": {"tf": 1}, "mlsauce.LazyBoostingRegressor.fit": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 3.3166247903554}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.fit": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.fit": {"tf": 1}}, "df": 10, "s": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingClassifier.fit": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.LazyBoostingRegressor.fit": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.fit": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.fit": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.RegressorNc": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1.4142135623730951}}, "df": 14}, "r": {"docs": {"mlsauce.nonconformist.RegressorNc": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1.4142135623730951}}, "df": 2}}}}, "i": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 2}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.utils.Progbar": {"tf": 1}}, "df": 1}}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.fit": {"tf": 1.4142135623730951}, "mlsauce.AdaOpt.predict": {"tf": 1}, "mlsauce.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.StumpClassifier.fit": {"tf": 1.7320508075688772}, "mlsauce.StumpClassifier.predict": {"tf": 1}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.LassoRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.RidgeRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1.7320508075688772}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1}}, "df": 45}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.utils.Progbar": {"tf": 1}}, "df": 41}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.LassoRegressor": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1}}, "df": 10}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingClassifier.get_best_model": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor": {"tf": 1.7320508075688772}, "mlsauce.LazyBoostingRegressor.get_best_model": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier.get_best_model": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1.7320508075688772}, "mlsauce.lazybooster.LazyBoostingRegressor.get_best_model": {"tf": 1.4142135623730951}}, "df": 8}}}, "k": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 2.23606797749979}, "mlsauce.LSBoostRegressor": {"tf": 2}, "mlsauce.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 2.23606797749979}, "mlsauce.booster.LSBoostRegressor": {"tf": 2}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1.4142135623730951}}, "df": 11}}}}}, "i": {"docs": {}, "df": 0, "p": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 1}}, "df": 1, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 2}}}}}}, "y": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}}, "df": 2}}, "q": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}}, "df": 2}}, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}}, "df": 2, "d": {"docs": {"mlsauce.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1.4142135623730951}}, "df": 2}}}}}}, "v": {"docs": {}, "df": 0, "c": {"docs": {"mlsauce.set_config": {"tf": 1.7320508075688772}, "mlsauce.config_context": {"tf": 1.7320508075688772}}, "df": 2}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.nonconformist.RegressorNc": {"tf": 1}}, "df": 1}}}}}}}}}, "p": {"docs": {"mlsauce.nonconformist.RegressorNc.predict": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1.7320508075688772}}, "df": 2, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 2.6457513110645907}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 2.6457513110645907}}, "df": 2, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.ElasticNetRegressor": {"tf": 1}, "mlsauce.LassoRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.RidgeRegressor": {"tf": 1}, "mlsauce.get_config": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1}, "mlsauce.lasso.LassoRegressor": {"tf": 1}, "mlsauce.nonconformist.RegressorNc": {"tf": 1}, "mlsauce.ridge.RidgeRegressor": {"tf": 1}}, "df": 18, "s": {"docs": {"mlsauce.AdaOpt.fit": {"tf": 1}, "mlsauce.AdaOpt.predict": {"tf": 1}, "mlsauce.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.AdaOpt.set_score_request": {"tf": 2}, "mlsauce.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 2}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 2}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 2}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 2}, "mlsauce.StumpClassifier.predict": {"tf": 1}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 2}, "mlsauce.StumpClassifier.set_score_request": {"tf": 2}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 2}, "mlsauce.LassoRegressor.fit": {"tf": 1}, "mlsauce.LassoRegressor.predict": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 2}, "mlsauce.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 2}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 2}, "mlsauce.RidgeRegressor.fit": {"tf": 1}, "mlsauce.RidgeRegressor.predict": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 2}, "mlsauce.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingClassifier.fit": {"tf": 1}, "mlsauce.LazyBoostingClassifier.provide_models": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor.provide_models": {"tf": 1}, "mlsauce.set_config": {"tf": 1.7320508075688772}, "mlsauce.config_context": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 2}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 2}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 2}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 2}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 2}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 2}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 2}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 2}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 2}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier.fit": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 2}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 2}, "mlsauce.nonconformist.RegressorNc": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 2}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 2}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 2}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 2}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 2}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 2}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 2}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 2}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 2}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 2}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 2}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 2}}, "df": 91}}}}}, "s": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 3.1622776601683795}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 3.1622776601683795}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1.4142135623730951}}, "df": 6}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}}, "df": 6, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 2}}}}}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.AdaOpt.fit": {"tf": 1}, "mlsauce.AdaOpt.predict": {"tf": 1}, "mlsauce.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.StumpClassifier.predict": {"tf": 1}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.LassoRegressor.fit": {"tf": 1}, "mlsauce.LassoRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.RidgeRegressor.fit": {"tf": 1}, "mlsauce.RidgeRegressor.predict": {"tf": 1}, "mlsauce.LazyBoostingClassifier.fit": {"tf": 1}, "mlsauce.LazyBoostingRegressor.fit": {"tf": 1}, "mlsauce.get_config": {"tf": 1}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.fit": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.fit": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1}}, "df": 37}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.LazyBoostingClassifier.fit": {"tf": 2}, "mlsauce.LazyBoostingRegressor.fit": {"tf": 2}, "mlsauce.lazybooster.LazyBoostingClassifier.fit": {"tf": 2}, "mlsauce.lazybooster.LazyBoostingRegressor.fit": {"tf": 2}}, "df": 4}}}}, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.nonconformist.RegressorNc.predict": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}}, "df": 2, "s": {"docs": {"mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1.4142135623730951}}, "df": 3}}, "s": {"docs": {"mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}}, "df": 2}}}}}, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.utils.check_and_install": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt.predict": {"tf": 1.4142135623730951}, "mlsauce.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 2}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.RidgeRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingClassifier.fit": {"tf": 1}, "mlsauce.LazyBoostingRegressor.fit": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 2}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier.fit": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.fit": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1}}, "df": 34, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.AdaOpt": {"tf": 1.7320508075688772}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 2}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 2}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1.4142135623730951}}, "df": 16, "s": {"docs": {"mlsauce.AdaOpt.predict": {"tf": 1}, "mlsauce.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.StumpClassifier.predict": {"tf": 1}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.LassoRegressor.predict": {"tf": 1}, "mlsauce.RidgeRegressor.predict": {"tf": 1}, "mlsauce.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1}}, "df": 23}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.predictioninterval.PredictionInterval": {"tf": 1}}, "df": 1}}}}}}}}}, "m": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}}, "df": 4}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}}, "df": 4}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}}, "df": 2}}, "s": {"docs": {"mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1.4142135623730951}}, "df": 4, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}}, "df": 4}}}}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"mlsauce.config_context": {"tf": 1}}, "df": 1}}}}}}, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.config_context": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}, "mlsauce.utils.Progbar": {"tf": 1.7320508075688772}, "mlsauce.utils.Progbar.update": {"tf": 1}}, "df": 12}}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.utils.Progbar": {"tf": 1}}, "df": 1}}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {"mlsauce.AdaOpt.predict": {"tf": 1}, "mlsauce.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.StumpClassifier.predict": {"tf": 1}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.LassoRegressor.predict": {"tf": 1}, "mlsauce.RidgeRegressor.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1}}, "df": 12, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1}}, "df": 8}}}, "y": {"docs": {"mlsauce.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1}}, "df": 10}}}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"mlsauce.nonconformist.RegressorNc": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}}, "df": 2, "d": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1.7320508075688772}, "mlsauce.LazyBoostingRegressor": {"tf": 1.7320508075688772}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1.7320508075688772}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1.7320508075688772}}, "df": 4}, "s": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 2}}}}}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}}, "df": 2}}}, "n": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 8.12403840463596}, "mlsauce.LSBoostRegressor": {"tf": 3.1622776601683795}, "mlsauce.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.set_config": {"tf": 2}, "mlsauce.config_context": {"tf": 2}, "mlsauce.booster.LSBoostClassifier": {"tf": 8.12403840463596}, "mlsauce.booster.LSBoostRegressor": {"tf": 3.1622776601683795}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}}, "df": 10, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 2}}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 2, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1.7320508075688772}, "mlsauce.GenericBoostingClassifier": {"tf": 1.7320508075688772}, "mlsauce.GenericBoostingRegressor": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.7320508075688772}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1.7320508075688772}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1.7320508075688772}}, "df": 10}}}}}}}, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.set_config": {"tf": 1.4142135623730951}, "mlsauce.config_context": {"tf": 1.4142135623730951}}, "df": 2}}}}}}, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 1}}, "df": 1}}}}}}}}}, "p": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 35}}, "y": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}}, "df": 37}}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}}, "df": 2}}}}}, "i": {"docs": {"mlsauce.GenericBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}}, "df": 8, "p": {"docs": {"mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingClassifier.get_best_model": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingClassifier.provide_models": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor.get_best_model": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor.provide_models": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier.get_best_model": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor.get_best_model": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 1}}, "df": 12}}}}}}}, "l": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}}, "df": 2}}, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}}, "df": 4}}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}}, "df": 4}}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 2}}}}}}}}}, "e": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}}, "df": 37, "r": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.nonconformist.RegressorNc": {"tf": 1.4142135623730951}}, "df": 1, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc": {"tf": 1}, "mlsauce.nonconformist.RegressorNc": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}}, "df": 8, "s": {"docs": {"mlsauce.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}}, "df": 10}}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}}, "df": 2}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}}, "df": 10}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingClassifier.provide_models": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.LazyBoostingRegressor.provide_models": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 2.23606797749979}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1.4142135623730951}}, "df": 16}}}, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.AdaOpt": {"tf": 2}, "mlsauce.adaopt.AdaOpt": {"tf": 2}}, "df": 2}}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1}}, "df": 10}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 2.449489742783178}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 2.449489742783178}}, "df": 4, "s": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.set_config": {"tf": 1.4142135623730951}, "mlsauce.config_context": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}}, "df": 17}}}}}}}}}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1.7320508075688772}, "mlsauce.GenericBoostingClassifier": {"tf": 1.7320508075688772}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.ElasticNetRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1.7320508075688772}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1}}, "df": 10}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}}, "df": 4, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.ElasticNetRegressor": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1}}, "df": 2}}}}}}}, "p": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}}, "df": 2}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.utils.Progbar.update": {"tf": 1}}, "df": 1}}}, "x": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 2, "s": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.config_context": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 2}}, "df": 13}}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}}, "df": 2}}}}}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 2}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.utils.Progbar": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 2}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.config_context": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}}, "df": 4}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}}, "df": 4}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}}, "df": 4}}}}}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.nonconformist.RegressorNc": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}}, "df": 2}}}}}}}}}}, "g": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}}, "df": 35, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}}, "df": 10}}}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "v": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 6}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}}, "df": 2}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.7320508075688772}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1.7320508075688772}}, "df": 8}}}}}}}, "m": {"docs": {}, "df": 0, "m": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}}, "df": 10}}, "p": {"docs": {}, "df": 0, "u": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.ElasticNetRegressor": {"tf": 1}, "mlsauce.LassoRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.RidgeRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1}, "mlsauce.lasso.LassoRegressor": {"tf": 1}, "mlsauce.ridge.RidgeRegressor": {"tf": 1}}, "df": 14}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}}, "df": 2, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.4142135623730951}}, "df": 2, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 3.1622776601683795}, "mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingClassifier.fit": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 3.1622776601683795}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.fit": {"tf": 1}}, "df": 6, "s": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}}, "df": 2}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor.fit": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor.fit": {"tf": 1}}, "df": 4}}}}}}}}}}}}}}}}}}}}}}, "t": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 3.1622776601683795}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 3.1622776601683795}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 8, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 2}}}}}}, "t": {"docs": {"mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.config_context": {"tf": 3.4641016151377544}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 5.291502622129181}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 5.291502622129181}, "mlsauce.nonconformist.IcpRegressor": {"tf": 7.14142842854285}}, "df": 10}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.get_config": {"tf": 1.4142135623730951}, "mlsauce.set_config": {"tf": 2.23606797749979}, "mlsauce.config_context": {"tf": 2.23606797749979}}, "df": 3}}}}}, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 2}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}}, "df": 10}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}}, "df": 35}}}}}}}}, "f": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1.7320508075688772}}, "df": 2, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1.7320508075688772}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.LazyBoostingClassifier": {"tf": 3}, "mlsauce.LazyBoostingRegressor": {"tf": 3}, "mlsauce.set_config": {"tf": 2.23606797749979}, "mlsauce.config_context": {"tf": 2.23606797749979}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1.7320508075688772}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 3}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 3}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 2}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 53}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc": {"tf": 1}}, "df": 2}}}}}, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1.4142135623730951}}, "df": 8}}}}, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}}, "df": 2, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1.4142135623730951}}, "df": 5}}}}}}}}}}}}}}}}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}}, "df": 2, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt": {"tf": 1.4142135623730951}}, "df": 2, "s": {"docs": {"mlsauce.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "r": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}}, "df": 8, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}}, "df": 8}}}}}}}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}, "mlsauce.utils.Progbar": {"tf": 1}}, "df": 3, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.set_config": {"tf": 1.4142135623730951}, "mlsauce.config_context": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.utils.Progbar": {"tf": 1}, "mlsauce.utils.Progbar.update": {"tf": 1.4142135623730951}}, "df": 6}}, "s": {"docs": {"mlsauce.utils.Progbar": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}}, "df": 8}}}}, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}}, "df": 4}}}}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.LSBoostRegressor": {"tf": 2.23606797749979}, "mlsauce.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 2.23606797749979}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1.4142135623730951}}, "df": 4}}}}}, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {"mlsauce.set_config": {"tf": 1.4142135623730951}, "mlsauce.config_context": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingClassifier.fit": {"tf": 1}, "mlsauce.LazyBoostingClassifier.provide_models": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.LazyBoostingRegressor.fit": {"tf": 1}, "mlsauce.LazyBoostingRegressor.provide_models": {"tf": 1}, "mlsauce.get_config": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.fit": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.fit": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 1}}, "df": 13, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingClassifier.provide_models": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor.provide_models": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 1}}, "df": 8}}}}}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1.4142135623730951}}, "df": 10}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}}, "df": 8}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"mlsauce.AdaOpt.fit": {"tf": 1}, "mlsauce.AdaOpt.predict": {"tf": 1}, "mlsauce.AdaOpt.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier": {"tf": 4}, "mlsauce.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.fit": {"tf": 1}, "mlsauce.StumpClassifier.predict": {"tf": 1}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.LassoRegressor.fit": {"tf": 1}, "mlsauce.LassoRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.LSBoostRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.fit": {"tf": 1}, "mlsauce.RidgeRegressor.predict": {"tf": 1}, "mlsauce.LazyBoostingClassifier": {"tf": 2.23606797749979}, "mlsauce.LazyBoostingRegressor": {"tf": 2}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 4}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 2.23606797749979}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 2}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1.4142135623730951}}, "df": 47, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1}}, "df": 9}}}}, "f": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.LazyBoostingClassifier.fit": {"tf": 2}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.LazyBoostingRegressor.fit": {"tf": 2}, "mlsauce.lazybooster.LazyBoostingClassifier.fit": {"tf": 2}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.fit": {"tf": 2}}, "df": 6}}}}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}}, "df": 4}}, "c": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.nonconformist": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 1}}, "df": 1}}}}}}}, "k": {"docs": {"mlsauce.AdaOpt": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt": {"tf": 1.7320508075688772}}, "df": 2, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}}, "df": 10}}}}}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.AdaOpt.fit": {"tf": 1}, "mlsauce.AdaOpt.predict": {"tf": 1}, "mlsauce.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.StumpClassifier.predict": {"tf": 1}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.LassoRegressor.fit": {"tf": 1}, "mlsauce.LassoRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.RidgeRegressor.fit": {"tf": 1}, "mlsauce.RidgeRegressor.predict": {"tf": 1}, "mlsauce.LazyBoostingClassifier.fit": {"tf": 1}, "mlsauce.LazyBoostingRegressor.fit": {"tf": 1}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.fit": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.fit": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1}}, "df": 38}}}}}, "e": {"docs": {}, "df": 0, "y": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingClassifier.provide_models": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.LazyBoostingRegressor.provide_models": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 1}}, "df": 8, "s": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.get_config": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}}, "df": 36}, "w": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 2}}}}}, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1.4142135623730951}}, "df": 6, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}}, "df": 2}}, "d": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.GenericBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}}, "df": 5}}}, "m": {"docs": {"mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"mlsauce.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.utils.Progbar": {"tf": 1}}, "df": 5}}}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "x": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}}, "df": 10}}}}, "b": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 2}, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.predictioninterval.PredictionInterval": {"tf": 1}}, "df": 1}}}}}}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}}, "df": 2, "s": {"docs": {"mlsauce.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt": {"tf": 1.4142135623730951}}, "df": 2}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.AdaOpt": {"tf": 1.7320508075688772}, "mlsauce.AdaOpt.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.GenericBoostingClassifier": {"tf": 1.7320508075688772}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.GenericBoostingRegressor": {"tf": 1.7320508075688772}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1.7320508075688772}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1.7320508075688772}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1.7320508075688772}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1.7320508075688772}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1.7320508075688772}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1.7320508075688772}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1.7320508075688772}}, "df": 49, "s": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 36}}}}, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 35}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 2.449489742783178}, "mlsauce.LazyBoostingClassifier.get_best_model": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor": {"tf": 2.8284271247461903}, "mlsauce.LazyBoostingRegressor.get_best_model": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 2.449489742783178}, "mlsauce.lazybooster.LazyBoostingClassifier.get_best_model": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 2.8284271247461903}, "mlsauce.lazybooster.LazyBoostingRegressor.get_best_model": {"tf": 1.4142135623730951}, "mlsauce.utils.Progbar.update": {"tf": 1}}, "df": 9, "s": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.LazyBoostingClassifier.fit": {"tf": 1}, "mlsauce.LazyBoostingRegressor.fit": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.fit": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.fit": {"tf": 1}, "mlsauce.utils.Progbar": {"tf": 1.7320508075688772}, "mlsauce.utils.Progbar.update": {"tf": 1}}, "df": 10}}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"mlsauce.set_config": {"tf": 1.4142135623730951}, "mlsauce.config_context": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.utils.Progbar": {"tf": 1}}, "df": 1, "l": {"docs": {"mlsauce.AdaOpt.predict": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 2}, "mlsauce.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 2}, "mlsauce.GenericBoostingRegressor": {"tf": 1.7320508075688772}, "mlsauce.StumpClassifier.predict": {"tf": 1}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.LassoRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 2}, "mlsauce.RidgeRegressor.predict": {"tf": 1}, "mlsauce.LazyBoostingClassifier": {"tf": 2.449489742783178}, "mlsauce.LazyBoostingClassifier.get_best_model": {"tf": 1.7320508075688772}, "mlsauce.LazyBoostingClassifier.provide_models": {"tf": 1.7320508075688772}, "mlsauce.LazyBoostingRegressor": {"tf": 2.23606797749979}, "mlsauce.LazyBoostingRegressor.get_best_model": {"tf": 1.7320508075688772}, "mlsauce.LazyBoostingRegressor.provide_models": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 2}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 2}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 2}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1.7320508075688772}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 2.449489742783178}, "mlsauce.lazybooster.LazyBoostingClassifier.get_best_model": {"tf": 1.7320508075688772}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 1.7320508075688772}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 2.23606797749979}, "mlsauce.lazybooster.LazyBoostingRegressor.get_best_model": {"tf": 1.7320508075688772}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc": {"tf": 2.449489742783178}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1}}, "df": 35, "s": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 3.3166247903554}, "mlsauce.LazyBoostingClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingClassifier.provide_models": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor": {"tf": 3.1622776601683795}, "mlsauce.LazyBoostingRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor.provide_models": {"tf": 1.7320508075688772}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 3.3166247903554}, "mlsauce.lazybooster.LazyBoostingClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 3.1622776601683795}, "mlsauce.lazybooster.LazyBoostingRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 1.7320508075688772}}, "df": 12}}}, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.config_context": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.config_context": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 2}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor": {"tf": 1}, "mlsauce.ridge.RidgeRegressor": {"tf": 1}}, "df": 14}}}, "l": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.get_config": {"tf": 1.4142135623730951}, "mlsauce.set_config": {"tf": 1.7320508075688772}, "mlsauce.config_context": {"tf": 2.8284271247461903}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}}, "df": 11}}}}}}, "s": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 3.3166247903554}, "mlsauce.LSBoostRegressor": {"tf": 1.7320508075688772}, "mlsauce.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 3.3166247903554}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.7320508075688772}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1.4142135623730951}}, "df": 8}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}}, "df": 2, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.LassoRegressor.fit": {"tf": 1}, "mlsauce.RidgeRegressor.fit": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1}}, "df": 6}}}}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {"mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}}, "x": {"docs": {"mlsauce.LassoRegressor": {"tf": 1}, "mlsauce.lasso.LassoRegressor": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1.7320508075688772}}, "df": 4}}}}, "{": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "q": {"docs": {"mlsauce.nonconformist.QuantileRegErrFunc": {"tf": 1}}, "df": 1}}}}}}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.get_config": {"tf": 1}, "mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1.4142135623730951}}, "df": 3}}}}}}, "y": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}}}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.AdaOpt": {"tf": 1.7320508075688772}, "mlsauce.GenericBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNc": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1.4142135623730951}}, "df": 14}, "s": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 35}, "r": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.nonconformist.RegressorNc": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}}, "df": 4}}}}, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1.4142135623730951}}, "df": 10}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.nonconformist.RegressorNc": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}}, "df": 2}}}}}}}}, "k": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.utils.Progbar": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.config_context": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}}, "df": 1}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.utils.Progbar": {"tf": 1}}, "df": 1, "s": {"docs": {"mlsauce.utils.Progbar.update": {"tf": 1}}, "df": 1}}}}}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"mlsauce.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt": {"tf": 1.4142135623730951}}, "df": 2}}}, "r": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}, "mlsauce.utils.Progbar": {"tf": 1.4142135623730951}, "mlsauce.utils.Progbar.update": {"tf": 1}}, "df": 12}, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor": {"tf": 1.4142135623730951}}, "df": 14}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1}}, "df": 5, "d": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingClassifier.get_best_model": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor.get_best_model": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.get_best_model": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor.get_best_model": {"tf": 1.4142135623730951}}, "df": 8}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}}}, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.nonconformist.RegressorNc": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}}, "df": 2}}}}}}}, "y": {"docs": {"mlsauce.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.LazyBoostingClassifier": {"tf": 2.23606797749979}, "mlsauce.LazyBoostingClassifier.get_best_model": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor": {"tf": 2.449489742783178}, "mlsauce.LazyBoostingRegressor.get_best_model": {"tf": 1.4142135623730951}, "mlsauce.get_config": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 2.23606797749979}, "mlsauce.lazybooster.LazyBoostingClassifier.get_best_model": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 2.449489742783178}, "mlsauce.lazybooster.LazyBoostingRegressor.get_best_model": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.utils.Progbar": {"tf": 1}}, "df": 49}, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.LazyBoostingClassifier": {"tf": 1.7320508075688772}, "mlsauce.LazyBoostingRegressor": {"tf": 1.7320508075688772}, "mlsauce.set_config": {"tf": 1.4142135623730951}, "mlsauce.config_context": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1.7320508075688772}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 49, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}}, "df": 3}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}}, "df": 8}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1}}, "df": 4}}}}, "t": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {"mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}}, "df": 5}}}}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 2}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1.4142135623730951}}, "df": 4}}}}}, "s": {"docs": {"mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 3}}, "df": 1}}}}}, "e": {"docs": {"mlsauce.AdaOpt.fit": {"tf": 1}, "mlsauce.AdaOpt.predict": {"tf": 1}, "mlsauce.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.predict": {"tf": 1}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor": {"tf": 1}, "mlsauce.LassoRegressor.fit": {"tf": 1}, "mlsauce.LassoRegressor.predict": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor": {"tf": 1}, "mlsauce.RidgeRegressor.fit": {"tf": 1}, "mlsauce.RidgeRegressor.predict": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingClassifier.fit": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.LazyBoostingRegressor.fit": {"tf": 1}, "mlsauce.get_config": {"tf": 1}, "mlsauce.set_config": {"tf": 2.6457513110645907}, "mlsauce.config_context": {"tf": 2.6457513110645907}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor": {"tf": 1}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.fit": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.fit": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.utils.Progbar": {"tf": 1.7320508075688772}, "mlsauce.utils.Progbar.update": {"tf": 1.4142135623730951}}, "df": 98, "t": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.ElasticNetRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}}, "df": 13}}}}, "a": {"docs": {"mlsauce.nonconformist.RegressorNc": {"tf": 1.4142135623730951}}, "df": 1}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingClassifier.get_best_model": {"tf": 1.7320508075688772}, "mlsauce.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor.get_best_model": {"tf": 1.7320508075688772}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier.get_best_model": {"tf": 1.7320508075688772}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor.get_best_model": {"tf": 1.7320508075688772}}, "df": 8}}, "e": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.LazyBoostingClassifier.provide_models": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 1}}, "df": 2}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.set_config": {"tf": 1}}, "df": 1}}}}}}}, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.utils.Progbar": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 2.449489742783178}, "mlsauce.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 2.449489742783178}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1.4142135623730951}}, "df": 4}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.StumpClassifier": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier": {"tf": 1.4142135623730951}}, "df": 2}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1.4142135623730951}}, "df": 2}}}, "w": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}}, "df": 2}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.fit": {"tf": 1}, "mlsauce.AdaOpt.predict": {"tf": 1}, "mlsauce.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.StumpClassifier.fit": {"tf": 1}, "mlsauce.StumpClassifier.predict": {"tf": 1}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.LassoRegressor.fit": {"tf": 1}, "mlsauce.LassoRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.RidgeRegressor.fit": {"tf": 1}, "mlsauce.RidgeRegressor.predict": {"tf": 1}, "mlsauce.LazyBoostingClassifier.fit": {"tf": 2}, "mlsauce.LazyBoostingClassifier.provide_models": {"tf": 2}, "mlsauce.LazyBoostingRegressor.fit": {"tf": 2}, "mlsauce.LazyBoostingRegressor.provide_models": {"tf": 2}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.fit": {"tf": 2}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 2}, "mlsauce.lazybooster.LazyBoostingRegressor.fit": {"tf": 2}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 2}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1}}, "df": 44}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 44}}}}, "n": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 2.23606797749979}, "mlsauce.LazyBoostingRegressor": {"tf": 2.23606797749979}, "mlsauce.set_config": {"tf": 1.4142135623730951}, "mlsauce.config_context": {"tf": 2}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 2.23606797749979}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 2.23606797749979}}, "df": 6}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}}, "df": 37}}, "l": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.set_config": {"tf": 1.4142135623730951}, "mlsauce.config_context": {"tf": 1}}, "df": 2}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 37}}}, "r": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 2}}}}}}, "e": {"docs": {"mlsauce.LazyBoostingRegressor.provide_models": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.fit": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 37, "s": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.fit": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1}}, "df": 10}}}}}, "a": {"docs": {}, "df": 0, "k": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}}, "df": 8}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 2}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 3.3166247903554}, "mlsauce.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 3.3166247903554}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1.4142135623730951}}, "df": 4}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingClassifier.provide_models": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor.provide_models": {"tf": 1.4142135623730951}, "mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 2}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}}, "df": 11}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.set_config": {"tf": 2.6457513110645907}, "mlsauce.config_context": {"tf": 2.8284271247461903}, "mlsauce.utils.Progbar": {"tf": 1.4142135623730951}, "mlsauce.utils.Progbar.update": {"tf": 1.4142135623730951}}, "df": 4}}, "d": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"mlsauce.utils.Progbar": {"tf": 1.4142135623730951}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}}, "df": 4, "s": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1.4142135623730951}}, "df": 4}}}}}}}}, "j": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 2, "s": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}}, "df": 6}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.config_context": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}}, "df": 5}}, "p": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 2}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.utils.Progbar": {"tf": 1.7320508075688772}}, "df": 15}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}, "mlsauce.utils.Progbar": {"tf": 1}}, "df": 5}}}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.set_config": {"tf": 2.23606797749979}, "mlsauce.config_context": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 37}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.AdaOpt.fit": {"tf": 1}, "mlsauce.AdaOpt.predict": {"tf": 1}, "mlsauce.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.StumpClassifier.fit": {"tf": 1}, "mlsauce.StumpClassifier.predict": {"tf": 1}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.LassoRegressor.fit": {"tf": 1}, "mlsauce.LassoRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.RidgeRegressor.fit": {"tf": 1}, "mlsauce.RidgeRegressor.predict": {"tf": 1}, "mlsauce.LazyBoostingClassifier.fit": {"tf": 2}, "mlsauce.LazyBoostingClassifier.provide_models": {"tf": 2}, "mlsauce.LazyBoostingRegressor.fit": {"tf": 2}, "mlsauce.LazyBoostingRegressor.provide_models": {"tf": 2}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.fit": {"tf": 2}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 2}, "mlsauce.lazybooster.LazyBoostingRegressor.fit": {"tf": 2}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 2}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1}}, "df": 44}}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}}, "df": 4, "u": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingClassifier.provide_models": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.LazyBoostingRegressor.provide_models": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNc": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.utils.Progbar.update": {"tf": 1.4142135623730951}}, "df": 12, "s": {"docs": {"mlsauce.AdaOpt.fit": {"tf": 1}, "mlsauce.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.StumpClassifier.fit": {"tf": 1}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.LassoRegressor.fit": {"tf": 1}, "mlsauce.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.RidgeRegressor.fit": {"tf": 1}, "mlsauce.get_config": {"tf": 1}, "mlsauce.set_config": {"tf": 1.4142135623730951}, "mlsauce.config_context": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1}, "mlsauce.utils.Progbar.update": {"tf": 1}}, "df": 21}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.config_context": {"tf": 1}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 35}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.set_config": {"tf": 1.4142135623730951}, "mlsauce.config_context": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1.7320508075688772}}, "df": 4}}}}}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.utils.Progbar": {"tf": 1}}, "df": 1}}}}}}, "y": {"docs": {"mlsauce.AdaOpt.fit": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier": {"tf": 5.656854249492381}, "mlsauce.LSBoostClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 2.8284271247461903}, "mlsauce.LSBoostRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingClassifier": {"tf": 2.449489742783178}, "mlsauce.LazyBoostingClassifier.fit": {"tf": 2}, "mlsauce.LazyBoostingClassifier.provide_models": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor": {"tf": 2.8284271247461903}, "mlsauce.LazyBoostingRegressor.fit": {"tf": 2}, "mlsauce.LazyBoostingRegressor.provide_models": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 5.656854249492381}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 2.8284271247461903}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 2.449489742783178}, "mlsauce.lazybooster.LazyBoostingClassifier.fit": {"tf": 2}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 2.8284271247461903}, "mlsauce.lazybooster.LazyBoostingRegressor.fit": {"tf": 2}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.AbsErrorErrFunc": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 2}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 2}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1.4142135623730951}}, "df": 38, "e": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}}, "df": 10}, "t": {"docs": {"mlsauce.LazyBoostingClassifier.provide_models": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 1}}, "df": 2}}, "o": {"docs": {}, "df": 0, "u": {"docs": {"mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}}, "df": 2, "r": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 2}}}}, "x": {"docs": {"mlsauce.AdaOpt.fit": {"tf": 1.4142135623730951}, "mlsauce.AdaOpt.predict": {"tf": 1.4142135623730951}, "mlsauce.AdaOpt.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier": {"tf": 5.656854249492381}, "mlsauce.LSBoostClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 2.8284271247461903}, "mlsauce.LSBoostRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingClassifier": {"tf": 2.449489742783178}, "mlsauce.LazyBoostingClassifier.fit": {"tf": 2}, "mlsauce.LazyBoostingClassifier.provide_models": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor": {"tf": 2.8284271247461903}, "mlsauce.LazyBoostingRegressor.fit": {"tf": 2}, "mlsauce.LazyBoostingRegressor.provide_models": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 5.656854249492381}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 2.8284271247461903}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 2.449489742783178}, "mlsauce.lazybooster.LazyBoostingClassifier.fit": {"tf": 2}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 2.8284271247461903}, "mlsauce.lazybooster.LazyBoostingRegressor.fit": {"tf": 2}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 2.8284271247461903}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 2.8284271247461903}, "mlsauce.nonconformist.IcpRegressor": {"tf": 2}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1.4142135623730951}}, "df": 57}, "h": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, ":": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 35}}}}, "w": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "w": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 35}}}}}}}}}, "m": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 37}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1.7320508075688772}, "mlsauce.GenericBoostingClassifier": {"tf": 1.7320508075688772}, "mlsauce.GenericBoostingRegressor": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.7320508075688772}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1.7320508075688772}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1.7320508075688772}}, "df": 8}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {"mlsauce.StumpClassifier": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}, "g": {"docs": {}, "df": 0, "h": {"docs": {"mlsauce.nonconformist.QuantileRegErrFunc": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.LazyBoostingClassifier.provide_models": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 1}}, "df": 2}}, "t": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "y": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc": {"tf": 1}}, "df": 1}, "q": {"docs": {"mlsauce.nonconformist.QuantileRegErrFunc": {"tf": 1}}, "df": 1}}}}}, "z": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 2.8284271247461903}, "mlsauce.booster.LSBoostClassifier": {"tf": 2.8284271247461903}}, "df": 2}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.LSBoostRegressor": {"tf": 2.8284271247461903}, "mlsauce.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 2.8284271247461903}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1.4142135623730951}}, "df": 4}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.nonconformist.QuantileRegErrFunc": {"tf": 1}}, "df": 1}}}}}}}}}}}, "pipeline": ["trimmer"], "_isPrebuiltIndex": true}; + /** pdoc search index */const docs = {"version": "0.9.5", "fields": ["qualname", "fullname", "annotation", "default_value", "signature", "bases", "doc"], "ref": "fullname", "documentStore": {"docs": {"mlsauce": {"fullname": "mlsauce", "modulename": "mlsauce", "kind": "module", "doc": "

\n"}, "mlsauce.AdaOpt": {"fullname": "mlsauce.AdaOpt", "modulename": "mlsauce", "qualname": "AdaOpt", "kind": "class", "doc": "

AdaOpt classifier.

\n\n

Attributes:

\n\n
n_iterations: int\n    number of iterations of the optimizer at training time.\n\nlearning_rate: float\n    controls the speed of the optimizer at training time.\n\nreg_lambda: float\n    L2 regularization parameter for successive errors in the optimizer\n    (at training time).\n\nreg_alpha: float\n    L1 regularization parameter for successive errors in the optimizer\n    (at training time).\n\neta: float\n    controls the slope in gradient descent (at training time).\n\ngamma: float\n    controls the step size in gradient descent (at training time).\n\nk: int\n    number of nearest neighbors selected at test time for classification.\n\ntolerance: float\n    controls early stopping in gradient descent (at training time).\n\nn_clusters: int\n    number of clusters, if MiniBatch k-means is used at test time\n    (for faster prediction).\n\nbatch_size: int\n    size of the batch, if MiniBatch k-means is used at test time\n    (for faster prediction).\n\nrow_sample: float\n    percentage of rows chosen from training set (by stratified subsampling,\n    for faster prediction).\n\ntype_dist: str\n    distance used for finding the nearest neighbors; currently `euclidean-f`\n    (euclidean distances calculated as whole), `euclidean` (euclidean distances\n    calculated row by row), `cosine` (cosine distance).\n\nn_jobs: int\n    number of cpus for parallel processing (default: None)\n\nverbose: int\n    progress bar for parallel processing (yes = 1) or not (no = 0)\n\ncache: boolean\n    if the nearest neighbors are cached or not, for faster retrieval in\n    subsequent calls.\n\nn_clusters_input: int\n    number of clusters (a priori) for clustering the features\n\nclustering_method: str\n    clustering method: currently 'kmeans', 'gmm'\n\ncluster_scaling: str\n    scaling method for clustering: currently 'standard', 'robust', 'minmax'\n\nseed: int\n    reproducibility seed for nodes_sim=='uniform', clustering and dropout.\n
\n", "bases": "sklearn.base.BaseEstimator, sklearn.base.ClassifierMixin"}, "mlsauce.AdaOpt.__init__": {"fullname": "mlsauce.AdaOpt.__init__", "modulename": "mlsauce", "qualname": "AdaOpt.__init__", "kind": "function", "doc": "

\n", "signature": "(\tn_iterations=50,\tlearning_rate=0.3,\treg_lambda=0.1,\treg_alpha=0.5,\teta=0.01,\tgamma=0.01,\tk=3,\ttolerance=0,\tn_clusters=0,\tbatch_size=100,\trow_sample=0.8,\ttype_dist='euclidean-f',\tn_jobs=None,\tverbose=0,\tcache=True,\tn_clusters_input=0,\tclustering_method='kmeans',\tcluster_scaling='standard',\tseed=123)"}, "mlsauce.AdaOpt.n_iterations": {"fullname": "mlsauce.AdaOpt.n_iterations", "modulename": "mlsauce", "qualname": "AdaOpt.n_iterations", "kind": "variable", "doc": "

\n"}, "mlsauce.AdaOpt.learning_rate": {"fullname": "mlsauce.AdaOpt.learning_rate", "modulename": "mlsauce", "qualname": "AdaOpt.learning_rate", "kind": "variable", "doc": "

\n"}, "mlsauce.AdaOpt.reg_lambda": {"fullname": "mlsauce.AdaOpt.reg_lambda", "modulename": "mlsauce", "qualname": "AdaOpt.reg_lambda", "kind": "variable", "doc": "

\n"}, "mlsauce.AdaOpt.reg_alpha": {"fullname": "mlsauce.AdaOpt.reg_alpha", "modulename": "mlsauce", "qualname": "AdaOpt.reg_alpha", "kind": "variable", "doc": "

\n"}, "mlsauce.AdaOpt.eta": {"fullname": "mlsauce.AdaOpt.eta", "modulename": "mlsauce", "qualname": "AdaOpt.eta", "kind": "variable", "doc": "

\n"}, "mlsauce.AdaOpt.gamma": {"fullname": "mlsauce.AdaOpt.gamma", "modulename": "mlsauce", "qualname": "AdaOpt.gamma", "kind": "variable", "doc": "

\n"}, "mlsauce.AdaOpt.k": {"fullname": "mlsauce.AdaOpt.k", "modulename": "mlsauce", "qualname": "AdaOpt.k", "kind": "variable", "doc": "

\n"}, "mlsauce.AdaOpt.tolerance": {"fullname": "mlsauce.AdaOpt.tolerance", "modulename": "mlsauce", "qualname": "AdaOpt.tolerance", "kind": "variable", "doc": "

\n"}, "mlsauce.AdaOpt.n_clusters": {"fullname": "mlsauce.AdaOpt.n_clusters", "modulename": "mlsauce", "qualname": "AdaOpt.n_clusters", "kind": "variable", "doc": "

\n"}, "mlsauce.AdaOpt.batch_size": {"fullname": "mlsauce.AdaOpt.batch_size", "modulename": "mlsauce", "qualname": "AdaOpt.batch_size", "kind": "variable", "doc": "

\n"}, "mlsauce.AdaOpt.row_sample": {"fullname": "mlsauce.AdaOpt.row_sample", "modulename": "mlsauce", "qualname": "AdaOpt.row_sample", "kind": "variable", "doc": "

\n"}, "mlsauce.AdaOpt.type_dist": {"fullname": "mlsauce.AdaOpt.type_dist", "modulename": "mlsauce", "qualname": "AdaOpt.type_dist", "kind": "variable", "doc": "

\n"}, "mlsauce.AdaOpt.n_jobs": {"fullname": "mlsauce.AdaOpt.n_jobs", "modulename": "mlsauce", "qualname": "AdaOpt.n_jobs", "kind": "variable", "doc": "

\n"}, "mlsauce.AdaOpt.cache": {"fullname": "mlsauce.AdaOpt.cache", "modulename": "mlsauce", "qualname": "AdaOpt.cache", "kind": "variable", "doc": "

\n"}, "mlsauce.AdaOpt.verbose": {"fullname": "mlsauce.AdaOpt.verbose", "modulename": "mlsauce", "qualname": "AdaOpt.verbose", "kind": "variable", "doc": "

\n"}, "mlsauce.AdaOpt.n_clusters_input": {"fullname": "mlsauce.AdaOpt.n_clusters_input", "modulename": "mlsauce", "qualname": "AdaOpt.n_clusters_input", "kind": "variable", "doc": "

\n"}, "mlsauce.AdaOpt.clustering_method": {"fullname": "mlsauce.AdaOpt.clustering_method", "modulename": "mlsauce", "qualname": "AdaOpt.clustering_method", "kind": "variable", "doc": "

\n"}, "mlsauce.AdaOpt.cluster_scaling": {"fullname": "mlsauce.AdaOpt.cluster_scaling", "modulename": "mlsauce", "qualname": "AdaOpt.cluster_scaling", "kind": "variable", "doc": "

\n"}, "mlsauce.AdaOpt.seed": {"fullname": "mlsauce.AdaOpt.seed", "modulename": "mlsauce", "qualname": "AdaOpt.seed", "kind": "variable", "doc": "

\n"}, "mlsauce.AdaOpt.fit": {"fullname": "mlsauce.AdaOpt.fit", "modulename": "mlsauce", "qualname": "AdaOpt.fit", "kind": "function", "doc": "

Fit AdaOpt to training data (X, y)

\n\n

Args:

\n\n
X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\ny: array-like, shape = [n_samples]\n    Target values.\n\n**kwargs: additional parameters to be passed to self.cook_training_set.\n
\n\n

Returns:

\n\n
self: object.\n
\n", "signature": "(self, X, y, **kwargs):", "funcdef": "def"}, "mlsauce.AdaOpt.predict": {"fullname": "mlsauce.AdaOpt.predict", "modulename": "mlsauce", "qualname": "AdaOpt.predict", "kind": "function", "doc": "

Predict test data X.

\n\n

Args:

\n\n
X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\n**kwargs: additional parameters to be passed to `predict_proba`\n
\n\n

Returns:

\n\n
model predictions: {array-like}\n
\n", "signature": "(self, X, **kwargs):", "funcdef": "def"}, "mlsauce.AdaOpt.predict_proba": {"fullname": "mlsauce.AdaOpt.predict_proba", "modulename": "mlsauce", "qualname": "AdaOpt.predict_proba", "kind": "function", "doc": "

Predict probabilities for test data X.

\n\n

Args:

\n\n
X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\n**kwargs: additional parameters to be passed to\n    self.cook_test_set\n
\n\n

Returns:

\n\n
probability estimates for test data: {array-like}\n
\n", "signature": "(self, X, **kwargs):", "funcdef": "def"}, "mlsauce.AdaOpt.set_score_request": {"fullname": "mlsauce.AdaOpt.set_score_request", "modulename": "mlsauce", "qualname": "AdaOpt.set_score_request", "kind": "function", "doc": "

A descriptor for request methods.

\n\n

New in version 1.3.

\n\n

Parameters

\n\n

name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

\n\n

keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

\n\n

validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

\n\n

Notes

\n\n

This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

\n\n

References

\n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.LSBoostClassifier": {"fullname": "mlsauce.LSBoostClassifier", "modulename": "mlsauce", "qualname": "LSBoostClassifier", "kind": "class", "doc": "

LSBoost classifier.

\n\n
Attributes:\n\n    n_estimators: int\n        number of boosting iterations.\n\n    learning_rate: float\n        controls the learning speed at training time.\n\n    n_hidden_features: int\n        number of nodes in successive hidden layers.\n\n    reg_lambda: float\n        L2 regularization parameter for successive errors in the optimizer\n        (at training time).\n\n    alpha: float\n        compromise between L1 and L2 regularization (must be in [0, 1]),\n        for `solver` == 'enet'.\n\n    row_sample: float\n        percentage of rows chosen from the training set.\n\n    col_sample: float\n        percentage of columns chosen from the training set.\n\n    dropout: float\n        percentage of nodes dropped from the training set.\n\n    tolerance: float\n        controls early stopping in gradient descent (at training time).\n\n    direct_link: bool\n        indicates whether the original features are included (True) in model's\n        fitting or not (False).\n\n    verbose: int\n        progress bar (yes = 1) or not (no = 0) (currently).\n\n    seed: int\n        reproducibility seed for nodes_sim=='uniform', clustering and dropout.\n\n    backend: str\n        type of backend; must be in ('cpu', 'gpu', 'tpu')\n\n    solver: str\n        type of 'weak' learner; currently in ('ridge', 'lasso', 'enet').\n        'enet' is a combination of 'ridge' and 'lasso' called Elastic Net.\n\n    activation: str\n        activation function: currently 'relu', 'relu6', 'sigmoid', 'tanh'\n\n    n_clusters: int\n        number of clusters for clustering the features\n\n    clustering_method: str\n        clustering method: currently 'kmeans', 'gmm'\n\n    cluster_scaling: str\n        scaling method for clustering: currently 'standard', 'robust', 'minmax'\n\n    degree: int\n        degree of features interactions to include in the model\n\n    weights_distr: str\n        distribution of weights for constructing the model's hidden layer;\n        currently 'uniform', 'gaussian'\n\nExamples:\n\n    ```python\n    import numpy as np\n    from sklearn.datasets import load_digits, load_breast_cancer, load_wine, load_iris\n    from sklearn.model_selection import train_test_split, GridSearchCV, cross_val_score\n    from sklearn.tree import DecisionTreeRegressor\n    from sklearn.kernel_ridge import KernelRidge\n    from time import time\n    from os import chdir\n    from sklearn import metrics\n    import os\n\n    import mlsauce as ms\n\n    print(\"\n
\n\n

\")\n print(\"GenericBoosting Decision tree -----\")\n print(\"\n\")

\n\n
    print(\"\n
\n\n

\")\n print(\"breast_cancer data -----\")

\n\n
    # data 1\n    breast_cancer = load_breast_cancer()\n    X = breast_cancer.data\n    y = breast_cancer.target\n    # split data into training test and test set\n    np.random.seed(15029)\n    X_train, X_test, y_train, y_test = train_test_split(X, y,\n                                                        test_size=0.2)\n\n    clf = DecisionTreeRegressor()\n    clf2 = KernelRidge()\n\n    obj = ms.GenericBoostingClassifier(clf, tolerance=1e-2)\n    print(obj.get_params())\n    start = time()\n    obj.fit(X_train, y_train)\n    print(time()-start)\n    start = time()\n    print(obj.score(X_test, y_test))\n    print(time()-start)\n\n    print(obj.obj['loss'])\n\n    obj = ms.GenericBoostingClassifier(clf, tolerance=1e-2, n_clusters=2)\n    print(obj.get_params())\n    start = time()\n    obj.fit(X_train, y_train)\n    print(time()-start)\n    start = time()\n    print(obj.score(X_test, y_test))\n    print(time()-start)\n\n    print(obj.obj['loss'])\n\n\n    # data 2\n    print(\"\n
\n\n

\")\n print(\"wine data -----\")

\n\n
    wine = load_wine()\n    Z = wine.data\n    t = wine.target\n    np.random.seed(879423)\n    X_train, X_test, y_train, y_test = train_test_split(Z, t,\n                                                        test_size=0.2)\n\n    obj = ms.GenericBoostingClassifier(clf)\n    print(obj.get_params())\n    start = time()\n    obj.fit(X_train, y_train)\n    print(time()-start)\n    start = time()\n    print(obj.score(X_test, y_test))\n    print(time()-start)\n\n    print(obj.obj['loss'])\n\n    obj = ms.GenericBoostingClassifier(clf, n_clusters=3)\n    print(obj.get_params())\n    start = time()\n    obj.fit(X_train, y_train)\n    print(time()-start)\n    start = time()\n    print(obj.score(X_test, y_test))\n    print(time()-start)\n\n    print(obj.obj['loss'])\n\n    # data 3\n    print(\"\n
\n\n

\")\n print(\"iris data -----\")

\n\n
    iris = load_iris()\n    Z = iris.data\n    t = iris.target\n    np.random.seed(734563)\n    X_train, X_test, y_train, y_test = train_test_split(Z, t,\n                                                        test_size=0.2)\n\n\n    obj = ms.GenericBoostingClassifier(clf)\n    print(obj.get_params())\n    start = time()\n    obj.fit(X_train, y_train)\n    print(time()-start)\n    start = time()\n    print(obj.score(X_test, y_test))\n    print(time()-start)\n\n    print(obj.obj['loss'])\n\n\n    print(\"\n
\n\n

\")\n print(\"GenericBoosting KRR -----\")\n print(\"\n\")

\n\n
    obj = ms.GenericBoostingClassifier(clf2, tolerance=1e-2)\n    print(obj.get_params())\n    start = time()\n    obj.fit(X_train, y_train)\n    print(time()-start)\n    start = time()\n    print(obj.score(X_test, y_test))\n    print(time()-start)\n\n    print(obj.obj['loss'])\n\n    obj = ms.GenericBoostingClassifier(clf2, tolerance=1e-2, n_clusters=2)\n    print(obj.get_params())\n    start = time()\n    obj.fit(X_train, y_train)\n    print(time()-start)\n    start = time()\n    print(obj.score(X_test, y_test))\n    print(time()-start)\n\n    print(obj.obj['loss'])\n\n\n    # data 2\n    print(\"\n
\n\n

\")\n print(\"wine data -----\")

\n\n
    wine = load_wine()\n    Z = wine.data\n    t = wine.target\n    np.random.seed(879423)\n    X_train, X_test, y_train, y_test = train_test_split(Z, t,\n                                                        test_size=0.2)\n\n    obj = ms.GenericBoostingClassifier(clf2)\n    print(obj.get_params())\n    start = time()\n    obj.fit(X_train, y_train)\n    print(time()-start)\n    start = time()\n    print(obj.score(X_test, y_test))\n    print(time()-start)\n\n    print(obj.obj['loss'])\n\n    obj = ms.GenericBoostingClassifier(clf2, n_clusters=3)\n    print(obj.get_params())\n    start = time()\n    obj.fit(X_train, y_train)\n    print(time()-start)\n    start = time()\n    print(obj.score(X_test, y_test))\n    print(time()-start)\n\n    print(obj.obj['loss'])\n\n    # data 3\n    print(\"\n
\n\n

\")\n print(\"iris data -----\")

\n\n
    iris = load_iris()\n    Z = iris.data\n    t = iris.target\n    np.random.seed(734563)\n    X_train, X_test, y_train, y_test = train_test_split(Z, t,\n                                                        test_size=0.2)\n\n\n    obj = ms.GenericBoostingClassifier(clf2)\n    print(obj.get_params())\n    start = time()\n    obj.fit(X_train, y_train)\n    print(time()-start)\n    start = time()\n    print(obj.score(X_test, y_test))\n    print(time()-start)\n\n    print(obj.obj['loss'])\n```\n
\n", "bases": "sklearn.base.BaseEstimator, sklearn.base.ClassifierMixin"}, "mlsauce.LSBoostClassifier.__init__": {"fullname": "mlsauce.LSBoostClassifier.__init__", "modulename": "mlsauce", "qualname": "LSBoostClassifier.__init__", "kind": "function", "doc": "

\n", "signature": "(\tn_estimators=100,\tlearning_rate=0.1,\tn_hidden_features=5,\treg_lambda=0.1,\talpha=0.5,\trow_sample=1,\tcol_sample=1,\tdropout=0,\ttolerance=0.0001,\tdirect_link=1,\tverbose=1,\tseed=123,\tbackend='cpu',\tsolver='ridge',\tactivation='relu',\tn_clusters=0,\tclustering_method='kmeans',\tcluster_scaling='standard',\tdegree=None,\tweights_distr='uniform',\tbase_model=None)"}, "mlsauce.LSBoostClassifier.base_model": {"fullname": "mlsauce.LSBoostClassifier.base_model", "modulename": "mlsauce", "qualname": "LSBoostClassifier.base_model", "kind": "variable", "doc": "

\n"}, "mlsauce.LSBoostClassifier.n_estimators": {"fullname": "mlsauce.LSBoostClassifier.n_estimators", "modulename": "mlsauce", "qualname": "LSBoostClassifier.n_estimators", "kind": "variable", "doc": "

\n"}, "mlsauce.LSBoostClassifier.learning_rate": {"fullname": "mlsauce.LSBoostClassifier.learning_rate", "modulename": "mlsauce", "qualname": "LSBoostClassifier.learning_rate", "kind": "variable", "doc": "

\n"}, "mlsauce.LSBoostClassifier.n_hidden_features": {"fullname": "mlsauce.LSBoostClassifier.n_hidden_features", "modulename": "mlsauce", "qualname": "LSBoostClassifier.n_hidden_features", "kind": "variable", "doc": "

\n"}, "mlsauce.LSBoostClassifier.reg_lambda": {"fullname": "mlsauce.LSBoostClassifier.reg_lambda", "modulename": "mlsauce", "qualname": "LSBoostClassifier.reg_lambda", "kind": "variable", "doc": "

\n"}, "mlsauce.LSBoostClassifier.alpha": {"fullname": "mlsauce.LSBoostClassifier.alpha", "modulename": "mlsauce", "qualname": "LSBoostClassifier.alpha", "kind": "variable", "doc": "

\n"}, "mlsauce.LSBoostClassifier.row_sample": {"fullname": "mlsauce.LSBoostClassifier.row_sample", "modulename": "mlsauce", "qualname": "LSBoostClassifier.row_sample", "kind": "variable", "doc": "

\n"}, "mlsauce.LSBoostClassifier.col_sample": {"fullname": "mlsauce.LSBoostClassifier.col_sample", "modulename": "mlsauce", "qualname": "LSBoostClassifier.col_sample", "kind": "variable", "doc": "

\n"}, "mlsauce.LSBoostClassifier.dropout": {"fullname": "mlsauce.LSBoostClassifier.dropout", "modulename": "mlsauce", "qualname": "LSBoostClassifier.dropout", "kind": "variable", "doc": "

\n"}, "mlsauce.LSBoostClassifier.tolerance": {"fullname": "mlsauce.LSBoostClassifier.tolerance", "modulename": "mlsauce", "qualname": "LSBoostClassifier.tolerance", "kind": "variable", "doc": "

\n"}, "mlsauce.LSBoostClassifier.direct_link": {"fullname": "mlsauce.LSBoostClassifier.direct_link", "modulename": "mlsauce", "qualname": "LSBoostClassifier.direct_link", "kind": "variable", "doc": "

\n"}, "mlsauce.LSBoostClassifier.verbose": {"fullname": "mlsauce.LSBoostClassifier.verbose", "modulename": "mlsauce", "qualname": "LSBoostClassifier.verbose", "kind": "variable", "doc": "

\n"}, "mlsauce.LSBoostClassifier.seed": {"fullname": "mlsauce.LSBoostClassifier.seed", "modulename": "mlsauce", "qualname": "LSBoostClassifier.seed", "kind": "variable", "doc": "

\n"}, "mlsauce.LSBoostClassifier.backend": {"fullname": "mlsauce.LSBoostClassifier.backend", "modulename": "mlsauce", "qualname": "LSBoostClassifier.backend", "kind": "variable", "doc": "

\n"}, "mlsauce.LSBoostClassifier.obj": {"fullname": "mlsauce.LSBoostClassifier.obj", "modulename": "mlsauce", "qualname": "LSBoostClassifier.obj", "kind": "variable", "doc": "

\n"}, "mlsauce.LSBoostClassifier.solver": {"fullname": "mlsauce.LSBoostClassifier.solver", "modulename": "mlsauce", "qualname": "LSBoostClassifier.solver", "kind": "variable", "doc": "

\n"}, "mlsauce.LSBoostClassifier.activation": {"fullname": "mlsauce.LSBoostClassifier.activation", "modulename": "mlsauce", "qualname": "LSBoostClassifier.activation", "kind": "variable", "doc": "

\n"}, "mlsauce.LSBoostClassifier.n_clusters": {"fullname": "mlsauce.LSBoostClassifier.n_clusters", "modulename": "mlsauce", "qualname": "LSBoostClassifier.n_clusters", "kind": "variable", "doc": "

\n"}, "mlsauce.LSBoostClassifier.clustering_method": {"fullname": "mlsauce.LSBoostClassifier.clustering_method", "modulename": "mlsauce", "qualname": "LSBoostClassifier.clustering_method", "kind": "variable", "doc": "

\n"}, "mlsauce.LSBoostClassifier.cluster_scaling": {"fullname": "mlsauce.LSBoostClassifier.cluster_scaling", "modulename": "mlsauce", "qualname": "LSBoostClassifier.cluster_scaling", "kind": "variable", "doc": "

\n"}, "mlsauce.LSBoostClassifier.degree": {"fullname": "mlsauce.LSBoostClassifier.degree", "modulename": "mlsauce", "qualname": "LSBoostClassifier.degree", "kind": "variable", "doc": "

\n"}, "mlsauce.LSBoostClassifier.poly_": {"fullname": "mlsauce.LSBoostClassifier.poly_", "modulename": "mlsauce", "qualname": "LSBoostClassifier.poly_", "kind": "variable", "doc": "

\n"}, "mlsauce.LSBoostClassifier.weights_distr": {"fullname": "mlsauce.LSBoostClassifier.weights_distr", "modulename": "mlsauce", "qualname": "LSBoostClassifier.weights_distr", "kind": "variable", "doc": "

\n"}, "mlsauce.LSBoostClassifier.fit": {"fullname": "mlsauce.LSBoostClassifier.fit", "modulename": "mlsauce", "qualname": "LSBoostClassifier.fit", "kind": "function", "doc": "

Fit Booster (classifier) to training data (X, y)

\n\n

Args:

\n\n
X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\ny: array-like, shape = [n_samples]\n    Target values.\n\n**kwargs: additional parameters to be passed to self.cook_training_set.\n
\n\n

Returns:

\n\n
self: object.\n
\n", "signature": "(self, X, y, **kwargs):", "funcdef": "def"}, "mlsauce.LSBoostClassifier.predict": {"fullname": "mlsauce.LSBoostClassifier.predict", "modulename": "mlsauce", "qualname": "LSBoostClassifier.predict", "kind": "function", "doc": "

Predict test data X.

\n\n

Args:

\n\n
X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\n**kwargs: additional parameters to be passed to `predict_proba`\n
\n\n

Returns:

\n\n
model predictions: {array-like}\n
\n", "signature": "(self, X, **kwargs):", "funcdef": "def"}, "mlsauce.LSBoostClassifier.predict_proba": {"fullname": "mlsauce.LSBoostClassifier.predict_proba", "modulename": "mlsauce", "qualname": "LSBoostClassifier.predict_proba", "kind": "function", "doc": "

Predict probabilities for test data X.

\n\n

Args:

\n\n
X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\n**kwargs: additional parameters to be passed to\n    self.cook_test_set\n
\n\n

Returns:

\n\n
probability estimates for test data: {array-like}\n
\n", "signature": "(self, X, **kwargs):", "funcdef": "def"}, "mlsauce.LSBoostClassifier.update": {"fullname": "mlsauce.LSBoostClassifier.update", "modulename": "mlsauce", "qualname": "LSBoostClassifier.update", "kind": "function", "doc": "

Update model with new data.

\n\n

Args:

\n\n
X: {array-like}, shape = [n_samples=1, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\ny: float = [n_samples=1]\n   Target value.\n\neta: float\n    Inverse power applied to number of observations\n    (defines a learning rate).\n
\n\n

Returns:

\n\n
self: object.\n
\n", "signature": "(self, X, y, eta=0.9):", "funcdef": "def"}, "mlsauce.LSBoostClassifier.set_score_request": {"fullname": "mlsauce.LSBoostClassifier.set_score_request", "modulename": "mlsauce", "qualname": "LSBoostClassifier.set_score_request", "kind": "function", "doc": "

A descriptor for request methods.

\n\n

New in version 1.3.

\n\n

Parameters

\n\n

name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

\n\n

keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

\n\n

validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

\n\n

Notes

\n\n

This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

\n\n

References

\n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.GenericBoostingClassifier": {"fullname": "mlsauce.GenericBoostingClassifier", "modulename": "mlsauce", "qualname": "GenericBoostingClassifier", "kind": "class", "doc": "

Generic Boosting classifier (using any classifier as base learner).

\n\n

Attributes:

\n\n
base_model: object\n    base learner (default is ExtraTreeRegressor) to be boosted.\n\nn_estimators: int\n    number of boosting iterations.\n\nlearning_rate: float\n    controls the learning speed at training time.\n\nn_hidden_features: int\n    number of nodes in successive hidden layers.\n\nreg_lambda: float\n    L2 regularization parameter for successive errors in the optimizer\n    (at training time).\n\nalpha: float\n    compromise between L1 and L2 regularization (must be in [0, 1]),\n    for `solver` == 'enet'.\n\nrow_sample: float\n    percentage of rows chosen from the training set.\n\ncol_sample: float\n    percentage of columns chosen from the training set.\n\ndropout: float\n    percentage of nodes dropped from the training set.\n\ntolerance: float\n    controls early stopping in gradient descent (at training time).\n\ndirect_link: bool\n    indicates whether the original features are included (True) in model's\n    fitting or not (False).\n\nverbose: int\n    progress bar (yes = 1) or not (no = 0) (currently).\n\nseed: int\n    reproducibility seed for nodes_sim=='uniform', clustering and dropout.\n\nbackend: str\n    type of backend; must be in ('cpu', 'gpu', 'tpu')\n\nsolver: str\n    type of 'weak' learner; currently in ('ridge', 'lasso', 'enet').\n    'enet' is a combination of 'ridge' and 'lasso' called Elastic Net.\n\nactivation: str\n    activation function: currently 'relu', 'relu6', 'sigmoid', 'tanh'\n\nn_clusters: int\n    number of clusters for clustering the features\n\nclustering_method: str\n    clustering method: currently 'kmeans', 'gmm'\n\ncluster_scaling: str\n    scaling method for clustering: currently 'standard', 'robust', 'minmax'\n\ndegree: int\n    degree of features interactions to include in the model\n\nweights_distr: str\n    distribution of weights for constructing the model's hidden layer;\n    currently 'uniform', 'gaussian'\n
\n", "bases": "mlsauce.booster._booster_classifier.LSBoostClassifier"}, "mlsauce.GenericBoostingClassifier.__init__": {"fullname": "mlsauce.GenericBoostingClassifier.__init__", "modulename": "mlsauce", "qualname": "GenericBoostingClassifier.__init__", "kind": "function", "doc": "

\n", "signature": "(\tbase_model=ExtraTreeRegressor(),\tn_estimators=100,\tlearning_rate=0.1,\tn_hidden_features=5,\treg_lambda=0.1,\talpha=0.5,\trow_sample=1,\tcol_sample=1,\tdropout=0,\ttolerance=0.0001,\tdirect_link=1,\tverbose=1,\tseed=123,\tbackend='cpu',\tsolver='ridge',\tactivation='relu',\tn_clusters=0,\tclustering_method='kmeans',\tcluster_scaling='standard',\tdegree=None,\tweights_distr='uniform')"}, "mlsauce.GenericBoostingClassifier.base_model": {"fullname": "mlsauce.GenericBoostingClassifier.base_model", "modulename": "mlsauce", "qualname": "GenericBoostingClassifier.base_model", "kind": "variable", "doc": "

\n"}, "mlsauce.GenericBoostingClassifier.set_score_request": {"fullname": "mlsauce.GenericBoostingClassifier.set_score_request", "modulename": "mlsauce", "qualname": "GenericBoostingClassifier.set_score_request", "kind": "function", "doc": "

A descriptor for request methods.

\n\n

New in version 1.3.

\n\n

Parameters

\n\n

name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

\n\n

keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

\n\n

validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

\n\n

Notes

\n\n

This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

\n\n

References

\n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.GenericBoostingRegressor": {"fullname": "mlsauce.GenericBoostingRegressor", "modulename": "mlsauce", "qualname": "GenericBoostingRegressor", "kind": "class", "doc": "

LSBoost regressor.

\n\n

Attributes:

\n\n
base_model: object\n    base learner (default is ExtraTreeRegressor) to be boosted.\n\nn_estimators: int\n    number of boosting iterations.\n\nlearning_rate: float\n    controls the learning speed at training time.\n\nn_hidden_features: int\n    number of nodes in successive hidden layers.\n\nreg_lambda: float\n    L2 regularization parameter for successive errors in the optimizer\n    (at training time).\n\nalpha: float\n    compromise between L1 and L2 regularization (must be in [0, 1]),\n    for `solver` == 'enet'\n\nrow_sample: float\n    percentage of rows chosen from the training set.\n\ncol_sample: float\n    percentage of columns chosen from the training set.\n\ndropout: float\n    percentage of nodes dropped from the training set.\n\ntolerance: float\n    controls early stopping in gradient descent (at training time).\n\ndirect_link: bool\n    indicates whether the original features are included (True) in model's\n    fitting or not (False).\n\nverbose: int\n    progress bar (yes = 1) or not (no = 0) (currently).\n\nseed: int\n    reproducibility seed for nodes_sim=='uniform', clustering and dropout.\n\nbackend: str\n    type of backend; must be in ('cpu', 'gpu', 'tpu')\n\nsolver: str\n    type of 'weak' learner; currently in ('ridge', 'lasso')\n\nactivation: str\n    activation function: currently 'relu', 'relu6', 'sigmoid', 'tanh'\n\ntype_pi: str.\n    type of prediction interval; currently \"kde\" (default) or \"bootstrap\".\n    Used only in `self.predict`, for `self.replications` > 0 and `self.kernel`\n    in ('gaussian', 'tophat'). Default is `None`.\n\nreplications: int.\n    number of replications (if needed) for predictive simulation.\n    Used only in `self.predict`, for `self.kernel` in ('gaussian',\n    'tophat') and `self.type_pi = 'kde'`. Default is `None`.\n\nn_clusters: int\n    number of clusters for clustering the features\n\nclustering_method: str\n    clustering method: currently 'kmeans', 'gmm'\n\ncluster_scaling: str\n    scaling method for clustering: currently 'standard', 'robust', 'minmax'\n\ndegree: int\n    degree of features interactions to include in the model\n\nweights_distr: str\n    distribution of weights for constructing the model's hidden layer;\n    either 'uniform' or 'gaussian'\n
\n", "bases": "mlsauce.booster._booster_regressor.LSBoostRegressor"}, "mlsauce.GenericBoostingRegressor.__init__": {"fullname": "mlsauce.GenericBoostingRegressor.__init__", "modulename": "mlsauce", "qualname": "GenericBoostingRegressor.__init__", "kind": "function", "doc": "

\n", "signature": "(\tbase_model=ExtraTreeRegressor(),\tn_estimators=100,\tlearning_rate=0.1,\tn_hidden_features=5,\treg_lambda=0.1,\talpha=0.5,\trow_sample=1,\tcol_sample=1,\tdropout=0,\ttolerance=0.0001,\tdirect_link=1,\tverbose=1,\tseed=123,\tbackend='cpu',\tsolver='ridge',\tactivation='relu',\ttype_pi=None,\treplications=None,\tkernel=None,\tn_clusters=0,\tclustering_method='kmeans',\tcluster_scaling='standard',\tdegree=None,\tweights_distr='uniform')"}, "mlsauce.GenericBoostingRegressor.base_model": {"fullname": "mlsauce.GenericBoostingRegressor.base_model", "modulename": "mlsauce", "qualname": "GenericBoostingRegressor.base_model", "kind": "variable", "doc": "

\n"}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"fullname": "mlsauce.GenericBoostingRegressor.set_predict_request", "modulename": "mlsauce", "qualname": "GenericBoostingRegressor.set_predict_request", "kind": "function", "doc": "

A descriptor for request methods.

\n\n

New in version 1.3.

\n\n

Parameters

\n\n

name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

\n\n

keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

\n\n

validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

\n\n

Notes

\n\n

This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

\n\n

References

\n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.GenericBoostingRegressor.set_score_request": {"fullname": "mlsauce.GenericBoostingRegressor.set_score_request", "modulename": "mlsauce", "qualname": "GenericBoostingRegressor.set_score_request", "kind": "function", "doc": "

A descriptor for request methods.

\n\n

New in version 1.3.

\n\n

Parameters

\n\n

name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

\n\n

keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

\n\n

validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

\n\n

Notes

\n\n

This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

\n\n

References

\n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.StumpClassifier": {"fullname": "mlsauce.StumpClassifier", "modulename": "mlsauce", "qualname": "StumpClassifier", "kind": "class", "doc": "

Stump classifier.

\n\n

Attributes:

\n\n
bins: int\n    Number of histogram bins; as in numpy.histogram.\n
\n", "bases": "sklearn.base.BaseEstimator, sklearn.base.ClassifierMixin"}, "mlsauce.StumpClassifier.__init__": {"fullname": "mlsauce.StumpClassifier.__init__", "modulename": "mlsauce", "qualname": "StumpClassifier.__init__", "kind": "function", "doc": "

\n", "signature": "(bins='auto')"}, "mlsauce.StumpClassifier.bins": {"fullname": "mlsauce.StumpClassifier.bins", "modulename": "mlsauce", "qualname": "StumpClassifier.bins", "kind": "variable", "doc": "

\n"}, "mlsauce.StumpClassifier.obj": {"fullname": "mlsauce.StumpClassifier.obj", "modulename": "mlsauce", "qualname": "StumpClassifier.obj", "kind": "variable", "doc": "

\n"}, "mlsauce.StumpClassifier.fit": {"fullname": "mlsauce.StumpClassifier.fit", "modulename": "mlsauce", "qualname": "StumpClassifier.fit", "kind": "function", "doc": "

Fit Stump to training data (X, y)

\n\n

Args:

\n\n
X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\ny: array-like, shape = [n_samples]\n    Target values.\n\nsample_weight: array_like, shape = [n_samples]\n    Observations weights.\n
\n\n

Returns:

\n\n
self: object.\n
\n", "signature": "(self, X, y, sample_weight=None, **kwargs):", "funcdef": "def"}, "mlsauce.StumpClassifier.predict": {"fullname": "mlsauce.StumpClassifier.predict", "modulename": "mlsauce", "qualname": "StumpClassifier.predict", "kind": "function", "doc": "

Predict test data X.

\n\n

Args:

\n\n
X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\n**kwargs: additional parameters to be passed to `predict_proba`\n
\n\n

Returns:

\n\n
model predictions: {array-like}\n
\n", "signature": "(self, X, **kwargs):", "funcdef": "def"}, "mlsauce.StumpClassifier.predict_proba": {"fullname": "mlsauce.StumpClassifier.predict_proba", "modulename": "mlsauce", "qualname": "StumpClassifier.predict_proba", "kind": "function", "doc": "

Predict probabilities for test data X.

\n\n

Args:

\n\n
X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\n**kwargs: additional parameters to be passed to\n    self.cook_test_set\n
\n\n

Returns:

\n\n
probability estimates for test data: {array-like}\n
\n", "signature": "(self, X, **kwargs):", "funcdef": "def"}, "mlsauce.StumpClassifier.set_fit_request": {"fullname": "mlsauce.StumpClassifier.set_fit_request", "modulename": "mlsauce", "qualname": "StumpClassifier.set_fit_request", "kind": "function", "doc": "

A descriptor for request methods.

\n\n

New in version 1.3.

\n\n

Parameters

\n\n

name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

\n\n

keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

\n\n

validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

\n\n

Notes

\n\n

This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

\n\n

References

\n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.StumpClassifier.set_score_request": {"fullname": "mlsauce.StumpClassifier.set_score_request", "modulename": "mlsauce", "qualname": "StumpClassifier.set_score_request", "kind": "function", "doc": "

A descriptor for request methods.

\n\n

New in version 1.3.

\n\n

Parameters

\n\n

name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

\n\n

keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

\n\n

validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

\n\n

Notes

\n\n

This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

\n\n

References

\n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.ElasticNetRegressor": {"fullname": "mlsauce.ElasticNetRegressor", "modulename": "mlsauce", "qualname": "ElasticNetRegressor", "kind": "class", "doc": "

Elasticnet.

\n\n

Attributes:

\n\n
reg_lambda: float\n    regularization parameter.\n\nalpha: float\n    compromise between L1 and L2 regularization (must be in [0, 1]),\n    for `solver` == 'enet'.\n\nbackend: str\n    type of backend; must be in ('cpu', 'gpu', 'tpu')\n
\n", "bases": "sklearn.base.BaseEstimator, sklearn.base.RegressorMixin"}, "mlsauce.ElasticNetRegressor.__init__": {"fullname": "mlsauce.ElasticNetRegressor.__init__", "modulename": "mlsauce", "qualname": "ElasticNetRegressor.__init__", "kind": "function", "doc": "

\n", "signature": "(reg_lambda=0.1, alpha=0.5, backend='cpu')"}, "mlsauce.ElasticNetRegressor.reg_lambda": {"fullname": "mlsauce.ElasticNetRegressor.reg_lambda", "modulename": "mlsauce", "qualname": "ElasticNetRegressor.reg_lambda", "kind": "variable", "doc": "

\n"}, "mlsauce.ElasticNetRegressor.alpha": {"fullname": "mlsauce.ElasticNetRegressor.alpha", "modulename": "mlsauce", "qualname": "ElasticNetRegressor.alpha", "kind": "variable", "doc": "

\n"}, "mlsauce.ElasticNetRegressor.backend": {"fullname": "mlsauce.ElasticNetRegressor.backend", "modulename": "mlsauce", "qualname": "ElasticNetRegressor.backend", "kind": "variable", "doc": "

\n"}, "mlsauce.ElasticNetRegressor.fit": {"fullname": "mlsauce.ElasticNetRegressor.fit", "modulename": "mlsauce", "qualname": "ElasticNetRegressor.fit", "kind": "function", "doc": "

Fit matrixops (classifier) to training data (X, y)

\n\n

Args:

\n\n
X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\ny: array-like, shape = [n_samples]\n    Target values.\n\n**kwargs: additional parameters to be passed to self.cook_training_set.\n
\n\n

Returns:

\n\n
self: object.\n
\n", "signature": "(self, X, y, **kwargs):", "funcdef": "def"}, "mlsauce.ElasticNetRegressor.predict": {"fullname": "mlsauce.ElasticNetRegressor.predict", "modulename": "mlsauce", "qualname": "ElasticNetRegressor.predict", "kind": "function", "doc": "

Predict test data X.

\n\n

Args:

\n\n
X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\n**kwargs: additional parameters to be passed to `predict_proba`\n
\n\n

Returns:

\n\n
model predictions: {array-like}\n
\n", "signature": "(self, X, **kwargs):", "funcdef": "def"}, "mlsauce.ElasticNetRegressor.set_score_request": {"fullname": "mlsauce.ElasticNetRegressor.set_score_request", "modulename": "mlsauce", "qualname": "ElasticNetRegressor.set_score_request", "kind": "function", "doc": "

A descriptor for request methods.

\n\n

New in version 1.3.

\n\n

Parameters

\n\n

name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

\n\n

keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

\n\n

validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

\n\n

Notes

\n\n

This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

\n\n

References

\n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.LassoRegressor": {"fullname": "mlsauce.LassoRegressor", "modulename": "mlsauce", "qualname": "LassoRegressor", "kind": "class", "doc": "

Lasso.

\n\n

Attributes:

\n\n
reg_lambda: float\n    L1 regularization parameter.\n\nmax_iter: int\n    number of iterations of lasso shooting algorithm.\n\ntol: float\n    tolerance for convergence of lasso shooting algorithm.\n\nbackend: str\n    type of backend; must be in ('cpu', 'gpu', 'tpu').\n
\n", "bases": "sklearn.base.BaseEstimator, sklearn.base.RegressorMixin"}, "mlsauce.LassoRegressor.__init__": {"fullname": "mlsauce.LassoRegressor.__init__", "modulename": "mlsauce", "qualname": "LassoRegressor.__init__", "kind": "function", "doc": "

\n", "signature": "(reg_lambda=0.1, max_iter=10, tol=0.001, backend='cpu')"}, "mlsauce.LassoRegressor.reg_lambda": {"fullname": "mlsauce.LassoRegressor.reg_lambda", "modulename": "mlsauce", "qualname": "LassoRegressor.reg_lambda", "kind": "variable", "doc": "

\n"}, "mlsauce.LassoRegressor.max_iter": {"fullname": "mlsauce.LassoRegressor.max_iter", "modulename": "mlsauce", "qualname": "LassoRegressor.max_iter", "kind": "variable", "doc": "

\n"}, "mlsauce.LassoRegressor.tol": {"fullname": "mlsauce.LassoRegressor.tol", "modulename": "mlsauce", "qualname": "LassoRegressor.tol", "kind": "variable", "doc": "

\n"}, "mlsauce.LassoRegressor.backend": {"fullname": "mlsauce.LassoRegressor.backend", "modulename": "mlsauce", "qualname": "LassoRegressor.backend", "kind": "variable", "doc": "

\n"}, "mlsauce.LassoRegressor.fit": {"fullname": "mlsauce.LassoRegressor.fit", "modulename": "mlsauce", "qualname": "LassoRegressor.fit", "kind": "function", "doc": "

Fit matrixops (classifier) to training data (X, y)

\n\n

Args:

\n\n
X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\ny: array-like, shape = [n_samples]\n    Target values.\n\n**kwargs: additional parameters to be passed to self.cook_training_set.\n
\n\n

Returns:

\n\n
self: object.\n
\n", "signature": "(self, X, y, **kwargs):", "funcdef": "def"}, "mlsauce.LassoRegressor.predict": {"fullname": "mlsauce.LassoRegressor.predict", "modulename": "mlsauce", "qualname": "LassoRegressor.predict", "kind": "function", "doc": "

Predict test data X.

\n\n

Args:

\n\n
X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\n**kwargs: additional parameters to be passed to `predict_proba`\n
\n\n

Returns:

\n\n
model predictions: {array-like}\n
\n", "signature": "(self, X, **kwargs):", "funcdef": "def"}, "mlsauce.LassoRegressor.set_score_request": {"fullname": "mlsauce.LassoRegressor.set_score_request", "modulename": "mlsauce", "qualname": "LassoRegressor.set_score_request", "kind": "function", "doc": "

A descriptor for request methods.

\n\n

New in version 1.3.

\n\n

Parameters

\n\n

name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

\n\n

keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

\n\n

validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

\n\n

Notes

\n\n

This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

\n\n

References

\n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.LSBoostRegressor": {"fullname": "mlsauce.LSBoostRegressor", "modulename": "mlsauce", "qualname": "LSBoostRegressor", "kind": "class", "doc": "

LSBoost regressor.

\n\n

Attributes:

\n\n
n_estimators: int\n    number of boosting iterations.\n\nlearning_rate: float\n    controls the learning speed at training time.\n\nn_hidden_features: int\n    number of nodes in successive hidden layers.\n\nreg_lambda: float\n    L2 regularization parameter for successive errors in the optimizer\n    (at training time).\n\nalpha: float\n    compromise between L1 and L2 regularization (must be in [0, 1]),\n    for `solver` == 'enet'\n\nrow_sample: float\n    percentage of rows chosen from the training set.\n\ncol_sample: float\n    percentage of columns chosen from the training set.\n\ndropout: float\n    percentage of nodes dropped from the training set.\n\ntolerance: float\n    controls early stopping in gradient descent (at training time).\n\ndirect_link: bool\n    indicates whether the original features are included (True) in model's\n    fitting or not (False).\n\nverbose: int\n    progress bar (yes = 1) or not (no = 0) (currently).\n\nseed: int\n    reproducibility seed for nodes_sim=='uniform', clustering and dropout.\n\nbackend: str\n    type of backend; must be in ('cpu', 'gpu', 'tpu')\n\nsolver: str\n    type of 'weak' learner; currently in ('ridge', 'lasso')\n\nactivation: str\n    activation function: currently 'relu', 'relu6', 'sigmoid', 'tanh'\n\ntype_pi: str.\n    type of prediction interval; currently \"kde\" (default) or \"bootstrap\".\n    Used only in `self.predict`, for `self.replications` > 0 and `self.kernel`\n    in ('gaussian', 'tophat'). Default is `None`.\n\nreplications: int.\n    number of replications (if needed) for predictive simulation.\n    Used only in `self.predict`, for `self.kernel` in ('gaussian',\n    'tophat') and `self.type_pi = 'kde'`. Default is `None`.\n\nn_clusters: int\n    number of clusters for clustering the features\n\nclustering_method: str\n    clustering method: currently 'kmeans', 'gmm'\n\ncluster_scaling: str\n    scaling method for clustering: currently 'standard', 'robust', 'minmax'\n\ndegree: int\n    degree of features interactions to include in the model\n\nweights_distr: str\n    distribution of weights for constructing the model's hidden layer;\n    either 'uniform' or 'gaussian'\n
\n\n

Examples:

\n\n
\n
import subprocess\nimport sys\nimport os\n\nsubprocess.check_call([sys.executable, "-m", "pip", "install", "matplotlib"])\n\nimport mlsauce as ms\nimport numpy as np\nimport matplotlib.pyplot as plt\nfrom sklearn.datasets import load_diabetes\nfrom sklearn.model_selection import train_test_split, GridSearchCV, cross_val_score\nfrom sklearn.tree import DecisionTreeRegressor\nfrom time import time\nfrom os import chdir\nfrom sklearn import metrics\n\nregr = DecisionTreeRegressor()\n\ndiabetes = load_diabetes()\nX = diabetes.data\ny = diabetes.target\n# split data into training test and test set\nnp.random.seed(15029)\nX_train, X_test, y_train, y_test = train_test_split(X, y,\n                                                    test_size=0.2)\n\nobj = ms.GenericBoostingRegressor(regr, col_sample=0.9, row_sample=0.9)\nprint(obj.get_params())\nstart = time()\nobj.fit(X_train, y_train)\nprint(time()-start)\nstart = time()\nprint(np.sqrt(np.mean(np.square(obj.predict(X_test) - y_test))))\nprint(time()-start)\n\nprint(obj.obj['loss'])\n\nobj = ms.GenericBoostingRegressor(regr, col_sample=0.9, row_sample=0.9, n_clusters=2)\nprint(obj.get_params())\nstart = time()\nobj.fit(X_train, y_train)\nprint(time()-start)\nstart = time()\nprint(np.sqrt(np.mean(np.square(obj.predict(X_test) - y_test))))\nprint(time()-start)\n\nprint(obj.obj['loss'])\n
\n
\n
\n", "bases": "sklearn.base.BaseEstimator, sklearn.base.RegressorMixin"}, "mlsauce.LSBoostRegressor.__init__": {"fullname": "mlsauce.LSBoostRegressor.__init__", "modulename": "mlsauce", "qualname": "LSBoostRegressor.__init__", "kind": "function", "doc": "

\n", "signature": "(\tn_estimators=100,\tlearning_rate=0.1,\tn_hidden_features=5,\treg_lambda=0.1,\talpha=0.5,\trow_sample=1,\tcol_sample=1,\tdropout=0,\ttolerance=0.0001,\tdirect_link=1,\tverbose=1,\tseed=123,\tbackend='cpu',\tsolver='ridge',\tactivation='relu',\ttype_pi=None,\treplications=None,\tkernel=None,\tn_clusters=0,\tclustering_method='kmeans',\tcluster_scaling='standard',\tdegree=None,\tweights_distr='uniform',\tbase_model=None)"}, "mlsauce.LSBoostRegressor.base_model": {"fullname": "mlsauce.LSBoostRegressor.base_model", "modulename": "mlsauce", "qualname": "LSBoostRegressor.base_model", "kind": "variable", "doc": "

\n"}, "mlsauce.LSBoostRegressor.n_estimators": {"fullname": "mlsauce.LSBoostRegressor.n_estimators", "modulename": "mlsauce", "qualname": "LSBoostRegressor.n_estimators", "kind": "variable", "doc": "

\n"}, "mlsauce.LSBoostRegressor.learning_rate": {"fullname": "mlsauce.LSBoostRegressor.learning_rate", "modulename": "mlsauce", "qualname": "LSBoostRegressor.learning_rate", "kind": "variable", "doc": "

\n"}, "mlsauce.LSBoostRegressor.n_hidden_features": {"fullname": "mlsauce.LSBoostRegressor.n_hidden_features", "modulename": "mlsauce", "qualname": "LSBoostRegressor.n_hidden_features", "kind": "variable", "doc": "

\n"}, "mlsauce.LSBoostRegressor.reg_lambda": {"fullname": "mlsauce.LSBoostRegressor.reg_lambda", "modulename": "mlsauce", "qualname": "LSBoostRegressor.reg_lambda", "kind": "variable", "doc": "

\n"}, "mlsauce.LSBoostRegressor.alpha": {"fullname": "mlsauce.LSBoostRegressor.alpha", "modulename": "mlsauce", "qualname": "LSBoostRegressor.alpha", "kind": "variable", "doc": "

\n"}, "mlsauce.LSBoostRegressor.row_sample": {"fullname": "mlsauce.LSBoostRegressor.row_sample", "modulename": "mlsauce", "qualname": "LSBoostRegressor.row_sample", "kind": "variable", "doc": "

\n"}, "mlsauce.LSBoostRegressor.col_sample": {"fullname": "mlsauce.LSBoostRegressor.col_sample", "modulename": "mlsauce", "qualname": "LSBoostRegressor.col_sample", "kind": "variable", "doc": "

\n"}, "mlsauce.LSBoostRegressor.dropout": {"fullname": "mlsauce.LSBoostRegressor.dropout", "modulename": "mlsauce", "qualname": "LSBoostRegressor.dropout", "kind": "variable", "doc": "

\n"}, "mlsauce.LSBoostRegressor.tolerance": {"fullname": "mlsauce.LSBoostRegressor.tolerance", "modulename": "mlsauce", "qualname": "LSBoostRegressor.tolerance", "kind": "variable", "doc": "

\n"}, "mlsauce.LSBoostRegressor.direct_link": {"fullname": "mlsauce.LSBoostRegressor.direct_link", "modulename": "mlsauce", "qualname": "LSBoostRegressor.direct_link", "kind": "variable", "doc": "

\n"}, "mlsauce.LSBoostRegressor.verbose": {"fullname": "mlsauce.LSBoostRegressor.verbose", "modulename": "mlsauce", "qualname": "LSBoostRegressor.verbose", "kind": "variable", "doc": "

\n"}, "mlsauce.LSBoostRegressor.seed": {"fullname": "mlsauce.LSBoostRegressor.seed", "modulename": "mlsauce", "qualname": "LSBoostRegressor.seed", "kind": "variable", "doc": "

\n"}, "mlsauce.LSBoostRegressor.backend": {"fullname": "mlsauce.LSBoostRegressor.backend", "modulename": "mlsauce", "qualname": "LSBoostRegressor.backend", "kind": "variable", "doc": "

\n"}, "mlsauce.LSBoostRegressor.obj": {"fullname": "mlsauce.LSBoostRegressor.obj", "modulename": "mlsauce", "qualname": "LSBoostRegressor.obj", "kind": "variable", "doc": "

\n"}, "mlsauce.LSBoostRegressor.solver": {"fullname": "mlsauce.LSBoostRegressor.solver", "modulename": "mlsauce", "qualname": "LSBoostRegressor.solver", "kind": "variable", "doc": "

\n"}, "mlsauce.LSBoostRegressor.activation": {"fullname": "mlsauce.LSBoostRegressor.activation", "modulename": "mlsauce", "qualname": "LSBoostRegressor.activation", "kind": "variable", "doc": "

\n"}, "mlsauce.LSBoostRegressor.type_pi": {"fullname": "mlsauce.LSBoostRegressor.type_pi", "modulename": "mlsauce", "qualname": "LSBoostRegressor.type_pi", "kind": "variable", "doc": "

\n"}, "mlsauce.LSBoostRegressor.replications": {"fullname": "mlsauce.LSBoostRegressor.replications", "modulename": "mlsauce", "qualname": "LSBoostRegressor.replications", "kind": "variable", "doc": "

\n"}, "mlsauce.LSBoostRegressor.kernel": {"fullname": "mlsauce.LSBoostRegressor.kernel", "modulename": "mlsauce", "qualname": "LSBoostRegressor.kernel", "kind": "variable", "doc": "

\n"}, "mlsauce.LSBoostRegressor.n_clusters": {"fullname": "mlsauce.LSBoostRegressor.n_clusters", "modulename": "mlsauce", "qualname": "LSBoostRegressor.n_clusters", "kind": "variable", "doc": "

\n"}, "mlsauce.LSBoostRegressor.clustering_method": {"fullname": "mlsauce.LSBoostRegressor.clustering_method", "modulename": "mlsauce", "qualname": "LSBoostRegressor.clustering_method", "kind": "variable", "doc": "

\n"}, "mlsauce.LSBoostRegressor.cluster_scaling": {"fullname": "mlsauce.LSBoostRegressor.cluster_scaling", "modulename": "mlsauce", "qualname": "LSBoostRegressor.cluster_scaling", "kind": "variable", "doc": "

\n"}, "mlsauce.LSBoostRegressor.degree": {"fullname": "mlsauce.LSBoostRegressor.degree", "modulename": "mlsauce", "qualname": "LSBoostRegressor.degree", "kind": "variable", "doc": "

\n"}, "mlsauce.LSBoostRegressor.poly_": {"fullname": "mlsauce.LSBoostRegressor.poly_", "modulename": "mlsauce", "qualname": "LSBoostRegressor.poly_", "kind": "variable", "doc": "

\n"}, "mlsauce.LSBoostRegressor.weights_distr": {"fullname": "mlsauce.LSBoostRegressor.weights_distr", "modulename": "mlsauce", "qualname": "LSBoostRegressor.weights_distr", "kind": "variable", "doc": "

\n"}, "mlsauce.LSBoostRegressor.fit": {"fullname": "mlsauce.LSBoostRegressor.fit", "modulename": "mlsauce", "qualname": "LSBoostRegressor.fit", "kind": "function", "doc": "

Fit Booster (regressor) to training data (X, y)

\n\n

Args:

\n\n
X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\ny: array-like, shape = [n_samples]\n   Target values.\n\n**kwargs: additional parameters to be passed to self.cook_training_set.\n
\n\n

Returns:

\n\n
self: object.\n
\n", "signature": "(self, X, y, **kwargs):", "funcdef": "def"}, "mlsauce.LSBoostRegressor.predict": {"fullname": "mlsauce.LSBoostRegressor.predict", "modulename": "mlsauce", "qualname": "LSBoostRegressor.predict", "kind": "function", "doc": "

Predict probabilities for test data X.

\n\n

Args:

\n\n
X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\nlevel: int\n    Level of confidence (default = 95)\n\nmethod: str\n    `None`, or 'splitconformal', 'localconformal'\n    prediction (if you specify `return_pi = True`)\n\n**kwargs: additional parameters to be passed to\n    self.cook_test_set\n
\n\n

Returns:

\n\n
probability estimates for test data: {array-like}\n
\n", "signature": "(self, X, level=95, method=None, **kwargs):", "funcdef": "def"}, "mlsauce.LSBoostRegressor.update": {"fullname": "mlsauce.LSBoostRegressor.update", "modulename": "mlsauce", "qualname": "LSBoostRegressor.update", "kind": "function", "doc": "

Update model with new data.

\n\n

Args:

\n\n
X: {array-like}, shape = [n_samples=1, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\ny: float = [n_samples=1]\n   Target value.\n\neta: float\n    Inverse power applied to number of observations\n    (defines a learning rate).\n
\n\n

Returns:

\n\n
self: object.\n
\n", "signature": "(self, X, y, eta=0.9):", "funcdef": "def"}, "mlsauce.LSBoostRegressor.set_predict_request": {"fullname": "mlsauce.LSBoostRegressor.set_predict_request", "modulename": "mlsauce", "qualname": "LSBoostRegressor.set_predict_request", "kind": "function", "doc": "

A descriptor for request methods.

\n\n

New in version 1.3.

\n\n

Parameters

\n\n

name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

\n\n

keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

\n\n

validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

\n\n

Notes

\n\n

This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

\n\n

References

\n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.LSBoostRegressor.set_score_request": {"fullname": "mlsauce.LSBoostRegressor.set_score_request", "modulename": "mlsauce", "qualname": "LSBoostRegressor.set_score_request", "kind": "function", "doc": "

A descriptor for request methods.

\n\n

New in version 1.3.

\n\n

Parameters

\n\n

name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

\n\n

keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

\n\n

validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

\n\n

Notes

\n\n

This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

\n\n

References

\n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.RidgeRegressor": {"fullname": "mlsauce.RidgeRegressor", "modulename": "mlsauce", "qualname": "RidgeRegressor", "kind": "class", "doc": "

Ridge.

\n\n

Attributes:

\n\n
reg_lambda: float\n    regularization parameter.\n\nbackend: str\n    type of backend; must be in ('cpu', 'gpu', 'tpu')\n
\n", "bases": "sklearn.base.BaseEstimator, sklearn.base.RegressorMixin"}, "mlsauce.RidgeRegressor.__init__": {"fullname": "mlsauce.RidgeRegressor.__init__", "modulename": "mlsauce", "qualname": "RidgeRegressor.__init__", "kind": "function", "doc": "

\n", "signature": "(reg_lambda=0.1, backend='cpu')"}, "mlsauce.RidgeRegressor.reg_lambda": {"fullname": "mlsauce.RidgeRegressor.reg_lambda", "modulename": "mlsauce", "qualname": "RidgeRegressor.reg_lambda", "kind": "variable", "doc": "

\n"}, "mlsauce.RidgeRegressor.backend": {"fullname": "mlsauce.RidgeRegressor.backend", "modulename": "mlsauce", "qualname": "RidgeRegressor.backend", "kind": "variable", "doc": "

\n"}, "mlsauce.RidgeRegressor.fit": {"fullname": "mlsauce.RidgeRegressor.fit", "modulename": "mlsauce", "qualname": "RidgeRegressor.fit", "kind": "function", "doc": "

Fit matrixops (classifier) to training data (X, y)

\n\n

Args:

\n\n
X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\ny: array-like, shape = [n_samples]\n    Target values.\n\n**kwargs: additional parameters to be passed to self.cook_training_set.\n
\n\n

Returns:

\n\n
self: object.\n
\n", "signature": "(self, X, y, **kwargs):", "funcdef": "def"}, "mlsauce.RidgeRegressor.predict": {"fullname": "mlsauce.RidgeRegressor.predict", "modulename": "mlsauce", "qualname": "RidgeRegressor.predict", "kind": "function", "doc": "

Predict test data X.

\n\n

Args:

\n\n
X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\n**kwargs: additional parameters to be passed to `predict_proba`\n
\n\n

Returns:

\n\n
model predictions: {array-like}\n
\n", "signature": "(self, X, **kwargs):", "funcdef": "def"}, "mlsauce.RidgeRegressor.set_score_request": {"fullname": "mlsauce.RidgeRegressor.set_score_request", "modulename": "mlsauce", "qualname": "RidgeRegressor.set_score_request", "kind": "function", "doc": "

A descriptor for request methods.

\n\n

New in version 1.3.

\n\n

Parameters

\n\n

name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

\n\n

keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

\n\n

validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

\n\n

Notes

\n\n

This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

\n\n

References

\n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.LazyBoostingClassifier": {"fullname": "mlsauce.LazyBoostingClassifier", "modulename": "mlsauce", "qualname": "LazyBoostingClassifier", "kind": "class", "doc": "

Fitting -- almost -- all the classification algorithms\n and returning their scores.

\n\n
Parameters:\n\n    verbose: int, optional (default=0)\n        Any positive number for verbosity.\n\n    ignore_warnings: bool, optional (default=True)\n        When set to True, the warning related to algorigms that are not\n        able to run are ignored.\n\n    custom_metric: function, optional (default=None)\n        When function is provided, models are evaluated based on the custom\n          evaluation metric provided.\n\n    predictions: bool, optional (default=False)\n        When set to True, the predictions of all the models models are\n        returned as data frame.\n\n    sort_by: string, optional (default='Accuracy')\n        Sort models by a metric. Available options are 'Accuracy',\n        'Balanced Accuracy', 'ROC AUC', 'F1 Score' or a custom metric\n        identified by its name and provided by custom_metric.\n\n    random_state: int, optional (default=42)\n        Reproducibiility seed.\n\n    estimators: list, optional (default='all')\n        list of Estimators names or just 'all' for > 90 classifiers\n        (default='all')\n\n    preprocess: bool, preprocessing is done when set to True\n\n    n_jobs: int, when possible, run in parallel\n        For now, only used by individual models that support it.\n\n    n_layers: int, optional (default=3)\n        Number of layers of GenericBoostingClassifiers to be used.\n\n    All the other parameters are the same as GenericBoostingClassifier's.\n\nAttributes:\n\n    models_: dict-object\n        Returns a dictionary with each model pipeline as value\n        with key as name of models.\n\n    best_model_: object\n        Returns the best model pipeline.\n\nExamples\n\n\n    
\n
        import os\n        import mlsauce as ms\n        from sklearn.datasets import load_breast_cancer, load_iris, load_wine, load_digits\n        from sklearn.model_selection import train_test_split\n        from time import time\n\n        load_models = [load_breast_cancer, load_iris, load_wine]\n\n        for model in load_models:\n\n            data = model()\n            X = data.data\n            y= data.target\n\n            X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = .2, random_state = 13)\n\n            clf = ms.LazyBoostingClassifier(verbose=1, ignore_warnings=False,\n                                            custom_metric=None, preprocess=False)\n\n            start = time()\n            models, predictioms = clf.fit(X_train, X_test, y_train, y_test)\n            print(f"\nElapsed: {time() - start} seconds\n")\n\n            print(models)\n
\n
\n
\n", "bases": "sklearn.base.ClassifierMixin"}, "mlsauce.LazyBoostingClassifier.__init__": {"fullname": "mlsauce.LazyBoostingClassifier.__init__", "modulename": "mlsauce", "qualname": "LazyBoostingClassifier.__init__", "kind": "function", "doc": "

\n", "signature": "(\tverbose=0,\tignore_warnings=True,\tcustom_metric=None,\tpredictions=False,\tsort_by='Accuracy',\trandom_state=42,\testimators='all',\tpreprocess=False,\tn_jobs=None)"}, "mlsauce.LazyBoostingClassifier.verbose": {"fullname": "mlsauce.LazyBoostingClassifier.verbose", "modulename": "mlsauce", "qualname": "LazyBoostingClassifier.verbose", "kind": "variable", "doc": "

\n"}, "mlsauce.LazyBoostingClassifier.ignore_warnings": {"fullname": "mlsauce.LazyBoostingClassifier.ignore_warnings", "modulename": "mlsauce", "qualname": "LazyBoostingClassifier.ignore_warnings", "kind": "variable", "doc": "

\n"}, "mlsauce.LazyBoostingClassifier.custom_metric": {"fullname": "mlsauce.LazyBoostingClassifier.custom_metric", "modulename": "mlsauce", "qualname": "LazyBoostingClassifier.custom_metric", "kind": "variable", "doc": "

\n"}, "mlsauce.LazyBoostingClassifier.predictions": {"fullname": "mlsauce.LazyBoostingClassifier.predictions", "modulename": "mlsauce", "qualname": "LazyBoostingClassifier.predictions", "kind": "variable", "doc": "

\n"}, "mlsauce.LazyBoostingClassifier.sort_by": {"fullname": "mlsauce.LazyBoostingClassifier.sort_by", "modulename": "mlsauce", "qualname": "LazyBoostingClassifier.sort_by", "kind": "variable", "doc": "

\n"}, "mlsauce.LazyBoostingClassifier.models_": {"fullname": "mlsauce.LazyBoostingClassifier.models_", "modulename": "mlsauce", "qualname": "LazyBoostingClassifier.models_", "kind": "variable", "doc": "

\n"}, "mlsauce.LazyBoostingClassifier.best_model_": {"fullname": "mlsauce.LazyBoostingClassifier.best_model_", "modulename": "mlsauce", "qualname": "LazyBoostingClassifier.best_model_", "kind": "variable", "doc": "

\n"}, "mlsauce.LazyBoostingClassifier.random_state": {"fullname": "mlsauce.LazyBoostingClassifier.random_state", "modulename": "mlsauce", "qualname": "LazyBoostingClassifier.random_state", "kind": "variable", "doc": "

\n"}, "mlsauce.LazyBoostingClassifier.estimators": {"fullname": "mlsauce.LazyBoostingClassifier.estimators", "modulename": "mlsauce", "qualname": "LazyBoostingClassifier.estimators", "kind": "variable", "doc": "

\n"}, "mlsauce.LazyBoostingClassifier.preprocess": {"fullname": "mlsauce.LazyBoostingClassifier.preprocess", "modulename": "mlsauce", "qualname": "LazyBoostingClassifier.preprocess", "kind": "variable", "doc": "

\n"}, "mlsauce.LazyBoostingClassifier.n_jobs": {"fullname": "mlsauce.LazyBoostingClassifier.n_jobs", "modulename": "mlsauce", "qualname": "LazyBoostingClassifier.n_jobs", "kind": "variable", "doc": "

\n"}, "mlsauce.LazyBoostingClassifier.fit": {"fullname": "mlsauce.LazyBoostingClassifier.fit", "modulename": "mlsauce", "qualname": "LazyBoostingClassifier.fit", "kind": "function", "doc": "

Fit classifiers to X_train and y_train, predict and score on X_test,\ny_test.

\n\n

Parameters:

\n\n
X_train: array-like,\n    Training vectors, where rows is the number of samples\n    and columns is the number of features.\n\nX_test: array-like,\n    Testing vectors, where rows is the number of samples\n    and columns is the number of features.\n\ny_train: array-like,\n    Training vectors, where rows is the number of samples\n    and columns is the number of features.\n\ny_test: array-like,\n    Testing vectors, where rows is the number of samples\n    and columns is the number of features.\n\n**kwargs: dict,\n    Additional arguments to be passed to the fit GenericBoostingClassifier.\n
\n\n

Returns:

\n\n
scores: Pandas DataFrame\n    Returns metrics of all the models in a Pandas DataFrame.\n\npredictions: Pandas DataFrame\n    Returns predictions of all the models in a Pandas DataFrame.\n
\n", "signature": "(self, X_train, X_test, y_train, y_test, **kwargs):", "funcdef": "def"}, "mlsauce.LazyBoostingClassifier.get_best_model": {"fullname": "mlsauce.LazyBoostingClassifier.get_best_model", "modulename": "mlsauce", "qualname": "LazyBoostingClassifier.get_best_model", "kind": "function", "doc": "

This function returns the best model pipeline based on the sort_by metric.

\n\n

Returns:

\n\n
best_model: object,\n    Returns the best model pipeline based on the sort_by metric.\n
\n", "signature": "(self):", "funcdef": "def"}, "mlsauce.LazyBoostingClassifier.provide_models": {"fullname": "mlsauce.LazyBoostingClassifier.provide_models", "modulename": "mlsauce", "qualname": "LazyBoostingClassifier.provide_models", "kind": "function", "doc": "

Returns all the model objects trained. If fit hasn't been called yet,\nthen it's called to return the models.

\n\n

Parameters:

\n\n

X_train: array-like,\n Training vectors, where rows is the number of samples\n and columns is the number of features.

\n\n

X_test: array-like,\n Testing vectors, where rows is the number of samples\n and columns is the number of features.

\n\n

y_train: array-like,\n Training vectors, where rows is the number of samples\n and columns is the number of features.

\n\n

y_test: array-like,\n Testing vectors, where rows is the number of samples\n and columns is the number of features.

\n\n

Returns:

\n\n
models: dict-object,\n    Returns a dictionary with each model's pipeline as value\n    and key = name of the model.\n
\n", "signature": "(self, X_train, X_test, y_train, y_test):", "funcdef": "def"}, "mlsauce.LazyBoostingClassifier.train_model": {"fullname": "mlsauce.LazyBoostingClassifier.train_model", "modulename": "mlsauce", "qualname": "LazyBoostingClassifier.train_model", "kind": "function", "doc": "

Function to train a single model and return its results.

\n", "signature": "(\tself,\tname,\tmodel,\tX_train,\ty_train,\tX_test,\ty_test,\tuse_preprocessing=False,\tpreprocessor=None,\t**kwargs):", "funcdef": "def"}, "mlsauce.LazyBoostingRegressor": {"fullname": "mlsauce.LazyBoostingRegressor", "modulename": "mlsauce", "qualname": "LazyBoostingRegressor", "kind": "class", "doc": "

Fitting -- almost -- all the regression algorithms\n and returning their scores.

\n\n

Parameters:

\n\n
verbose: int, optional (default=0)\n    Any positive number for verbosity.\n\nignore_warnings: bool, optional (default=True)\n    When set to True, the warning related to algorigms that are not able to run are ignored.\n\ncustom_metric: function, optional (default=None)\n    When function is provided, models are evaluated based on the custom evaluation metric provided.\n\npredictions: bool, optional (default=False)\n    When set to True, the predictions of all the models models are returned as dataframe.\n\nsort_by: string, optional (default='RMSE')\n    Sort models by a metric. Available options are 'R-Squared', 'Adjusted R-Squared', 'RMSE', 'Time Taken' and 'Custom Metric'.\n    or a custom metric identified by its name and provided by custom_metric.\n\nrandom_state: int, optional (default=42)\n    Reproducibiility seed.\n\nestimators: list, optional (default='all')\n    list of Estimators names or just 'all' (default='all')\n\npreprocess: bool\n    preprocessing is done when set to True\n\nn_jobs : int, when possible, run in parallel\n    For now, only used by individual models that support it.\n\nn_layers: int, optional (default=3)\n    Number of layers of CustomRegressors to be used.\n\nAll the other parameters are the same as CustomRegressor's.\n
\n\n

Attributes:

\n\n
models_: dict-object\n    Returns a dictionary with each model pipeline as value\n    with key as name of models.\n\nbest_model_: object\n    Returns the best model pipeline based on the sort_by metric.\n
\n\n

Examples:

\n\n
\n
import os\nimport mlsauce as ms\nfrom sklearn.datasets import load_diabetes\nfrom sklearn.model_selection import train_test_split\n\ndata = load_diabetes()\nX = data.data\ny= data.target\nX_train, X_test, y_train, y_test = train_test_split(X, y, test_size = .2, random_state = 123)\n\nregr = ms.LazyBoostingRegressor(verbose=0, ignore_warnings=True,\n                                custom_metric=None, preprocess=True)\nmodels, predictioms = regr.fit(X_train, X_test, y_train, y_test)\nmodel_dictionary = regr.provide_models(X_train, X_test, y_train, y_test)\nprint(models)\n
\n
\n
\n", "bases": "sklearn.base.RegressorMixin"}, "mlsauce.LazyBoostingRegressor.__init__": {"fullname": "mlsauce.LazyBoostingRegressor.__init__", "modulename": "mlsauce", "qualname": "LazyBoostingRegressor.__init__", "kind": "function", "doc": "

\n", "signature": "(\tverbose=0,\tignore_warnings=True,\tcustom_metric=None,\tpredictions=False,\tsort_by='RMSE',\trandom_state=42,\testimators='all',\tpreprocess=False,\tn_jobs=None)"}, "mlsauce.LazyBoostingRegressor.verbose": {"fullname": "mlsauce.LazyBoostingRegressor.verbose", "modulename": "mlsauce", "qualname": "LazyBoostingRegressor.verbose", "kind": "variable", "doc": "

\n"}, "mlsauce.LazyBoostingRegressor.ignore_warnings": {"fullname": "mlsauce.LazyBoostingRegressor.ignore_warnings", "modulename": "mlsauce", "qualname": "LazyBoostingRegressor.ignore_warnings", "kind": "variable", "doc": "

\n"}, "mlsauce.LazyBoostingRegressor.custom_metric": {"fullname": "mlsauce.LazyBoostingRegressor.custom_metric", "modulename": "mlsauce", "qualname": "LazyBoostingRegressor.custom_metric", "kind": "variable", "doc": "

\n"}, "mlsauce.LazyBoostingRegressor.predictions": {"fullname": "mlsauce.LazyBoostingRegressor.predictions", "modulename": "mlsauce", "qualname": "LazyBoostingRegressor.predictions", "kind": "variable", "doc": "

\n"}, "mlsauce.LazyBoostingRegressor.sort_by": {"fullname": "mlsauce.LazyBoostingRegressor.sort_by", "modulename": "mlsauce", "qualname": "LazyBoostingRegressor.sort_by", "kind": "variable", "doc": "

\n"}, "mlsauce.LazyBoostingRegressor.models_": {"fullname": "mlsauce.LazyBoostingRegressor.models_", "modulename": "mlsauce", "qualname": "LazyBoostingRegressor.models_", "kind": "variable", "doc": "

\n"}, "mlsauce.LazyBoostingRegressor.best_model_": {"fullname": "mlsauce.LazyBoostingRegressor.best_model_", "modulename": "mlsauce", "qualname": "LazyBoostingRegressor.best_model_", "kind": "variable", "doc": "

\n"}, "mlsauce.LazyBoostingRegressor.random_state": {"fullname": "mlsauce.LazyBoostingRegressor.random_state", "modulename": "mlsauce", "qualname": "LazyBoostingRegressor.random_state", "kind": "variable", "doc": "

\n"}, "mlsauce.LazyBoostingRegressor.estimators": {"fullname": "mlsauce.LazyBoostingRegressor.estimators", "modulename": "mlsauce", "qualname": "LazyBoostingRegressor.estimators", "kind": "variable", "doc": "

\n"}, "mlsauce.LazyBoostingRegressor.preprocess": {"fullname": "mlsauce.LazyBoostingRegressor.preprocess", "modulename": "mlsauce", "qualname": "LazyBoostingRegressor.preprocess", "kind": "variable", "doc": "

\n"}, "mlsauce.LazyBoostingRegressor.n_jobs": {"fullname": "mlsauce.LazyBoostingRegressor.n_jobs", "modulename": "mlsauce", "qualname": "LazyBoostingRegressor.n_jobs", "kind": "variable", "doc": "

\n"}, "mlsauce.LazyBoostingRegressor.fit": {"fullname": "mlsauce.LazyBoostingRegressor.fit", "modulename": "mlsauce", "qualname": "LazyBoostingRegressor.fit", "kind": "function", "doc": "

Fit Regression algorithms to X_train and y_train, predict and score on X_test, y_test.

\n\n

Parameters:

\n\n
X_train : array-like,\n    Training vectors, where rows is the number of samples\n    and columns is the number of features.\n\nX_test : array-like,\n    Testing vectors, where rows is the number of samples\n    and columns is the number of features.\n\ny_train : array-like,\n    Training vectors, where rows is the number of samples\n    and columns is the number of features.\n\ny_test : array-like,\n    Testing vectors, where rows is the number of samples\n    and columns is the number of features.\n\n**kwargs: dict,\n    Additional parameters to be passed to the GenericBoostingRegressor.\n
\n\n

Returns:

\n\n

scores: Pandas DataFrame\n Returns metrics of all the models in a Pandas DataFrame.

\n\n

predictions : Pandas DataFrame\n Returns predictions of all the models in a Pandas DataFrame.

\n", "signature": "(self, X_train, X_test, y_train, y_test, **kwargs):", "funcdef": "def"}, "mlsauce.LazyBoostingRegressor.get_best_model": {"fullname": "mlsauce.LazyBoostingRegressor.get_best_model", "modulename": "mlsauce", "qualname": "LazyBoostingRegressor.get_best_model", "kind": "function", "doc": "

This function returns the best model pipeline based on the sort_by metric.

\n\n

Returns:

\n\n
best_model: object,\n    Returns the best model pipeline based on the sort_by metric.\n
\n", "signature": "(self):", "funcdef": "def"}, "mlsauce.LazyBoostingRegressor.provide_models": {"fullname": "mlsauce.LazyBoostingRegressor.provide_models", "modulename": "mlsauce", "qualname": "LazyBoostingRegressor.provide_models", "kind": "function", "doc": "

This function returns all the model objects trained in fit function.\nIf fit is not called already, then we call fit and then return the models.

\n\n

Parameters:

\n\n
X_train : array-like,\n    Training vectors, where rows is the number of samples\n    and columns is the number of features.\n\nX_test : array-like,\n    Testing vectors, where rows is the number of samples\n    and columns is the number of features.\n\ny_train : array-like,\n    Training vectors, where rows is the number of samples\n    and columns is the number of features.\n\ny_test : array-like,\n    Testing vectors, where rows is the number of samples\n    and columns is the number of features.\n
\n\n

Returns:

\n\n
models: dict-object,\n    Returns a dictionary with each model pipeline as value\n    with key as name of models.\n
\n", "signature": "(self, X_train, X_test, y_train, y_test):", "funcdef": "def"}, "mlsauce.LazyBoostingRegressor.train_model": {"fullname": "mlsauce.LazyBoostingRegressor.train_model", "modulename": "mlsauce", "qualname": "LazyBoostingRegressor.train_model", "kind": "function", "doc": "

Function to train a single regression model and return its results.

\n", "signature": "(\tself,\tname,\tregr,\tX_train,\ty_train,\tX_test,\ty_test,\tuse_preprocessing=False,\tpreprocessor=None,\t**kwargs):", "funcdef": "def"}, "mlsauce.MultiTaskRegressor": {"fullname": "mlsauce.MultiTaskRegressor", "modulename": "mlsauce", "qualname": "MultiTaskRegressor", "kind": "class", "doc": "

A class for multi-task regression

\n\n

Parameters

\n\n

regr: object\n A regressor object

\n\n

Attributes

\n\n

objs: list\n A list containing the fitted regressor objects

\n", "bases": "sklearn.base.BaseEstimator, sklearn.base.RegressorMixin"}, "mlsauce.MultiTaskRegressor.__init__": {"fullname": "mlsauce.MultiTaskRegressor.__init__", "modulename": "mlsauce", "qualname": "MultiTaskRegressor.__init__", "kind": "function", "doc": "

\n", "signature": "(regr)"}, "mlsauce.MultiTaskRegressor.regr": {"fullname": "mlsauce.MultiTaskRegressor.regr", "modulename": "mlsauce", "qualname": "MultiTaskRegressor.regr", "kind": "variable", "doc": "

\n"}, "mlsauce.MultiTaskRegressor.objs": {"fullname": "mlsauce.MultiTaskRegressor.objs", "modulename": "mlsauce", "qualname": "MultiTaskRegressor.objs", "kind": "variable", "doc": "

\n"}, "mlsauce.MultiTaskRegressor.fit": {"fullname": "mlsauce.MultiTaskRegressor.fit", "modulename": "mlsauce", "qualname": "MultiTaskRegressor.fit", "kind": "function", "doc": "

Fit the regressor

\n\n

Parameters

\n\n

X: array-like\n The input data\ny: array-like\n The target values

\n", "signature": "(self, X, y):", "funcdef": "def"}, "mlsauce.MultiTaskRegressor.predict": {"fullname": "mlsauce.MultiTaskRegressor.predict", "modulename": "mlsauce", "qualname": "MultiTaskRegressor.predict", "kind": "function", "doc": "

Predict the target values

\n\n

Parameters

\n\n

X: array-like\n The input data

\n\n

Returns

\n\n

y_pred: array-like\n The predicted target values

\n", "signature": "(self, X):", "funcdef": "def"}, "mlsauce.MultiTaskRegressor.set_score_request": {"fullname": "mlsauce.MultiTaskRegressor.set_score_request", "modulename": "mlsauce", "qualname": "MultiTaskRegressor.set_score_request", "kind": "function", "doc": "

A descriptor for request methods.

\n\n

New in version 1.3.

\n\n

Parameters

\n\n

name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

\n\n

keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

\n\n

validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

\n\n

Notes

\n\n

This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

\n\n

References

\n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.download": {"fullname": "mlsauce.download", "modulename": "mlsauce", "qualname": "download", "kind": "function", "doc": "

\n", "signature": "(\tpkgname='MASS',\tdataset='Boston',\tsource='https://cran.r-universe.dev/',\t**kwargs):", "funcdef": "def"}, "mlsauce.get_config": {"fullname": "mlsauce.get_config", "modulename": "mlsauce", "qualname": "get_config", "kind": "function", "doc": "

Retrieve current values for configuration set by set_config()

\n\n

Returns

\n\n

config : dict\n Keys are parameter names that can be passed to set_config().

\n\n

See Also

\n\n

config_context: Context manager for global mlsauce configuration\nset_config: Set global mlsauce configuration

\n", "signature": "():", "funcdef": "def"}, "mlsauce.set_config": {"fullname": "mlsauce.set_config", "modulename": "mlsauce", "qualname": "set_config", "kind": "function", "doc": "

Set global mlsauce configuration

\n\n

New in version 0.3.0.

\n\n

Parameters

\n\n

assume_finite : bool, optional\n If True, validation for finiteness will be skipped,\n saving time, but leading to potential crashes. If\n False, validation for finiteness will be performed,\n avoiding error. Global default: False.

\n\n
*New in version 0.3.0.*\n
\n\n

working_memory : int, optional\n If set, mlsauce will attempt to limit the size of temporary arrays\n to this number of MiB (per job when parallelised), often saving both\n computation time and memory on expensive operations that can be\n performed in chunks. Global default: 1024.

\n\n
*New in version 0.3.0.*\n
\n\n

print_changed_only : bool, optional\n If True, only the parameters that were set to non-default\n values will be printed when printing an estimator. For example,\n print(SVC()) while True will only print 'SVC()' while the default\n behaviour would be to print 'SVC(C=1.0, cache_size=200, ...)' with\n all the non-changed parameters.

\n\n
*New in version 0.3.0.*\n
\n\n

display : {'text', 'diagram'}, optional\n If 'diagram', estimators will be displayed as text in a jupyter lab\n of notebook context. If 'text', estimators will be displayed as\n text. Default is 'text'.

\n\n
*New in version 0.3.0.*\n
\n\n

See Also

\n\n

config_context: Context manager for global mlsauce configuration\nget_config: Retrieve current values of the global configuration

\n", "signature": "(\tassume_finite=None,\tworking_memory=None,\tprint_changed_only=None,\tdisplay=None):", "funcdef": "def"}, "mlsauce.config_context": {"fullname": "mlsauce.config_context", "modulename": "mlsauce", "qualname": "config_context", "kind": "function", "doc": "

Context manager for global mlsauce configuration

\n\n

Parameters

\n\n

assume_finite : bool, optional\n If True, validation for finiteness will be skipped,\n saving time, but leading to potential crashes. If\n False, validation for finiteness will be performed,\n avoiding error. Global default: False.

\n\n

working_memory : int, optional\n If set, mlsauce will attempt to limit the size of temporary arrays\n to this number of MiB (per job when parallelised), often saving both\n computation time and memory on expensive operations that can be\n performed in chunks. Global default: 1024.

\n\n

print_changed_only : bool, optional\n If True, only the parameters that were set to non-default\n values will be printed when printing an estimator. For example,\n print(SVC()) while True will only print 'SVC()', but would print\n 'SVC(C=1.0, cache_size=200, ...)' with all the non-changed parameters\n when False. Default is True.

\n\n
*New in version 0.3.0.*\n
\n\n

display : {'text', 'diagram'}, optional\n If 'diagram', estimators will be displayed as text in a jupyter lab\n of notebook context. If 'text', estimators will be displayed as\n text. Default is 'text'.

\n\n
*New in version 0.3.0.*\n
\n\n

Notes

\n\n

All settings, not just those presently modified, will be returned to\ntheir previous values when the context manager is exited. This is not\nthread-safe.

\n\n

Examples

\n\n
\n
>>> import mlsauce\n>>> from mlsauce.utils.validation import assert_all_finite\n>>> with mlsauce.config_context(assume_finite=True):\n...     assert_all_finite([float('nan')])\n>>> with mlsauce.config_context(assume_finite=True):\n...     with mlsauce.config_context(assume_finite=False):\n...         assert_all_finite([float('nan')])\nTraceback (most recent call last):\n...\nValueError: Input contains NaN, ...\n
\n
\n\n

See Also

\n\n

set_config: Set global mlsauce configuration\nget_config: Retrieve current values of the global configuration

\n", "signature": "(**new_config):", "funcdef": "def"}, "mlsauce.adaopt": {"fullname": "mlsauce.adaopt", "modulename": "mlsauce.adaopt", "kind": "module", "doc": "

\n"}, "mlsauce.adaopt.AdaOpt": {"fullname": "mlsauce.adaopt.AdaOpt", "modulename": "mlsauce.adaopt", "qualname": "AdaOpt", "kind": "class", "doc": "

AdaOpt classifier.

\n\n

Attributes:

\n\n
n_iterations: int\n    number of iterations of the optimizer at training time.\n\nlearning_rate: float\n    controls the speed of the optimizer at training time.\n\nreg_lambda: float\n    L2 regularization parameter for successive errors in the optimizer\n    (at training time).\n\nreg_alpha: float\n    L1 regularization parameter for successive errors in the optimizer\n    (at training time).\n\neta: float\n    controls the slope in gradient descent (at training time).\n\ngamma: float\n    controls the step size in gradient descent (at training time).\n\nk: int\n    number of nearest neighbors selected at test time for classification.\n\ntolerance: float\n    controls early stopping in gradient descent (at training time).\n\nn_clusters: int\n    number of clusters, if MiniBatch k-means is used at test time\n    (for faster prediction).\n\nbatch_size: int\n    size of the batch, if MiniBatch k-means is used at test time\n    (for faster prediction).\n\nrow_sample: float\n    percentage of rows chosen from training set (by stratified subsampling,\n    for faster prediction).\n\ntype_dist: str\n    distance used for finding the nearest neighbors; currently `euclidean-f`\n    (euclidean distances calculated as whole), `euclidean` (euclidean distances\n    calculated row by row), `cosine` (cosine distance).\n\nn_jobs: int\n    number of cpus for parallel processing (default: None)\n\nverbose: int\n    progress bar for parallel processing (yes = 1) or not (no = 0)\n\ncache: boolean\n    if the nearest neighbors are cached or not, for faster retrieval in\n    subsequent calls.\n\nn_clusters_input: int\n    number of clusters (a priori) for clustering the features\n\nclustering_method: str\n    clustering method: currently 'kmeans', 'gmm'\n\ncluster_scaling: str\n    scaling method for clustering: currently 'standard', 'robust', 'minmax'\n\nseed: int\n    reproducibility seed for nodes_sim=='uniform', clustering and dropout.\n
\n", "bases": "sklearn.base.BaseEstimator, sklearn.base.ClassifierMixin"}, "mlsauce.adaopt.AdaOpt.__init__": {"fullname": "mlsauce.adaopt.AdaOpt.__init__", "modulename": "mlsauce.adaopt", "qualname": "AdaOpt.__init__", "kind": "function", "doc": "

\n", "signature": "(\tn_iterations=50,\tlearning_rate=0.3,\treg_lambda=0.1,\treg_alpha=0.5,\teta=0.01,\tgamma=0.01,\tk=3,\ttolerance=0,\tn_clusters=0,\tbatch_size=100,\trow_sample=0.8,\ttype_dist='euclidean-f',\tn_jobs=None,\tverbose=0,\tcache=True,\tn_clusters_input=0,\tclustering_method='kmeans',\tcluster_scaling='standard',\tseed=123)"}, "mlsauce.adaopt.AdaOpt.n_iterations": {"fullname": "mlsauce.adaopt.AdaOpt.n_iterations", "modulename": "mlsauce.adaopt", "qualname": "AdaOpt.n_iterations", "kind": "variable", "doc": "

\n"}, "mlsauce.adaopt.AdaOpt.learning_rate": {"fullname": "mlsauce.adaopt.AdaOpt.learning_rate", "modulename": "mlsauce.adaopt", "qualname": "AdaOpt.learning_rate", "kind": "variable", "doc": "

\n"}, "mlsauce.adaopt.AdaOpt.reg_lambda": {"fullname": "mlsauce.adaopt.AdaOpt.reg_lambda", "modulename": "mlsauce.adaopt", "qualname": "AdaOpt.reg_lambda", "kind": "variable", "doc": "

\n"}, "mlsauce.adaopt.AdaOpt.reg_alpha": {"fullname": "mlsauce.adaopt.AdaOpt.reg_alpha", "modulename": "mlsauce.adaopt", "qualname": "AdaOpt.reg_alpha", "kind": "variable", "doc": "

\n"}, "mlsauce.adaopt.AdaOpt.eta": {"fullname": "mlsauce.adaopt.AdaOpt.eta", "modulename": "mlsauce.adaopt", "qualname": "AdaOpt.eta", "kind": "variable", "doc": "

\n"}, "mlsauce.adaopt.AdaOpt.gamma": {"fullname": "mlsauce.adaopt.AdaOpt.gamma", "modulename": "mlsauce.adaopt", "qualname": "AdaOpt.gamma", "kind": "variable", "doc": "

\n"}, "mlsauce.adaopt.AdaOpt.k": {"fullname": "mlsauce.adaopt.AdaOpt.k", "modulename": "mlsauce.adaopt", "qualname": "AdaOpt.k", "kind": "variable", "doc": "

\n"}, "mlsauce.adaopt.AdaOpt.tolerance": {"fullname": "mlsauce.adaopt.AdaOpt.tolerance", "modulename": "mlsauce.adaopt", "qualname": "AdaOpt.tolerance", "kind": "variable", "doc": "

\n"}, "mlsauce.adaopt.AdaOpt.n_clusters": {"fullname": "mlsauce.adaopt.AdaOpt.n_clusters", "modulename": "mlsauce.adaopt", "qualname": "AdaOpt.n_clusters", "kind": "variable", "doc": "

\n"}, "mlsauce.adaopt.AdaOpt.batch_size": {"fullname": "mlsauce.adaopt.AdaOpt.batch_size", "modulename": "mlsauce.adaopt", "qualname": "AdaOpt.batch_size", "kind": "variable", "doc": "

\n"}, "mlsauce.adaopt.AdaOpt.row_sample": {"fullname": "mlsauce.adaopt.AdaOpt.row_sample", "modulename": "mlsauce.adaopt", "qualname": "AdaOpt.row_sample", "kind": "variable", "doc": "

\n"}, "mlsauce.adaopt.AdaOpt.type_dist": {"fullname": "mlsauce.adaopt.AdaOpt.type_dist", "modulename": "mlsauce.adaopt", "qualname": "AdaOpt.type_dist", "kind": "variable", "doc": "

\n"}, "mlsauce.adaopt.AdaOpt.n_jobs": {"fullname": "mlsauce.adaopt.AdaOpt.n_jobs", "modulename": "mlsauce.adaopt", "qualname": "AdaOpt.n_jobs", "kind": "variable", "doc": "

\n"}, "mlsauce.adaopt.AdaOpt.cache": {"fullname": "mlsauce.adaopt.AdaOpt.cache", "modulename": "mlsauce.adaopt", "qualname": "AdaOpt.cache", "kind": "variable", "doc": "

\n"}, "mlsauce.adaopt.AdaOpt.verbose": {"fullname": "mlsauce.adaopt.AdaOpt.verbose", "modulename": "mlsauce.adaopt", "qualname": "AdaOpt.verbose", "kind": "variable", "doc": "

\n"}, "mlsauce.adaopt.AdaOpt.n_clusters_input": {"fullname": "mlsauce.adaopt.AdaOpt.n_clusters_input", "modulename": "mlsauce.adaopt", "qualname": "AdaOpt.n_clusters_input", "kind": "variable", "doc": "

\n"}, "mlsauce.adaopt.AdaOpt.clustering_method": {"fullname": "mlsauce.adaopt.AdaOpt.clustering_method", "modulename": "mlsauce.adaopt", "qualname": "AdaOpt.clustering_method", "kind": "variable", "doc": "

\n"}, "mlsauce.adaopt.AdaOpt.cluster_scaling": {"fullname": "mlsauce.adaopt.AdaOpt.cluster_scaling", "modulename": "mlsauce.adaopt", "qualname": "AdaOpt.cluster_scaling", "kind": "variable", "doc": "

\n"}, "mlsauce.adaopt.AdaOpt.seed": {"fullname": "mlsauce.adaopt.AdaOpt.seed", "modulename": "mlsauce.adaopt", "qualname": "AdaOpt.seed", "kind": "variable", "doc": "

\n"}, "mlsauce.adaopt.AdaOpt.fit": {"fullname": "mlsauce.adaopt.AdaOpt.fit", "modulename": "mlsauce.adaopt", "qualname": "AdaOpt.fit", "kind": "function", "doc": "

Fit AdaOpt to training data (X, y)

\n\n

Args:

\n\n
X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\ny: array-like, shape = [n_samples]\n    Target values.\n\n**kwargs: additional parameters to be passed to self.cook_training_set.\n
\n\n

Returns:

\n\n
self: object.\n
\n", "signature": "(self, X, y, **kwargs):", "funcdef": "def"}, "mlsauce.adaopt.AdaOpt.predict": {"fullname": "mlsauce.adaopt.AdaOpt.predict", "modulename": "mlsauce.adaopt", "qualname": "AdaOpt.predict", "kind": "function", "doc": "

Predict test data X.

\n\n

Args:

\n\n
X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\n**kwargs: additional parameters to be passed to `predict_proba`\n
\n\n

Returns:

\n\n
model predictions: {array-like}\n
\n", "signature": "(self, X, **kwargs):", "funcdef": "def"}, "mlsauce.adaopt.AdaOpt.predict_proba": {"fullname": "mlsauce.adaopt.AdaOpt.predict_proba", "modulename": "mlsauce.adaopt", "qualname": "AdaOpt.predict_proba", "kind": "function", "doc": "

Predict probabilities for test data X.

\n\n

Args:

\n\n
X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\n**kwargs: additional parameters to be passed to\n    self.cook_test_set\n
\n\n

Returns:

\n\n
probability estimates for test data: {array-like}\n
\n", "signature": "(self, X, **kwargs):", "funcdef": "def"}, "mlsauce.adaopt.AdaOpt.set_score_request": {"fullname": "mlsauce.adaopt.AdaOpt.set_score_request", "modulename": "mlsauce.adaopt", "qualname": "AdaOpt.set_score_request", "kind": "function", "doc": "

A descriptor for request methods.

\n\n

New in version 1.3.

\n\n

Parameters

\n\n

name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

\n\n

keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

\n\n

validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

\n\n

Notes

\n\n

This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

\n\n

References

\n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.booster": {"fullname": "mlsauce.booster", "modulename": "mlsauce.booster", "kind": "module", "doc": "

\n"}, "mlsauce.booster.LSBoostClassifier": {"fullname": "mlsauce.booster.LSBoostClassifier", "modulename": "mlsauce.booster", "qualname": "LSBoostClassifier", "kind": "class", "doc": "

LSBoost classifier.

\n\n
Attributes:\n\n    n_estimators: int\n        number of boosting iterations.\n\n    learning_rate: float\n        controls the learning speed at training time.\n\n    n_hidden_features: int\n        number of nodes in successive hidden layers.\n\n    reg_lambda: float\n        L2 regularization parameter for successive errors in the optimizer\n        (at training time).\n\n    alpha: float\n        compromise between L1 and L2 regularization (must be in [0, 1]),\n        for `solver` == 'enet'.\n\n    row_sample: float\n        percentage of rows chosen from the training set.\n\n    col_sample: float\n        percentage of columns chosen from the training set.\n\n    dropout: float\n        percentage of nodes dropped from the training set.\n\n    tolerance: float\n        controls early stopping in gradient descent (at training time).\n\n    direct_link: bool\n        indicates whether the original features are included (True) in model's\n        fitting or not (False).\n\n    verbose: int\n        progress bar (yes = 1) or not (no = 0) (currently).\n\n    seed: int\n        reproducibility seed for nodes_sim=='uniform', clustering and dropout.\n\n    backend: str\n        type of backend; must be in ('cpu', 'gpu', 'tpu')\n\n    solver: str\n        type of 'weak' learner; currently in ('ridge', 'lasso', 'enet').\n        'enet' is a combination of 'ridge' and 'lasso' called Elastic Net.\n\n    activation: str\n        activation function: currently 'relu', 'relu6', 'sigmoid', 'tanh'\n\n    n_clusters: int\n        number of clusters for clustering the features\n\n    clustering_method: str\n        clustering method: currently 'kmeans', 'gmm'\n\n    cluster_scaling: str\n        scaling method for clustering: currently 'standard', 'robust', 'minmax'\n\n    degree: int\n        degree of features interactions to include in the model\n\n    weights_distr: str\n        distribution of weights for constructing the model's hidden layer;\n        currently 'uniform', 'gaussian'\n\nExamples:\n\n    ```python\n    import numpy as np\n    from sklearn.datasets import load_digits, load_breast_cancer, load_wine, load_iris\n    from sklearn.model_selection import train_test_split, GridSearchCV, cross_val_score\n    from sklearn.tree import DecisionTreeRegressor\n    from sklearn.kernel_ridge import KernelRidge\n    from time import time\n    from os import chdir\n    from sklearn import metrics\n    import os\n\n    import mlsauce as ms\n\n    print(\"\n
\n\n

\")\n print(\"GenericBoosting Decision tree -----\")\n print(\"\n\")

\n\n
    print(\"\n
\n\n

\")\n print(\"breast_cancer data -----\")

\n\n
    # data 1\n    breast_cancer = load_breast_cancer()\n    X = breast_cancer.data\n    y = breast_cancer.target\n    # split data into training test and test set\n    np.random.seed(15029)\n    X_train, X_test, y_train, y_test = train_test_split(X, y,\n                                                        test_size=0.2)\n\n    clf = DecisionTreeRegressor()\n    clf2 = KernelRidge()\n\n    obj = ms.GenericBoostingClassifier(clf, tolerance=1e-2)\n    print(obj.get_params())\n    start = time()\n    obj.fit(X_train, y_train)\n    print(time()-start)\n    start = time()\n    print(obj.score(X_test, y_test))\n    print(time()-start)\n\n    print(obj.obj['loss'])\n\n    obj = ms.GenericBoostingClassifier(clf, tolerance=1e-2, n_clusters=2)\n    print(obj.get_params())\n    start = time()\n    obj.fit(X_train, y_train)\n    print(time()-start)\n    start = time()\n    print(obj.score(X_test, y_test))\n    print(time()-start)\n\n    print(obj.obj['loss'])\n\n\n    # data 2\n    print(\"\n
\n\n

\")\n print(\"wine data -----\")

\n\n
    wine = load_wine()\n    Z = wine.data\n    t = wine.target\n    np.random.seed(879423)\n    X_train, X_test, y_train, y_test = train_test_split(Z, t,\n                                                        test_size=0.2)\n\n    obj = ms.GenericBoostingClassifier(clf)\n    print(obj.get_params())\n    start = time()\n    obj.fit(X_train, y_train)\n    print(time()-start)\n    start = time()\n    print(obj.score(X_test, y_test))\n    print(time()-start)\n\n    print(obj.obj['loss'])\n\n    obj = ms.GenericBoostingClassifier(clf, n_clusters=3)\n    print(obj.get_params())\n    start = time()\n    obj.fit(X_train, y_train)\n    print(time()-start)\n    start = time()\n    print(obj.score(X_test, y_test))\n    print(time()-start)\n\n    print(obj.obj['loss'])\n\n    # data 3\n    print(\"\n
\n\n

\")\n print(\"iris data -----\")

\n\n
    iris = load_iris()\n    Z = iris.data\n    t = iris.target\n    np.random.seed(734563)\n    X_train, X_test, y_train, y_test = train_test_split(Z, t,\n                                                        test_size=0.2)\n\n\n    obj = ms.GenericBoostingClassifier(clf)\n    print(obj.get_params())\n    start = time()\n    obj.fit(X_train, y_train)\n    print(time()-start)\n    start = time()\n    print(obj.score(X_test, y_test))\n    print(time()-start)\n\n    print(obj.obj['loss'])\n\n\n    print(\"\n
\n\n

\")\n print(\"GenericBoosting KRR -----\")\n print(\"\n\")

\n\n
    obj = ms.GenericBoostingClassifier(clf2, tolerance=1e-2)\n    print(obj.get_params())\n    start = time()\n    obj.fit(X_train, y_train)\n    print(time()-start)\n    start = time()\n    print(obj.score(X_test, y_test))\n    print(time()-start)\n\n    print(obj.obj['loss'])\n\n    obj = ms.GenericBoostingClassifier(clf2, tolerance=1e-2, n_clusters=2)\n    print(obj.get_params())\n    start = time()\n    obj.fit(X_train, y_train)\n    print(time()-start)\n    start = time()\n    print(obj.score(X_test, y_test))\n    print(time()-start)\n\n    print(obj.obj['loss'])\n\n\n    # data 2\n    print(\"\n
\n\n

\")\n print(\"wine data -----\")

\n\n
    wine = load_wine()\n    Z = wine.data\n    t = wine.target\n    np.random.seed(879423)\n    X_train, X_test, y_train, y_test = train_test_split(Z, t,\n                                                        test_size=0.2)\n\n    obj = ms.GenericBoostingClassifier(clf2)\n    print(obj.get_params())\n    start = time()\n    obj.fit(X_train, y_train)\n    print(time()-start)\n    start = time()\n    print(obj.score(X_test, y_test))\n    print(time()-start)\n\n    print(obj.obj['loss'])\n\n    obj = ms.GenericBoostingClassifier(clf2, n_clusters=3)\n    print(obj.get_params())\n    start = time()\n    obj.fit(X_train, y_train)\n    print(time()-start)\n    start = time()\n    print(obj.score(X_test, y_test))\n    print(time()-start)\n\n    print(obj.obj['loss'])\n\n    # data 3\n    print(\"\n
\n\n

\")\n print(\"iris data -----\")

\n\n
    iris = load_iris()\n    Z = iris.data\n    t = iris.target\n    np.random.seed(734563)\n    X_train, X_test, y_train, y_test = train_test_split(Z, t,\n                                                        test_size=0.2)\n\n\n    obj = ms.GenericBoostingClassifier(clf2)\n    print(obj.get_params())\n    start = time()\n    obj.fit(X_train, y_train)\n    print(time()-start)\n    start = time()\n    print(obj.score(X_test, y_test))\n    print(time()-start)\n\n    print(obj.obj['loss'])\n```\n
\n", "bases": "sklearn.base.BaseEstimator, sklearn.base.ClassifierMixin"}, "mlsauce.booster.LSBoostClassifier.__init__": {"fullname": "mlsauce.booster.LSBoostClassifier.__init__", "modulename": "mlsauce.booster", "qualname": "LSBoostClassifier.__init__", "kind": "function", "doc": "

\n", "signature": "(\tn_estimators=100,\tlearning_rate=0.1,\tn_hidden_features=5,\treg_lambda=0.1,\talpha=0.5,\trow_sample=1,\tcol_sample=1,\tdropout=0,\ttolerance=0.0001,\tdirect_link=1,\tverbose=1,\tseed=123,\tbackend='cpu',\tsolver='ridge',\tactivation='relu',\tn_clusters=0,\tclustering_method='kmeans',\tcluster_scaling='standard',\tdegree=None,\tweights_distr='uniform',\tbase_model=None)"}, "mlsauce.booster.LSBoostClassifier.base_model": {"fullname": "mlsauce.booster.LSBoostClassifier.base_model", "modulename": "mlsauce.booster", "qualname": "LSBoostClassifier.base_model", "kind": "variable", "doc": "

\n"}, "mlsauce.booster.LSBoostClassifier.n_estimators": {"fullname": "mlsauce.booster.LSBoostClassifier.n_estimators", "modulename": "mlsauce.booster", "qualname": "LSBoostClassifier.n_estimators", "kind": "variable", "doc": "

\n"}, "mlsauce.booster.LSBoostClassifier.learning_rate": {"fullname": "mlsauce.booster.LSBoostClassifier.learning_rate", "modulename": "mlsauce.booster", "qualname": "LSBoostClassifier.learning_rate", "kind": "variable", "doc": "

\n"}, "mlsauce.booster.LSBoostClassifier.n_hidden_features": {"fullname": "mlsauce.booster.LSBoostClassifier.n_hidden_features", "modulename": "mlsauce.booster", "qualname": "LSBoostClassifier.n_hidden_features", "kind": "variable", "doc": "

\n"}, "mlsauce.booster.LSBoostClassifier.reg_lambda": {"fullname": "mlsauce.booster.LSBoostClassifier.reg_lambda", "modulename": "mlsauce.booster", "qualname": "LSBoostClassifier.reg_lambda", "kind": "variable", "doc": "

\n"}, "mlsauce.booster.LSBoostClassifier.alpha": {"fullname": "mlsauce.booster.LSBoostClassifier.alpha", "modulename": "mlsauce.booster", "qualname": "LSBoostClassifier.alpha", "kind": "variable", "doc": "

\n"}, "mlsauce.booster.LSBoostClassifier.row_sample": {"fullname": "mlsauce.booster.LSBoostClassifier.row_sample", "modulename": "mlsauce.booster", "qualname": "LSBoostClassifier.row_sample", "kind": "variable", "doc": "

\n"}, "mlsauce.booster.LSBoostClassifier.col_sample": {"fullname": "mlsauce.booster.LSBoostClassifier.col_sample", "modulename": "mlsauce.booster", "qualname": "LSBoostClassifier.col_sample", "kind": "variable", "doc": "

\n"}, "mlsauce.booster.LSBoostClassifier.dropout": {"fullname": "mlsauce.booster.LSBoostClassifier.dropout", "modulename": "mlsauce.booster", "qualname": "LSBoostClassifier.dropout", "kind": "variable", "doc": "

\n"}, "mlsauce.booster.LSBoostClassifier.tolerance": {"fullname": "mlsauce.booster.LSBoostClassifier.tolerance", "modulename": "mlsauce.booster", "qualname": "LSBoostClassifier.tolerance", "kind": "variable", "doc": "

\n"}, "mlsauce.booster.LSBoostClassifier.direct_link": {"fullname": "mlsauce.booster.LSBoostClassifier.direct_link", "modulename": "mlsauce.booster", "qualname": "LSBoostClassifier.direct_link", "kind": "variable", "doc": "

\n"}, "mlsauce.booster.LSBoostClassifier.verbose": {"fullname": "mlsauce.booster.LSBoostClassifier.verbose", "modulename": "mlsauce.booster", "qualname": "LSBoostClassifier.verbose", "kind": "variable", "doc": "

\n"}, "mlsauce.booster.LSBoostClassifier.seed": {"fullname": "mlsauce.booster.LSBoostClassifier.seed", "modulename": "mlsauce.booster", "qualname": "LSBoostClassifier.seed", "kind": "variable", "doc": "

\n"}, "mlsauce.booster.LSBoostClassifier.backend": {"fullname": "mlsauce.booster.LSBoostClassifier.backend", "modulename": "mlsauce.booster", "qualname": "LSBoostClassifier.backend", "kind": "variable", "doc": "

\n"}, "mlsauce.booster.LSBoostClassifier.obj": {"fullname": "mlsauce.booster.LSBoostClassifier.obj", "modulename": "mlsauce.booster", "qualname": "LSBoostClassifier.obj", "kind": "variable", "doc": "

\n"}, "mlsauce.booster.LSBoostClassifier.solver": {"fullname": "mlsauce.booster.LSBoostClassifier.solver", "modulename": "mlsauce.booster", "qualname": "LSBoostClassifier.solver", "kind": "variable", "doc": "

\n"}, "mlsauce.booster.LSBoostClassifier.activation": {"fullname": "mlsauce.booster.LSBoostClassifier.activation", "modulename": "mlsauce.booster", "qualname": "LSBoostClassifier.activation", "kind": "variable", "doc": "

\n"}, "mlsauce.booster.LSBoostClassifier.n_clusters": {"fullname": "mlsauce.booster.LSBoostClassifier.n_clusters", "modulename": "mlsauce.booster", "qualname": "LSBoostClassifier.n_clusters", "kind": "variable", "doc": "

\n"}, "mlsauce.booster.LSBoostClassifier.clustering_method": {"fullname": "mlsauce.booster.LSBoostClassifier.clustering_method", "modulename": "mlsauce.booster", "qualname": "LSBoostClassifier.clustering_method", "kind": "variable", "doc": "

\n"}, "mlsauce.booster.LSBoostClassifier.cluster_scaling": {"fullname": "mlsauce.booster.LSBoostClassifier.cluster_scaling", "modulename": "mlsauce.booster", "qualname": "LSBoostClassifier.cluster_scaling", "kind": "variable", "doc": "

\n"}, "mlsauce.booster.LSBoostClassifier.degree": {"fullname": "mlsauce.booster.LSBoostClassifier.degree", "modulename": "mlsauce.booster", "qualname": "LSBoostClassifier.degree", "kind": "variable", "doc": "

\n"}, "mlsauce.booster.LSBoostClassifier.poly_": {"fullname": "mlsauce.booster.LSBoostClassifier.poly_", "modulename": "mlsauce.booster", "qualname": "LSBoostClassifier.poly_", "kind": "variable", "doc": "

\n"}, "mlsauce.booster.LSBoostClassifier.weights_distr": {"fullname": "mlsauce.booster.LSBoostClassifier.weights_distr", "modulename": "mlsauce.booster", "qualname": "LSBoostClassifier.weights_distr", "kind": "variable", "doc": "

\n"}, "mlsauce.booster.LSBoostClassifier.fit": {"fullname": "mlsauce.booster.LSBoostClassifier.fit", "modulename": "mlsauce.booster", "qualname": "LSBoostClassifier.fit", "kind": "function", "doc": "

Fit Booster (classifier) to training data (X, y)

\n\n

Args:

\n\n
X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\ny: array-like, shape = [n_samples]\n    Target values.\n\n**kwargs: additional parameters to be passed to self.cook_training_set.\n
\n\n

Returns:

\n\n
self: object.\n
\n", "signature": "(self, X, y, **kwargs):", "funcdef": "def"}, "mlsauce.booster.LSBoostClassifier.predict": {"fullname": "mlsauce.booster.LSBoostClassifier.predict", "modulename": "mlsauce.booster", "qualname": "LSBoostClassifier.predict", "kind": "function", "doc": "

Predict test data X.

\n\n

Args:

\n\n
X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\n**kwargs: additional parameters to be passed to `predict_proba`\n
\n\n

Returns:

\n\n
model predictions: {array-like}\n
\n", "signature": "(self, X, **kwargs):", "funcdef": "def"}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"fullname": "mlsauce.booster.LSBoostClassifier.predict_proba", "modulename": "mlsauce.booster", "qualname": "LSBoostClassifier.predict_proba", "kind": "function", "doc": "

Predict probabilities for test data X.

\n\n

Args:

\n\n
X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\n**kwargs: additional parameters to be passed to\n    self.cook_test_set\n
\n\n

Returns:

\n\n
probability estimates for test data: {array-like}\n
\n", "signature": "(self, X, **kwargs):", "funcdef": "def"}, "mlsauce.booster.LSBoostClassifier.update": {"fullname": "mlsauce.booster.LSBoostClassifier.update", "modulename": "mlsauce.booster", "qualname": "LSBoostClassifier.update", "kind": "function", "doc": "

Update model with new data.

\n\n

Args:

\n\n
X: {array-like}, shape = [n_samples=1, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\ny: float = [n_samples=1]\n   Target value.\n\neta: float\n    Inverse power applied to number of observations\n    (defines a learning rate).\n
\n\n

Returns:

\n\n
self: object.\n
\n", "signature": "(self, X, y, eta=0.9):", "funcdef": "def"}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"fullname": "mlsauce.booster.LSBoostClassifier.set_score_request", "modulename": "mlsauce.booster", "qualname": "LSBoostClassifier.set_score_request", "kind": "function", "doc": "

A descriptor for request methods.

\n\n

New in version 1.3.

\n\n

Parameters

\n\n

name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

\n\n

keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

\n\n

validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

\n\n

Notes

\n\n

This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

\n\n

References

\n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.booster.LSBoostRegressor": {"fullname": "mlsauce.booster.LSBoostRegressor", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor", "kind": "class", "doc": "

LSBoost regressor.

\n\n

Attributes:

\n\n
n_estimators: int\n    number of boosting iterations.\n\nlearning_rate: float\n    controls the learning speed at training time.\n\nn_hidden_features: int\n    number of nodes in successive hidden layers.\n\nreg_lambda: float\n    L2 regularization parameter for successive errors in the optimizer\n    (at training time).\n\nalpha: float\n    compromise between L1 and L2 regularization (must be in [0, 1]),\n    for `solver` == 'enet'\n\nrow_sample: float\n    percentage of rows chosen from the training set.\n\ncol_sample: float\n    percentage of columns chosen from the training set.\n\ndropout: float\n    percentage of nodes dropped from the training set.\n\ntolerance: float\n    controls early stopping in gradient descent (at training time).\n\ndirect_link: bool\n    indicates whether the original features are included (True) in model's\n    fitting or not (False).\n\nverbose: int\n    progress bar (yes = 1) or not (no = 0) (currently).\n\nseed: int\n    reproducibility seed for nodes_sim=='uniform', clustering and dropout.\n\nbackend: str\n    type of backend; must be in ('cpu', 'gpu', 'tpu')\n\nsolver: str\n    type of 'weak' learner; currently in ('ridge', 'lasso')\n\nactivation: str\n    activation function: currently 'relu', 'relu6', 'sigmoid', 'tanh'\n\ntype_pi: str.\n    type of prediction interval; currently \"kde\" (default) or \"bootstrap\".\n    Used only in `self.predict`, for `self.replications` > 0 and `self.kernel`\n    in ('gaussian', 'tophat'). Default is `None`.\n\nreplications: int.\n    number of replications (if needed) for predictive simulation.\n    Used only in `self.predict`, for `self.kernel` in ('gaussian',\n    'tophat') and `self.type_pi = 'kde'`. Default is `None`.\n\nn_clusters: int\n    number of clusters for clustering the features\n\nclustering_method: str\n    clustering method: currently 'kmeans', 'gmm'\n\ncluster_scaling: str\n    scaling method for clustering: currently 'standard', 'robust', 'minmax'\n\ndegree: int\n    degree of features interactions to include in the model\n\nweights_distr: str\n    distribution of weights for constructing the model's hidden layer;\n    either 'uniform' or 'gaussian'\n
\n\n

Examples:

\n\n
\n
import subprocess\nimport sys\nimport os\n\nsubprocess.check_call([sys.executable, "-m", "pip", "install", "matplotlib"])\n\nimport mlsauce as ms\nimport numpy as np\nimport matplotlib.pyplot as plt\nfrom sklearn.datasets import load_diabetes\nfrom sklearn.model_selection import train_test_split, GridSearchCV, cross_val_score\nfrom sklearn.tree import DecisionTreeRegressor\nfrom time import time\nfrom os import chdir\nfrom sklearn import metrics\n\nregr = DecisionTreeRegressor()\n\ndiabetes = load_diabetes()\nX = diabetes.data\ny = diabetes.target\n# split data into training test and test set\nnp.random.seed(15029)\nX_train, X_test, y_train, y_test = train_test_split(X, y,\n                                                    test_size=0.2)\n\nobj = ms.GenericBoostingRegressor(regr, col_sample=0.9, row_sample=0.9)\nprint(obj.get_params())\nstart = time()\nobj.fit(X_train, y_train)\nprint(time()-start)\nstart = time()\nprint(np.sqrt(np.mean(np.square(obj.predict(X_test) - y_test))))\nprint(time()-start)\n\nprint(obj.obj['loss'])\n\nobj = ms.GenericBoostingRegressor(regr, col_sample=0.9, row_sample=0.9, n_clusters=2)\nprint(obj.get_params())\nstart = time()\nobj.fit(X_train, y_train)\nprint(time()-start)\nstart = time()\nprint(np.sqrt(np.mean(np.square(obj.predict(X_test) - y_test))))\nprint(time()-start)\n\nprint(obj.obj['loss'])\n
\n
\n
\n", "bases": "sklearn.base.BaseEstimator, sklearn.base.RegressorMixin"}, "mlsauce.booster.LSBoostRegressor.__init__": {"fullname": "mlsauce.booster.LSBoostRegressor.__init__", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor.__init__", "kind": "function", "doc": "

\n", "signature": "(\tn_estimators=100,\tlearning_rate=0.1,\tn_hidden_features=5,\treg_lambda=0.1,\talpha=0.5,\trow_sample=1,\tcol_sample=1,\tdropout=0,\ttolerance=0.0001,\tdirect_link=1,\tverbose=1,\tseed=123,\tbackend='cpu',\tsolver='ridge',\tactivation='relu',\ttype_pi=None,\treplications=None,\tkernel=None,\tn_clusters=0,\tclustering_method='kmeans',\tcluster_scaling='standard',\tdegree=None,\tweights_distr='uniform',\tbase_model=None)"}, "mlsauce.booster.LSBoostRegressor.base_model": {"fullname": "mlsauce.booster.LSBoostRegressor.base_model", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor.base_model", "kind": "variable", "doc": "

\n"}, "mlsauce.booster.LSBoostRegressor.n_estimators": {"fullname": "mlsauce.booster.LSBoostRegressor.n_estimators", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor.n_estimators", "kind": "variable", "doc": "

\n"}, "mlsauce.booster.LSBoostRegressor.learning_rate": {"fullname": "mlsauce.booster.LSBoostRegressor.learning_rate", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor.learning_rate", "kind": "variable", "doc": "

\n"}, "mlsauce.booster.LSBoostRegressor.n_hidden_features": {"fullname": "mlsauce.booster.LSBoostRegressor.n_hidden_features", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor.n_hidden_features", "kind": "variable", "doc": "

\n"}, "mlsauce.booster.LSBoostRegressor.reg_lambda": {"fullname": "mlsauce.booster.LSBoostRegressor.reg_lambda", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor.reg_lambda", "kind": "variable", "doc": "

\n"}, "mlsauce.booster.LSBoostRegressor.alpha": {"fullname": "mlsauce.booster.LSBoostRegressor.alpha", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor.alpha", "kind": "variable", "doc": "

\n"}, "mlsauce.booster.LSBoostRegressor.row_sample": {"fullname": "mlsauce.booster.LSBoostRegressor.row_sample", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor.row_sample", "kind": "variable", "doc": "

\n"}, "mlsauce.booster.LSBoostRegressor.col_sample": {"fullname": "mlsauce.booster.LSBoostRegressor.col_sample", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor.col_sample", "kind": "variable", "doc": "

\n"}, "mlsauce.booster.LSBoostRegressor.dropout": {"fullname": "mlsauce.booster.LSBoostRegressor.dropout", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor.dropout", "kind": "variable", "doc": "

\n"}, "mlsauce.booster.LSBoostRegressor.tolerance": {"fullname": "mlsauce.booster.LSBoostRegressor.tolerance", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor.tolerance", "kind": "variable", "doc": "

\n"}, "mlsauce.booster.LSBoostRegressor.direct_link": {"fullname": "mlsauce.booster.LSBoostRegressor.direct_link", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor.direct_link", "kind": "variable", "doc": "

\n"}, "mlsauce.booster.LSBoostRegressor.verbose": {"fullname": "mlsauce.booster.LSBoostRegressor.verbose", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor.verbose", "kind": "variable", "doc": "

\n"}, "mlsauce.booster.LSBoostRegressor.seed": {"fullname": "mlsauce.booster.LSBoostRegressor.seed", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor.seed", "kind": "variable", "doc": "

\n"}, "mlsauce.booster.LSBoostRegressor.backend": {"fullname": "mlsauce.booster.LSBoostRegressor.backend", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor.backend", "kind": "variable", "doc": "

\n"}, "mlsauce.booster.LSBoostRegressor.obj": {"fullname": "mlsauce.booster.LSBoostRegressor.obj", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor.obj", "kind": "variable", "doc": "

\n"}, "mlsauce.booster.LSBoostRegressor.solver": {"fullname": "mlsauce.booster.LSBoostRegressor.solver", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor.solver", "kind": "variable", "doc": "

\n"}, "mlsauce.booster.LSBoostRegressor.activation": {"fullname": "mlsauce.booster.LSBoostRegressor.activation", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor.activation", "kind": "variable", "doc": "

\n"}, "mlsauce.booster.LSBoostRegressor.type_pi": {"fullname": "mlsauce.booster.LSBoostRegressor.type_pi", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor.type_pi", "kind": "variable", "doc": "

\n"}, "mlsauce.booster.LSBoostRegressor.replications": {"fullname": "mlsauce.booster.LSBoostRegressor.replications", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor.replications", "kind": "variable", "doc": "

\n"}, "mlsauce.booster.LSBoostRegressor.kernel": {"fullname": "mlsauce.booster.LSBoostRegressor.kernel", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor.kernel", "kind": "variable", "doc": "

\n"}, "mlsauce.booster.LSBoostRegressor.n_clusters": {"fullname": "mlsauce.booster.LSBoostRegressor.n_clusters", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor.n_clusters", "kind": "variable", "doc": "

\n"}, "mlsauce.booster.LSBoostRegressor.clustering_method": {"fullname": "mlsauce.booster.LSBoostRegressor.clustering_method", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor.clustering_method", "kind": "variable", "doc": "

\n"}, "mlsauce.booster.LSBoostRegressor.cluster_scaling": {"fullname": "mlsauce.booster.LSBoostRegressor.cluster_scaling", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor.cluster_scaling", "kind": "variable", "doc": "

\n"}, "mlsauce.booster.LSBoostRegressor.degree": {"fullname": "mlsauce.booster.LSBoostRegressor.degree", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor.degree", "kind": "variable", "doc": "

\n"}, "mlsauce.booster.LSBoostRegressor.poly_": {"fullname": "mlsauce.booster.LSBoostRegressor.poly_", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor.poly_", "kind": "variable", "doc": "

\n"}, "mlsauce.booster.LSBoostRegressor.weights_distr": {"fullname": "mlsauce.booster.LSBoostRegressor.weights_distr", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor.weights_distr", "kind": "variable", "doc": "

\n"}, "mlsauce.booster.LSBoostRegressor.fit": {"fullname": "mlsauce.booster.LSBoostRegressor.fit", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor.fit", "kind": "function", "doc": "

Fit Booster (regressor) to training data (X, y)

\n\n

Args:

\n\n
X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\ny: array-like, shape = [n_samples]\n   Target values.\n\n**kwargs: additional parameters to be passed to self.cook_training_set.\n
\n\n

Returns:

\n\n
self: object.\n
\n", "signature": "(self, X, y, **kwargs):", "funcdef": "def"}, "mlsauce.booster.LSBoostRegressor.predict": {"fullname": "mlsauce.booster.LSBoostRegressor.predict", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor.predict", "kind": "function", "doc": "

Predict probabilities for test data X.

\n\n

Args:

\n\n
X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\nlevel: int\n    Level of confidence (default = 95)\n\nmethod: str\n    `None`, or 'splitconformal', 'localconformal'\n    prediction (if you specify `return_pi = True`)\n\n**kwargs: additional parameters to be passed to\n    self.cook_test_set\n
\n\n

Returns:

\n\n
probability estimates for test data: {array-like}\n
\n", "signature": "(self, X, level=95, method=None, **kwargs):", "funcdef": "def"}, "mlsauce.booster.LSBoostRegressor.update": {"fullname": "mlsauce.booster.LSBoostRegressor.update", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor.update", "kind": "function", "doc": "

Update model with new data.

\n\n

Args:

\n\n
X: {array-like}, shape = [n_samples=1, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\ny: float = [n_samples=1]\n   Target value.\n\neta: float\n    Inverse power applied to number of observations\n    (defines a learning rate).\n
\n\n

Returns:

\n\n
self: object.\n
\n", "signature": "(self, X, y, eta=0.9):", "funcdef": "def"}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"fullname": "mlsauce.booster.LSBoostRegressor.set_predict_request", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor.set_predict_request", "kind": "function", "doc": "

A descriptor for request methods.

\n\n

New in version 1.3.

\n\n

Parameters

\n\n

name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

\n\n

keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

\n\n

validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

\n\n

Notes

\n\n

This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

\n\n

References

\n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"fullname": "mlsauce.booster.LSBoostRegressor.set_score_request", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor.set_score_request", "kind": "function", "doc": "

A descriptor for request methods.

\n\n

New in version 1.3.

\n\n

Parameters

\n\n

name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

\n\n

keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

\n\n

validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

\n\n

Notes

\n\n

This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

\n\n

References

\n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.booster.GenericBoostingClassifier": {"fullname": "mlsauce.booster.GenericBoostingClassifier", "modulename": "mlsauce.booster", "qualname": "GenericBoostingClassifier", "kind": "class", "doc": "

Generic Boosting classifier (using any classifier as base learner).

\n\n

Attributes:

\n\n
base_model: object\n    base learner (default is ExtraTreeRegressor) to be boosted.\n\nn_estimators: int\n    number of boosting iterations.\n\nlearning_rate: float\n    controls the learning speed at training time.\n\nn_hidden_features: int\n    number of nodes in successive hidden layers.\n\nreg_lambda: float\n    L2 regularization parameter for successive errors in the optimizer\n    (at training time).\n\nalpha: float\n    compromise between L1 and L2 regularization (must be in [0, 1]),\n    for `solver` == 'enet'.\n\nrow_sample: float\n    percentage of rows chosen from the training set.\n\ncol_sample: float\n    percentage of columns chosen from the training set.\n\ndropout: float\n    percentage of nodes dropped from the training set.\n\ntolerance: float\n    controls early stopping in gradient descent (at training time).\n\ndirect_link: bool\n    indicates whether the original features are included (True) in model's\n    fitting or not (False).\n\nverbose: int\n    progress bar (yes = 1) or not (no = 0) (currently).\n\nseed: int\n    reproducibility seed for nodes_sim=='uniform', clustering and dropout.\n\nbackend: str\n    type of backend; must be in ('cpu', 'gpu', 'tpu')\n\nsolver: str\n    type of 'weak' learner; currently in ('ridge', 'lasso', 'enet').\n    'enet' is a combination of 'ridge' and 'lasso' called Elastic Net.\n\nactivation: str\n    activation function: currently 'relu', 'relu6', 'sigmoid', 'tanh'\n\nn_clusters: int\n    number of clusters for clustering the features\n\nclustering_method: str\n    clustering method: currently 'kmeans', 'gmm'\n\ncluster_scaling: str\n    scaling method for clustering: currently 'standard', 'robust', 'minmax'\n\ndegree: int\n    degree of features interactions to include in the model\n\nweights_distr: str\n    distribution of weights for constructing the model's hidden layer;\n    currently 'uniform', 'gaussian'\n
\n", "bases": "mlsauce.booster._booster_classifier.LSBoostClassifier"}, "mlsauce.booster.GenericBoostingClassifier.__init__": {"fullname": "mlsauce.booster.GenericBoostingClassifier.__init__", "modulename": "mlsauce.booster", "qualname": "GenericBoostingClassifier.__init__", "kind": "function", "doc": "

\n", "signature": "(\tbase_model=ExtraTreeRegressor(),\tn_estimators=100,\tlearning_rate=0.1,\tn_hidden_features=5,\treg_lambda=0.1,\talpha=0.5,\trow_sample=1,\tcol_sample=1,\tdropout=0,\ttolerance=0.0001,\tdirect_link=1,\tverbose=1,\tseed=123,\tbackend='cpu',\tsolver='ridge',\tactivation='relu',\tn_clusters=0,\tclustering_method='kmeans',\tcluster_scaling='standard',\tdegree=None,\tweights_distr='uniform')"}, "mlsauce.booster.GenericBoostingClassifier.base_model": {"fullname": "mlsauce.booster.GenericBoostingClassifier.base_model", "modulename": "mlsauce.booster", "qualname": "GenericBoostingClassifier.base_model", "kind": "variable", "doc": "

\n"}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"fullname": "mlsauce.booster.GenericBoostingClassifier.set_score_request", "modulename": "mlsauce.booster", "qualname": "GenericBoostingClassifier.set_score_request", "kind": "function", "doc": "

A descriptor for request methods.

\n\n

New in version 1.3.

\n\n

Parameters

\n\n

name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

\n\n

keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

\n\n

validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

\n\n

Notes

\n\n

This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

\n\n

References

\n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.booster.GenericBoostingRegressor": {"fullname": "mlsauce.booster.GenericBoostingRegressor", "modulename": "mlsauce.booster", "qualname": "GenericBoostingRegressor", "kind": "class", "doc": "

LSBoost regressor.

\n\n

Attributes:

\n\n
base_model: object\n    base learner (default is ExtraTreeRegressor) to be boosted.\n\nn_estimators: int\n    number of boosting iterations.\n\nlearning_rate: float\n    controls the learning speed at training time.\n\nn_hidden_features: int\n    number of nodes in successive hidden layers.\n\nreg_lambda: float\n    L2 regularization parameter for successive errors in the optimizer\n    (at training time).\n\nalpha: float\n    compromise between L1 and L2 regularization (must be in [0, 1]),\n    for `solver` == 'enet'\n\nrow_sample: float\n    percentage of rows chosen from the training set.\n\ncol_sample: float\n    percentage of columns chosen from the training set.\n\ndropout: float\n    percentage of nodes dropped from the training set.\n\ntolerance: float\n    controls early stopping in gradient descent (at training time).\n\ndirect_link: bool\n    indicates whether the original features are included (True) in model's\n    fitting or not (False).\n\nverbose: int\n    progress bar (yes = 1) or not (no = 0) (currently).\n\nseed: int\n    reproducibility seed for nodes_sim=='uniform', clustering and dropout.\n\nbackend: str\n    type of backend; must be in ('cpu', 'gpu', 'tpu')\n\nsolver: str\n    type of 'weak' learner; currently in ('ridge', 'lasso')\n\nactivation: str\n    activation function: currently 'relu', 'relu6', 'sigmoid', 'tanh'\n\ntype_pi: str.\n    type of prediction interval; currently \"kde\" (default) or \"bootstrap\".\n    Used only in `self.predict`, for `self.replications` > 0 and `self.kernel`\n    in ('gaussian', 'tophat'). Default is `None`.\n\nreplications: int.\n    number of replications (if needed) for predictive simulation.\n    Used only in `self.predict`, for `self.kernel` in ('gaussian',\n    'tophat') and `self.type_pi = 'kde'`. Default is `None`.\n\nn_clusters: int\n    number of clusters for clustering the features\n\nclustering_method: str\n    clustering method: currently 'kmeans', 'gmm'\n\ncluster_scaling: str\n    scaling method for clustering: currently 'standard', 'robust', 'minmax'\n\ndegree: int\n    degree of features interactions to include in the model\n\nweights_distr: str\n    distribution of weights for constructing the model's hidden layer;\n    either 'uniform' or 'gaussian'\n
\n", "bases": "mlsauce.booster._booster_regressor.LSBoostRegressor"}, "mlsauce.booster.GenericBoostingRegressor.__init__": {"fullname": "mlsauce.booster.GenericBoostingRegressor.__init__", "modulename": "mlsauce.booster", "qualname": "GenericBoostingRegressor.__init__", "kind": "function", "doc": "

\n", "signature": "(\tbase_model=ExtraTreeRegressor(),\tn_estimators=100,\tlearning_rate=0.1,\tn_hidden_features=5,\treg_lambda=0.1,\talpha=0.5,\trow_sample=1,\tcol_sample=1,\tdropout=0,\ttolerance=0.0001,\tdirect_link=1,\tverbose=1,\tseed=123,\tbackend='cpu',\tsolver='ridge',\tactivation='relu',\ttype_pi=None,\treplications=None,\tkernel=None,\tn_clusters=0,\tclustering_method='kmeans',\tcluster_scaling='standard',\tdegree=None,\tweights_distr='uniform')"}, "mlsauce.booster.GenericBoostingRegressor.base_model": {"fullname": "mlsauce.booster.GenericBoostingRegressor.base_model", "modulename": "mlsauce.booster", "qualname": "GenericBoostingRegressor.base_model", "kind": "variable", "doc": "

\n"}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"fullname": "mlsauce.booster.GenericBoostingRegressor.set_predict_request", "modulename": "mlsauce.booster", "qualname": "GenericBoostingRegressor.set_predict_request", "kind": "function", "doc": "

A descriptor for request methods.

\n\n

New in version 1.3.

\n\n

Parameters

\n\n

name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

\n\n

keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

\n\n

validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

\n\n

Notes

\n\n

This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

\n\n

References

\n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"fullname": "mlsauce.booster.GenericBoostingRegressor.set_score_request", "modulename": "mlsauce.booster", "qualname": "GenericBoostingRegressor.set_score_request", "kind": "function", "doc": "

A descriptor for request methods.

\n\n

New in version 1.3.

\n\n

Parameters

\n\n

name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

\n\n

keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

\n\n

validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

\n\n

Notes

\n\n

This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

\n\n

References

\n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.datasets": {"fullname": "mlsauce.datasets", "modulename": "mlsauce.datasets", "kind": "module", "doc": "

\n"}, "mlsauce.datasets.dowload": {"fullname": "mlsauce.datasets.dowload", "modulename": "mlsauce.datasets.dowload", "kind": "module", "doc": "

\n"}, "mlsauce.datasets.dowload.download": {"fullname": "mlsauce.datasets.dowload.download", "modulename": "mlsauce.datasets.dowload", "qualname": "download", "kind": "function", "doc": "

\n", "signature": "(\tpkgname='MASS',\tdataset='Boston',\tsource='https://cran.r-universe.dev/',\t**kwargs):", "funcdef": "def"}, "mlsauce.demo": {"fullname": "mlsauce.demo", "modulename": "mlsauce.demo", "kind": "module", "doc": "

\n"}, "mlsauce.elasticnet": {"fullname": "mlsauce.elasticnet", "modulename": "mlsauce.elasticnet", "kind": "module", "doc": "

\n"}, "mlsauce.elasticnet.ElasticNetRegressor": {"fullname": "mlsauce.elasticnet.ElasticNetRegressor", "modulename": "mlsauce.elasticnet", "qualname": "ElasticNetRegressor", "kind": "class", "doc": "

Elasticnet.

\n\n

Attributes:

\n\n
reg_lambda: float\n    regularization parameter.\n\nalpha: float\n    compromise between L1 and L2 regularization (must be in [0, 1]),\n    for `solver` == 'enet'.\n\nbackend: str\n    type of backend; must be in ('cpu', 'gpu', 'tpu')\n
\n", "bases": "sklearn.base.BaseEstimator, sklearn.base.RegressorMixin"}, "mlsauce.elasticnet.ElasticNetRegressor.__init__": {"fullname": "mlsauce.elasticnet.ElasticNetRegressor.__init__", "modulename": "mlsauce.elasticnet", "qualname": "ElasticNetRegressor.__init__", "kind": "function", "doc": "

\n", "signature": "(reg_lambda=0.1, alpha=0.5, backend='cpu')"}, "mlsauce.elasticnet.ElasticNetRegressor.reg_lambda": {"fullname": "mlsauce.elasticnet.ElasticNetRegressor.reg_lambda", "modulename": "mlsauce.elasticnet", "qualname": "ElasticNetRegressor.reg_lambda", "kind": "variable", "doc": "

\n"}, "mlsauce.elasticnet.ElasticNetRegressor.alpha": {"fullname": "mlsauce.elasticnet.ElasticNetRegressor.alpha", "modulename": "mlsauce.elasticnet", "qualname": "ElasticNetRegressor.alpha", "kind": "variable", "doc": "

\n"}, "mlsauce.elasticnet.ElasticNetRegressor.backend": {"fullname": "mlsauce.elasticnet.ElasticNetRegressor.backend", "modulename": "mlsauce.elasticnet", "qualname": "ElasticNetRegressor.backend", "kind": "variable", "doc": "

\n"}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"fullname": "mlsauce.elasticnet.ElasticNetRegressor.fit", "modulename": "mlsauce.elasticnet", "qualname": "ElasticNetRegressor.fit", "kind": "function", "doc": "

Fit matrixops (classifier) to training data (X, y)

\n\n

Args:

\n\n
X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\ny: array-like, shape = [n_samples]\n    Target values.\n\n**kwargs: additional parameters to be passed to self.cook_training_set.\n
\n\n

Returns:

\n\n
self: object.\n
\n", "signature": "(self, X, y, **kwargs):", "funcdef": "def"}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"fullname": "mlsauce.elasticnet.ElasticNetRegressor.predict", "modulename": "mlsauce.elasticnet", "qualname": "ElasticNetRegressor.predict", "kind": "function", "doc": "

Predict test data X.

\n\n

Args:

\n\n
X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\n**kwargs: additional parameters to be passed to `predict_proba`\n
\n\n

Returns:

\n\n
model predictions: {array-like}\n
\n", "signature": "(self, X, **kwargs):", "funcdef": "def"}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"fullname": "mlsauce.elasticnet.ElasticNetRegressor.set_score_request", "modulename": "mlsauce.elasticnet", "qualname": "ElasticNetRegressor.set_score_request", "kind": "function", "doc": "

A descriptor for request methods.

\n\n

New in version 1.3.

\n\n

Parameters

\n\n

name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

\n\n

keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

\n\n

validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

\n\n

Notes

\n\n

This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

\n\n

References

\n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.lasso": {"fullname": "mlsauce.lasso", "modulename": "mlsauce.lasso", "kind": "module", "doc": "

\n"}, "mlsauce.lasso.LassoRegressor": {"fullname": "mlsauce.lasso.LassoRegressor", "modulename": "mlsauce.lasso", "qualname": "LassoRegressor", "kind": "class", "doc": "

Lasso.

\n\n

Attributes:

\n\n
reg_lambda: float\n    L1 regularization parameter.\n\nmax_iter: int\n    number of iterations of lasso shooting algorithm.\n\ntol: float\n    tolerance for convergence of lasso shooting algorithm.\n\nbackend: str\n    type of backend; must be in ('cpu', 'gpu', 'tpu').\n
\n", "bases": "sklearn.base.BaseEstimator, sklearn.base.RegressorMixin"}, "mlsauce.lasso.LassoRegressor.__init__": {"fullname": "mlsauce.lasso.LassoRegressor.__init__", "modulename": "mlsauce.lasso", "qualname": "LassoRegressor.__init__", "kind": "function", "doc": "

\n", "signature": "(reg_lambda=0.1, max_iter=10, tol=0.001, backend='cpu')"}, "mlsauce.lasso.LassoRegressor.reg_lambda": {"fullname": "mlsauce.lasso.LassoRegressor.reg_lambda", "modulename": "mlsauce.lasso", "qualname": "LassoRegressor.reg_lambda", "kind": "variable", "doc": "

\n"}, "mlsauce.lasso.LassoRegressor.max_iter": {"fullname": "mlsauce.lasso.LassoRegressor.max_iter", "modulename": "mlsauce.lasso", "qualname": "LassoRegressor.max_iter", "kind": "variable", "doc": "

\n"}, "mlsauce.lasso.LassoRegressor.tol": {"fullname": "mlsauce.lasso.LassoRegressor.tol", "modulename": "mlsauce.lasso", "qualname": "LassoRegressor.tol", "kind": "variable", "doc": "

\n"}, "mlsauce.lasso.LassoRegressor.backend": {"fullname": "mlsauce.lasso.LassoRegressor.backend", "modulename": "mlsauce.lasso", "qualname": "LassoRegressor.backend", "kind": "variable", "doc": "

\n"}, "mlsauce.lasso.LassoRegressor.fit": {"fullname": "mlsauce.lasso.LassoRegressor.fit", "modulename": "mlsauce.lasso", "qualname": "LassoRegressor.fit", "kind": "function", "doc": "

Fit matrixops (classifier) to training data (X, y)

\n\n

Args:

\n\n
X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\ny: array-like, shape = [n_samples]\n    Target values.\n\n**kwargs: additional parameters to be passed to self.cook_training_set.\n
\n\n

Returns:

\n\n
self: object.\n
\n", "signature": "(self, X, y, **kwargs):", "funcdef": "def"}, "mlsauce.lasso.LassoRegressor.predict": {"fullname": "mlsauce.lasso.LassoRegressor.predict", "modulename": "mlsauce.lasso", "qualname": "LassoRegressor.predict", "kind": "function", "doc": "

Predict test data X.

\n\n

Args:

\n\n
X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\n**kwargs: additional parameters to be passed to `predict_proba`\n
\n\n

Returns:

\n\n
model predictions: {array-like}\n
\n", "signature": "(self, X, **kwargs):", "funcdef": "def"}, "mlsauce.lasso.LassoRegressor.set_score_request": {"fullname": "mlsauce.lasso.LassoRegressor.set_score_request", "modulename": "mlsauce.lasso", "qualname": "LassoRegressor.set_score_request", "kind": "function", "doc": "

A descriptor for request methods.

\n\n

New in version 1.3.

\n\n

Parameters

\n\n

name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

\n\n

keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

\n\n

validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

\n\n

Notes

\n\n

This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

\n\n

References

\n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.lazybooster": {"fullname": "mlsauce.lazybooster", "modulename": "mlsauce.lazybooster", "kind": "module", "doc": "

\n"}, "mlsauce.lazybooster.LazyBoostingClassifier": {"fullname": "mlsauce.lazybooster.LazyBoostingClassifier", "modulename": "mlsauce.lazybooster", "qualname": "LazyBoostingClassifier", "kind": "class", "doc": "

Fitting -- almost -- all the classification algorithms\n and returning their scores.

\n\n
Parameters:\n\n    verbose: int, optional (default=0)\n        Any positive number for verbosity.\n\n    ignore_warnings: bool, optional (default=True)\n        When set to True, the warning related to algorigms that are not\n        able to run are ignored.\n\n    custom_metric: function, optional (default=None)\n        When function is provided, models are evaluated based on the custom\n          evaluation metric provided.\n\n    predictions: bool, optional (default=False)\n        When set to True, the predictions of all the models models are\n        returned as data frame.\n\n    sort_by: string, optional (default='Accuracy')\n        Sort models by a metric. Available options are 'Accuracy',\n        'Balanced Accuracy', 'ROC AUC', 'F1 Score' or a custom metric\n        identified by its name and provided by custom_metric.\n\n    random_state: int, optional (default=42)\n        Reproducibiility seed.\n\n    estimators: list, optional (default='all')\n        list of Estimators names or just 'all' for > 90 classifiers\n        (default='all')\n\n    preprocess: bool, preprocessing is done when set to True\n\n    n_jobs: int, when possible, run in parallel\n        For now, only used by individual models that support it.\n\n    n_layers: int, optional (default=3)\n        Number of layers of GenericBoostingClassifiers to be used.\n\n    All the other parameters are the same as GenericBoostingClassifier's.\n\nAttributes:\n\n    models_: dict-object\n        Returns a dictionary with each model pipeline as value\n        with key as name of models.\n\n    best_model_: object\n        Returns the best model pipeline.\n\nExamples\n\n\n    
\n
        import os\n        import mlsauce as ms\n        from sklearn.datasets import load_breast_cancer, load_iris, load_wine, load_digits\n        from sklearn.model_selection import train_test_split\n        from time import time\n\n        load_models = [load_breast_cancer, load_iris, load_wine]\n\n        for model in load_models:\n\n            data = model()\n            X = data.data\n            y= data.target\n\n            X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = .2, random_state = 13)\n\n            clf = ms.LazyBoostingClassifier(verbose=1, ignore_warnings=False,\n                                            custom_metric=None, preprocess=False)\n\n            start = time()\n            models, predictioms = clf.fit(X_train, X_test, y_train, y_test)\n            print(f"\nElapsed: {time() - start} seconds\n")\n\n            print(models)\n
\n
\n
\n", "bases": "sklearn.base.ClassifierMixin"}, "mlsauce.lazybooster.LazyBoostingClassifier.__init__": {"fullname": "mlsauce.lazybooster.LazyBoostingClassifier.__init__", "modulename": "mlsauce.lazybooster", "qualname": "LazyBoostingClassifier.__init__", "kind": "function", "doc": "

\n", "signature": "(\tverbose=0,\tignore_warnings=True,\tcustom_metric=None,\tpredictions=False,\tsort_by='Accuracy',\trandom_state=42,\testimators='all',\tpreprocess=False,\tn_jobs=None)"}, "mlsauce.lazybooster.LazyBoostingClassifier.verbose": {"fullname": "mlsauce.lazybooster.LazyBoostingClassifier.verbose", "modulename": "mlsauce.lazybooster", "qualname": "LazyBoostingClassifier.verbose", "kind": "variable", "doc": "

\n"}, "mlsauce.lazybooster.LazyBoostingClassifier.ignore_warnings": {"fullname": "mlsauce.lazybooster.LazyBoostingClassifier.ignore_warnings", "modulename": "mlsauce.lazybooster", "qualname": "LazyBoostingClassifier.ignore_warnings", "kind": "variable", "doc": "

\n"}, "mlsauce.lazybooster.LazyBoostingClassifier.custom_metric": {"fullname": "mlsauce.lazybooster.LazyBoostingClassifier.custom_metric", "modulename": "mlsauce.lazybooster", "qualname": "LazyBoostingClassifier.custom_metric", "kind": "variable", "doc": "

\n"}, "mlsauce.lazybooster.LazyBoostingClassifier.predictions": {"fullname": "mlsauce.lazybooster.LazyBoostingClassifier.predictions", "modulename": "mlsauce.lazybooster", "qualname": "LazyBoostingClassifier.predictions", "kind": "variable", "doc": "

\n"}, "mlsauce.lazybooster.LazyBoostingClassifier.sort_by": {"fullname": "mlsauce.lazybooster.LazyBoostingClassifier.sort_by", "modulename": "mlsauce.lazybooster", "qualname": "LazyBoostingClassifier.sort_by", "kind": "variable", "doc": "

\n"}, "mlsauce.lazybooster.LazyBoostingClassifier.models_": {"fullname": "mlsauce.lazybooster.LazyBoostingClassifier.models_", "modulename": "mlsauce.lazybooster", "qualname": "LazyBoostingClassifier.models_", "kind": "variable", "doc": "

\n"}, "mlsauce.lazybooster.LazyBoostingClassifier.best_model_": {"fullname": "mlsauce.lazybooster.LazyBoostingClassifier.best_model_", "modulename": "mlsauce.lazybooster", "qualname": "LazyBoostingClassifier.best_model_", "kind": "variable", "doc": "

\n"}, "mlsauce.lazybooster.LazyBoostingClassifier.random_state": {"fullname": "mlsauce.lazybooster.LazyBoostingClassifier.random_state", "modulename": "mlsauce.lazybooster", "qualname": "LazyBoostingClassifier.random_state", "kind": "variable", "doc": "

\n"}, "mlsauce.lazybooster.LazyBoostingClassifier.estimators": {"fullname": "mlsauce.lazybooster.LazyBoostingClassifier.estimators", "modulename": "mlsauce.lazybooster", "qualname": "LazyBoostingClassifier.estimators", "kind": "variable", "doc": "

\n"}, "mlsauce.lazybooster.LazyBoostingClassifier.preprocess": {"fullname": "mlsauce.lazybooster.LazyBoostingClassifier.preprocess", "modulename": "mlsauce.lazybooster", "qualname": "LazyBoostingClassifier.preprocess", "kind": "variable", "doc": "

\n"}, "mlsauce.lazybooster.LazyBoostingClassifier.n_jobs": {"fullname": "mlsauce.lazybooster.LazyBoostingClassifier.n_jobs", "modulename": "mlsauce.lazybooster", "qualname": "LazyBoostingClassifier.n_jobs", "kind": "variable", "doc": "

\n"}, "mlsauce.lazybooster.LazyBoostingClassifier.fit": {"fullname": "mlsauce.lazybooster.LazyBoostingClassifier.fit", "modulename": "mlsauce.lazybooster", "qualname": "LazyBoostingClassifier.fit", "kind": "function", "doc": "

Fit classifiers to X_train and y_train, predict and score on X_test,\ny_test.

\n\n

Parameters:

\n\n
X_train: array-like,\n    Training vectors, where rows is the number of samples\n    and columns is the number of features.\n\nX_test: array-like,\n    Testing vectors, where rows is the number of samples\n    and columns is the number of features.\n\ny_train: array-like,\n    Training vectors, where rows is the number of samples\n    and columns is the number of features.\n\ny_test: array-like,\n    Testing vectors, where rows is the number of samples\n    and columns is the number of features.\n\n**kwargs: dict,\n    Additional arguments to be passed to the fit GenericBoostingClassifier.\n
\n\n

Returns:

\n\n
scores: Pandas DataFrame\n    Returns metrics of all the models in a Pandas DataFrame.\n\npredictions: Pandas DataFrame\n    Returns predictions of all the models in a Pandas DataFrame.\n
\n", "signature": "(self, X_train, X_test, y_train, y_test, **kwargs):", "funcdef": "def"}, "mlsauce.lazybooster.LazyBoostingClassifier.get_best_model": {"fullname": "mlsauce.lazybooster.LazyBoostingClassifier.get_best_model", "modulename": "mlsauce.lazybooster", "qualname": "LazyBoostingClassifier.get_best_model", "kind": "function", "doc": "

This function returns the best model pipeline based on the sort_by metric.

\n\n

Returns:

\n\n
best_model: object,\n    Returns the best model pipeline based on the sort_by metric.\n
\n", "signature": "(self):", "funcdef": "def"}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"fullname": "mlsauce.lazybooster.LazyBoostingClassifier.provide_models", "modulename": "mlsauce.lazybooster", "qualname": "LazyBoostingClassifier.provide_models", "kind": "function", "doc": "

Returns all the model objects trained. If fit hasn't been called yet,\nthen it's called to return the models.

\n\n

Parameters:

\n\n

X_train: array-like,\n Training vectors, where rows is the number of samples\n and columns is the number of features.

\n\n

X_test: array-like,\n Testing vectors, where rows is the number of samples\n and columns is the number of features.

\n\n

y_train: array-like,\n Training vectors, where rows is the number of samples\n and columns is the number of features.

\n\n

y_test: array-like,\n Testing vectors, where rows is the number of samples\n and columns is the number of features.

\n\n

Returns:

\n\n
models: dict-object,\n    Returns a dictionary with each model's pipeline as value\n    and key = name of the model.\n
\n", "signature": "(self, X_train, X_test, y_train, y_test):", "funcdef": "def"}, "mlsauce.lazybooster.LazyBoostingClassifier.train_model": {"fullname": "mlsauce.lazybooster.LazyBoostingClassifier.train_model", "modulename": "mlsauce.lazybooster", "qualname": "LazyBoostingClassifier.train_model", "kind": "function", "doc": "

Function to train a single model and return its results.

\n", "signature": "(\tself,\tname,\tmodel,\tX_train,\ty_train,\tX_test,\ty_test,\tuse_preprocessing=False,\tpreprocessor=None,\t**kwargs):", "funcdef": "def"}, "mlsauce.lazybooster.LazyBoostingRegressor": {"fullname": "mlsauce.lazybooster.LazyBoostingRegressor", "modulename": "mlsauce.lazybooster", "qualname": "LazyBoostingRegressor", "kind": "class", "doc": "

Fitting -- almost -- all the regression algorithms\n and returning their scores.

\n\n

Parameters:

\n\n
verbose: int, optional (default=0)\n    Any positive number for verbosity.\n\nignore_warnings: bool, optional (default=True)\n    When set to True, the warning related to algorigms that are not able to run are ignored.\n\ncustom_metric: function, optional (default=None)\n    When function is provided, models are evaluated based on the custom evaluation metric provided.\n\npredictions: bool, optional (default=False)\n    When set to True, the predictions of all the models models are returned as dataframe.\n\nsort_by: string, optional (default='RMSE')\n    Sort models by a metric. Available options are 'R-Squared', 'Adjusted R-Squared', 'RMSE', 'Time Taken' and 'Custom Metric'.\n    or a custom metric identified by its name and provided by custom_metric.\n\nrandom_state: int, optional (default=42)\n    Reproducibiility seed.\n\nestimators: list, optional (default='all')\n    list of Estimators names or just 'all' (default='all')\n\npreprocess: bool\n    preprocessing is done when set to True\n\nn_jobs : int, when possible, run in parallel\n    For now, only used by individual models that support it.\n\nn_layers: int, optional (default=3)\n    Number of layers of CustomRegressors to be used.\n\nAll the other parameters are the same as CustomRegressor's.\n
\n\n

Attributes:

\n\n
models_: dict-object\n    Returns a dictionary with each model pipeline as value\n    with key as name of models.\n\nbest_model_: object\n    Returns the best model pipeline based on the sort_by metric.\n
\n\n

Examples:

\n\n
\n
import os\nimport mlsauce as ms\nfrom sklearn.datasets import load_diabetes\nfrom sklearn.model_selection import train_test_split\n\ndata = load_diabetes()\nX = data.data\ny= data.target\nX_train, X_test, y_train, y_test = train_test_split(X, y, test_size = .2, random_state = 123)\n\nregr = ms.LazyBoostingRegressor(verbose=0, ignore_warnings=True,\n                                custom_metric=None, preprocess=True)\nmodels, predictioms = regr.fit(X_train, X_test, y_train, y_test)\nmodel_dictionary = regr.provide_models(X_train, X_test, y_train, y_test)\nprint(models)\n
\n
\n
\n", "bases": "sklearn.base.RegressorMixin"}, "mlsauce.lazybooster.LazyBoostingRegressor.__init__": {"fullname": "mlsauce.lazybooster.LazyBoostingRegressor.__init__", "modulename": "mlsauce.lazybooster", "qualname": "LazyBoostingRegressor.__init__", "kind": "function", "doc": "

\n", "signature": "(\tverbose=0,\tignore_warnings=True,\tcustom_metric=None,\tpredictions=False,\tsort_by='RMSE',\trandom_state=42,\testimators='all',\tpreprocess=False,\tn_jobs=None)"}, "mlsauce.lazybooster.LazyBoostingRegressor.verbose": {"fullname": "mlsauce.lazybooster.LazyBoostingRegressor.verbose", "modulename": "mlsauce.lazybooster", "qualname": "LazyBoostingRegressor.verbose", "kind": "variable", "doc": "

\n"}, "mlsauce.lazybooster.LazyBoostingRegressor.ignore_warnings": {"fullname": "mlsauce.lazybooster.LazyBoostingRegressor.ignore_warnings", "modulename": "mlsauce.lazybooster", "qualname": "LazyBoostingRegressor.ignore_warnings", "kind": "variable", "doc": "

\n"}, "mlsauce.lazybooster.LazyBoostingRegressor.custom_metric": {"fullname": "mlsauce.lazybooster.LazyBoostingRegressor.custom_metric", "modulename": "mlsauce.lazybooster", "qualname": "LazyBoostingRegressor.custom_metric", "kind": "variable", "doc": "

\n"}, "mlsauce.lazybooster.LazyBoostingRegressor.predictions": {"fullname": "mlsauce.lazybooster.LazyBoostingRegressor.predictions", "modulename": "mlsauce.lazybooster", "qualname": "LazyBoostingRegressor.predictions", "kind": "variable", "doc": "

\n"}, "mlsauce.lazybooster.LazyBoostingRegressor.sort_by": {"fullname": "mlsauce.lazybooster.LazyBoostingRegressor.sort_by", "modulename": "mlsauce.lazybooster", "qualname": "LazyBoostingRegressor.sort_by", "kind": "variable", "doc": "

\n"}, "mlsauce.lazybooster.LazyBoostingRegressor.models_": {"fullname": "mlsauce.lazybooster.LazyBoostingRegressor.models_", "modulename": "mlsauce.lazybooster", "qualname": "LazyBoostingRegressor.models_", "kind": "variable", "doc": "

\n"}, "mlsauce.lazybooster.LazyBoostingRegressor.best_model_": {"fullname": "mlsauce.lazybooster.LazyBoostingRegressor.best_model_", "modulename": "mlsauce.lazybooster", "qualname": "LazyBoostingRegressor.best_model_", "kind": "variable", "doc": "

\n"}, "mlsauce.lazybooster.LazyBoostingRegressor.random_state": {"fullname": "mlsauce.lazybooster.LazyBoostingRegressor.random_state", "modulename": "mlsauce.lazybooster", "qualname": "LazyBoostingRegressor.random_state", "kind": "variable", "doc": "

\n"}, "mlsauce.lazybooster.LazyBoostingRegressor.estimators": {"fullname": "mlsauce.lazybooster.LazyBoostingRegressor.estimators", "modulename": "mlsauce.lazybooster", "qualname": "LazyBoostingRegressor.estimators", "kind": "variable", "doc": "

\n"}, "mlsauce.lazybooster.LazyBoostingRegressor.preprocess": {"fullname": "mlsauce.lazybooster.LazyBoostingRegressor.preprocess", "modulename": "mlsauce.lazybooster", "qualname": "LazyBoostingRegressor.preprocess", "kind": "variable", "doc": "

\n"}, "mlsauce.lazybooster.LazyBoostingRegressor.n_jobs": {"fullname": "mlsauce.lazybooster.LazyBoostingRegressor.n_jobs", "modulename": "mlsauce.lazybooster", "qualname": "LazyBoostingRegressor.n_jobs", "kind": "variable", "doc": "

\n"}, "mlsauce.lazybooster.LazyBoostingRegressor.fit": {"fullname": "mlsauce.lazybooster.LazyBoostingRegressor.fit", "modulename": "mlsauce.lazybooster", "qualname": "LazyBoostingRegressor.fit", "kind": "function", "doc": "

Fit Regression algorithms to X_train and y_train, predict and score on X_test, y_test.

\n\n

Parameters:

\n\n
X_train : array-like,\n    Training vectors, where rows is the number of samples\n    and columns is the number of features.\n\nX_test : array-like,\n    Testing vectors, where rows is the number of samples\n    and columns is the number of features.\n\ny_train : array-like,\n    Training vectors, where rows is the number of samples\n    and columns is the number of features.\n\ny_test : array-like,\n    Testing vectors, where rows is the number of samples\n    and columns is the number of features.\n\n**kwargs: dict,\n    Additional parameters to be passed to the GenericBoostingRegressor.\n
\n\n

Returns:

\n\n

scores: Pandas DataFrame\n Returns metrics of all the models in a Pandas DataFrame.

\n\n

predictions : Pandas DataFrame\n Returns predictions of all the models in a Pandas DataFrame.

\n", "signature": "(self, X_train, X_test, y_train, y_test, **kwargs):", "funcdef": "def"}, "mlsauce.lazybooster.LazyBoostingRegressor.get_best_model": {"fullname": "mlsauce.lazybooster.LazyBoostingRegressor.get_best_model", "modulename": "mlsauce.lazybooster", "qualname": "LazyBoostingRegressor.get_best_model", "kind": "function", "doc": "

This function returns the best model pipeline based on the sort_by metric.

\n\n

Returns:

\n\n
best_model: object,\n    Returns the best model pipeline based on the sort_by metric.\n
\n", "signature": "(self):", "funcdef": "def"}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"fullname": "mlsauce.lazybooster.LazyBoostingRegressor.provide_models", "modulename": "mlsauce.lazybooster", "qualname": "LazyBoostingRegressor.provide_models", "kind": "function", "doc": "

This function returns all the model objects trained in fit function.\nIf fit is not called already, then we call fit and then return the models.

\n\n

Parameters:

\n\n
X_train : array-like,\n    Training vectors, where rows is the number of samples\n    and columns is the number of features.\n\nX_test : array-like,\n    Testing vectors, where rows is the number of samples\n    and columns is the number of features.\n\ny_train : array-like,\n    Training vectors, where rows is the number of samples\n    and columns is the number of features.\n\ny_test : array-like,\n    Testing vectors, where rows is the number of samples\n    and columns is the number of features.\n
\n\n

Returns:

\n\n
models: dict-object,\n    Returns a dictionary with each model pipeline as value\n    with key as name of models.\n
\n", "signature": "(self, X_train, X_test, y_train, y_test):", "funcdef": "def"}, "mlsauce.lazybooster.LazyBoostingRegressor.train_model": {"fullname": "mlsauce.lazybooster.LazyBoostingRegressor.train_model", "modulename": "mlsauce.lazybooster", "qualname": "LazyBoostingRegressor.train_model", "kind": "function", "doc": "

Function to train a single regression model and return its results.

\n", "signature": "(\tself,\tname,\tregr,\tX_train,\ty_train,\tX_test,\ty_test,\tuse_preprocessing=False,\tpreprocessor=None,\t**kwargs):", "funcdef": "def"}, "mlsauce.multitaskregressor": {"fullname": "mlsauce.multitaskregressor", "modulename": "mlsauce.multitaskregressor", "kind": "module", "doc": "

\n"}, "mlsauce.multitaskregressor.MultiTaskRegressor": {"fullname": "mlsauce.multitaskregressor.MultiTaskRegressor", "modulename": "mlsauce.multitaskregressor", "qualname": "MultiTaskRegressor", "kind": "class", "doc": "

A class for multi-task regression

\n\n

Parameters

\n\n

regr: object\n A regressor object

\n\n

Attributes

\n\n

objs: list\n A list containing the fitted regressor objects

\n", "bases": "sklearn.base.BaseEstimator, sklearn.base.RegressorMixin"}, "mlsauce.multitaskregressor.MultiTaskRegressor.__init__": {"fullname": "mlsauce.multitaskregressor.MultiTaskRegressor.__init__", "modulename": "mlsauce.multitaskregressor", "qualname": "MultiTaskRegressor.__init__", "kind": "function", "doc": "

\n", "signature": "(regr)"}, "mlsauce.multitaskregressor.MultiTaskRegressor.regr": {"fullname": "mlsauce.multitaskregressor.MultiTaskRegressor.regr", "modulename": "mlsauce.multitaskregressor", "qualname": "MultiTaskRegressor.regr", "kind": "variable", "doc": "

\n"}, "mlsauce.multitaskregressor.MultiTaskRegressor.objs": {"fullname": "mlsauce.multitaskregressor.MultiTaskRegressor.objs", "modulename": "mlsauce.multitaskregressor", "qualname": "MultiTaskRegressor.objs", "kind": "variable", "doc": "

\n"}, "mlsauce.multitaskregressor.MultiTaskRegressor.fit": {"fullname": "mlsauce.multitaskregressor.MultiTaskRegressor.fit", "modulename": "mlsauce.multitaskregressor", "qualname": "MultiTaskRegressor.fit", "kind": "function", "doc": "

Fit the regressor

\n\n

Parameters

\n\n

X: array-like\n The input data\ny: array-like\n The target values

\n", "signature": "(self, X, y):", "funcdef": "def"}, "mlsauce.multitaskregressor.MultiTaskRegressor.predict": {"fullname": "mlsauce.multitaskregressor.MultiTaskRegressor.predict", "modulename": "mlsauce.multitaskregressor", "qualname": "MultiTaskRegressor.predict", "kind": "function", "doc": "

Predict the target values

\n\n

Parameters

\n\n

X: array-like\n The input data

\n\n

Returns

\n\n

y_pred: array-like\n The predicted target values

\n", "signature": "(self, X):", "funcdef": "def"}, "mlsauce.multitaskregressor.MultiTaskRegressor.set_score_request": {"fullname": "mlsauce.multitaskregressor.MultiTaskRegressor.set_score_request", "modulename": "mlsauce.multitaskregressor", "qualname": "MultiTaskRegressor.set_score_request", "kind": "function", "doc": "

A descriptor for request methods.

\n\n

New in version 1.3.

\n\n

Parameters

\n\n

name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

\n\n

keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

\n\n

validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

\n\n

Notes

\n\n

This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

\n\n

References

\n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.nonconformist": {"fullname": "mlsauce.nonconformist", "modulename": "mlsauce.nonconformist", "kind": "module", "doc": "

docstring

\n"}, "mlsauce.nonconformist.AbsErrorErrFunc": {"fullname": "mlsauce.nonconformist.AbsErrorErrFunc", "modulename": "mlsauce.nonconformist", "qualname": "AbsErrorErrFunc", "kind": "class", "doc": "

Calculates absolute error nonconformity for regression problems.

\n\n

For each correct output in y, nonconformity is defined as

\n\n

$$| y_i - \\hat{y}_i |$$

\n", "bases": "mlsauce.nonconformist.nc.RegressionErrFunc"}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"fullname": "mlsauce.nonconformist.AbsErrorErrFunc.apply", "modulename": "mlsauce.nonconformist", "qualname": "AbsErrorErrFunc.apply", "kind": "function", "doc": "

Apply the nonconformity function.

\n\n

Parameters

\n\n

prediction : numpy array of shape [n_samples, n_classes]\n Class probability estimates for each sample.

\n\n

y : numpy array of shape [n_samples]\n True output labels of each sample.

\n\n

Returns

\n\n

nc : numpy array of shape [n_samples]\n Nonconformity scores of the samples.

\n", "signature": "(self, prediction, y):", "funcdef": "def"}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"fullname": "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse", "modulename": "mlsauce.nonconformist", "qualname": "AbsErrorErrFunc.apply_inverse", "kind": "function", "doc": "

Apply the inverse of the nonconformity function (i.e.,\ncalculate prediction interval).

\n\n

Parameters

\n\n

nc : numpy array of shape [n_calibration_samples]\n Nonconformity scores obtained for conformal predictor.

\n\n

significance : float\n Significance level (0, 1).

\n\n

Returns

\n\n

interval : numpy array of shape [n_samples, 2]\n Minimum and maximum interval boundaries for each prediction.

\n", "signature": "(self, nc, significance):", "funcdef": "def"}, "mlsauce.nonconformist.QuantileRegErrFunc": {"fullname": "mlsauce.nonconformist.QuantileRegErrFunc", "modulename": "mlsauce.nonconformist", "qualname": "QuantileRegErrFunc", "kind": "class", "doc": "

Calculates conformalized quantile regression error.

\n\n

For each correct output in y, nonconformity is defined as

\n\n

$$max{\\hat{q}_low - y, y - \\hat{q}_high}$$

\n", "bases": "mlsauce.nonconformist.nc.RegressionErrFunc"}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"fullname": "mlsauce.nonconformist.QuantileRegErrFunc.apply", "modulename": "mlsauce.nonconformist", "qualname": "QuantileRegErrFunc.apply", "kind": "function", "doc": "

Apply the nonconformity function.

\n\n

Parameters

\n\n

prediction : numpy array of shape [n_samples, n_classes]\n Class probability estimates for each sample.

\n\n

y : numpy array of shape [n_samples]\n True output labels of each sample.

\n\n

Returns

\n\n

nc : numpy array of shape [n_samples]\n Nonconformity scores of the samples.

\n", "signature": "(self, prediction, y):", "funcdef": "def"}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"fullname": "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse", "modulename": "mlsauce.nonconformist", "qualname": "QuantileRegErrFunc.apply_inverse", "kind": "function", "doc": "

Apply the inverse of the nonconformity function (i.e.,\ncalculate prediction interval).

\n\n

Parameters

\n\n

nc : numpy array of shape [n_calibration_samples]\n Nonconformity scores obtained for conformal predictor.

\n\n

significance : float\n Significance level (0, 1).

\n\n

Returns

\n\n

interval : numpy array of shape [n_samples, 2]\n Minimum and maximum interval boundaries for each prediction.

\n", "signature": "(self, nc, significance):", "funcdef": "def"}, "mlsauce.nonconformist.RegressorAdapter": {"fullname": "mlsauce.nonconformist.RegressorAdapter", "modulename": "mlsauce.nonconformist", "qualname": "RegressorAdapter", "kind": "class", "doc": "

Base class for all estimators in scikit-learn.

\n\n

Inheriting from this class provides default implementations of:

\n\n
    \n
  • setting and getting parameters used by GridSearchCV and friends;
  • \n
  • textual and HTML representation displayed in terminals and IDEs;
  • \n
  • estimator serialization;
  • \n
  • parameters validation;
  • \n
  • data validation;
  • \n
  • feature names validation.
  • \n
\n\n

Read more in the :ref:User Guide <rolling_your_own_estimator>.

\n\n

Notes

\n\n

All estimators should specify all the parameters that can be set\nat the class level in their __init__ as explicit keyword\narguments (no *args or **kwargs).

\n\n

Examples

\n\n
\n
>>> import numpy as np\n>>> from sklearn.base import BaseEstimator\n>>> class MyEstimator(BaseEstimator):\n...     def __init__(self, *, param=1):\n...         self.param = param\n...     def fit(self, X, y=None):\n...         self.is_fitted_ = True\n...         return self\n...     def predict(self, X):\n...         return np.full(shape=X.shape[0], fill_value=self.param)\n>>> estimator = MyEstimator(param=2)\n>>> estimator.get_params()\n{'param': 2}\n>>> X = np.array([[1, 2], [2, 3], [3, 4]])\n>>> y = np.array([1, 0, 1])\n>>> estimator.fit(X, y).predict(X)\narray([2, 2, 2])\n>>> estimator.set_params(param=3).fit(X, y).predict(X)\narray([3, 3, 3])\n
\n
\n", "bases": "mlsauce.nonconformist.base.BaseModelAdapter"}, "mlsauce.nonconformist.RegressorAdapter.__init__": {"fullname": "mlsauce.nonconformist.RegressorAdapter.__init__", "modulename": "mlsauce.nonconformist", "qualname": "RegressorAdapter.__init__", "kind": "function", "doc": "

\n", "signature": "(model, fit_params=None)"}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"fullname": "mlsauce.nonconformist.RegressorAdapter.set_fit_request", "modulename": "mlsauce.nonconformist", "qualname": "RegressorAdapter.set_fit_request", "kind": "function", "doc": "

A descriptor for request methods.

\n\n

New in version 1.3.

\n\n

Parameters

\n\n

name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

\n\n

keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

\n\n

validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

\n\n

Notes

\n\n

This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

\n\n

References

\n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"fullname": "mlsauce.nonconformist.RegressorAdapter.set_predict_request", "modulename": "mlsauce.nonconformist", "qualname": "RegressorAdapter.set_predict_request", "kind": "function", "doc": "

A descriptor for request methods.

\n\n

New in version 1.3.

\n\n

Parameters

\n\n

name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

\n\n

keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

\n\n

validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

\n\n

Notes

\n\n

This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

\n\n

References

\n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.nonconformist.RegressorNc": {"fullname": "mlsauce.nonconformist.RegressorNc", "modulename": "mlsauce.nonconformist", "qualname": "RegressorNc", "kind": "class", "doc": "

Nonconformity scorer using an underlying regression model.

\n\n

Parameters

\n\n

model : RegressorAdapter\n Underlying regression model used for calculating nonconformity scores.

\n\n

err_func : RegressionErrFunc\n Error function object.

\n\n

normalizer : BaseScorer\n Normalization model.

\n\n

beta : float\n Normalization smoothing parameter. As the beta-value increases,\n the normalized nonconformity function approaches a non-normalized\n equivalent.

\n\n

Attributes

\n\n

model : RegressorAdapter\n Underlying model object.

\n\n

err_func : RegressionErrFunc\n Scorer function used to calculate nonconformity scores.

\n\n

See also

\n\n

ProbEstClassifierNc, NormalizedRegressorNc

\n", "bases": "mlsauce.nonconformist.nc.BaseModelNc"}, "mlsauce.nonconformist.RegressorNc.__init__": {"fullname": "mlsauce.nonconformist.RegressorNc.__init__", "modulename": "mlsauce.nonconformist", "qualname": "RegressorNc.__init__", "kind": "function", "doc": "

\n", "signature": "(\tmodel,\terr_func=<mlsauce.nonconformist.nc.AbsErrorErrFunc object>,\tnormalizer=None,\tbeta=1e-06)"}, "mlsauce.nonconformist.RegressorNc.predict": {"fullname": "mlsauce.nonconformist.RegressorNc.predict", "modulename": "mlsauce.nonconformist", "qualname": "RegressorNc.predict", "kind": "function", "doc": "

Constructs prediction intervals for a set of test examples.

\n\n

Predicts the output of each test pattern using the underlying model,\nand applies the (partial) inverse nonconformity function to each\nprediction, resulting in a prediction interval for each test pattern.

\n\n

Parameters

\n\n

x : numpy array of shape [n_samples, n_features]\n Inputs of patters for which to predict output values.

\n\n

significance : float\n Significance level (maximum allowed error rate) of predictions.\n Should be a float between 0 and 1. If None, then intervals for\n all significance levels (0.01, 0.02, ..., 0.99) are output in a\n 3d-matrix.

\n\n

Returns

\n\n

p : numpy array of shape [n_samples, 2] or [n_samples, 2, 99]\n If significance is None, then p contains the interval (minimum\n and maximum boundaries) for each test pattern, and each significance\n level (0.01, 0.02, ..., 0.99). If significance is a float between\n 0 and 1, then p contains the prediction intervals (minimum and\n maximum boundaries) for the set of test patterns at the chosen\n significance level.

\n", "signature": "(self, x, nc, significance=None):", "funcdef": "def"}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"fullname": "mlsauce.nonconformist.RegressorNc.set_fit_request", "modulename": "mlsauce.nonconformist", "qualname": "RegressorNc.set_fit_request", "kind": "function", "doc": "

A descriptor for request methods.

\n\n

New in version 1.3.

\n\n

Parameters

\n\n

name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

\n\n

keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

\n\n

validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

\n\n

Notes

\n\n

This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

\n\n

References

\n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"fullname": "mlsauce.nonconformist.RegressorNc.set_predict_request", "modulename": "mlsauce.nonconformist", "qualname": "RegressorNc.set_predict_request", "kind": "function", "doc": "

A descriptor for request methods.

\n\n

New in version 1.3.

\n\n

Parameters

\n\n

name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

\n\n

keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

\n\n

validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

\n\n

Notes

\n\n

This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

\n\n

References

\n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"fullname": "mlsauce.nonconformist.RegressorNc.set_score_request", "modulename": "mlsauce.nonconformist", "qualname": "RegressorNc.set_score_request", "kind": "function", "doc": "

A descriptor for request methods.

\n\n

New in version 1.3.

\n\n

Parameters

\n\n

name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

\n\n

keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

\n\n

validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

\n\n

Notes

\n\n

This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

\n\n

References

\n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.nonconformist.RegressorNormalizer": {"fullname": "mlsauce.nonconformist.RegressorNormalizer", "modulename": "mlsauce.nonconformist", "qualname": "RegressorNormalizer", "kind": "class", "doc": "

Base class for all estimators in scikit-learn.

\n\n

Inheriting from this class provides default implementations of:

\n\n
    \n
  • setting and getting parameters used by GridSearchCV and friends;
  • \n
  • textual and HTML representation displayed in terminals and IDEs;
  • \n
  • estimator serialization;
  • \n
  • parameters validation;
  • \n
  • data validation;
  • \n
  • feature names validation.
  • \n
\n\n

Read more in the :ref:User Guide <rolling_your_own_estimator>.

\n\n

Notes

\n\n

All estimators should specify all the parameters that can be set\nat the class level in their __init__ as explicit keyword\narguments (no *args or **kwargs).

\n\n

Examples

\n\n
\n
>>> import numpy as np\n>>> from sklearn.base import BaseEstimator\n>>> class MyEstimator(BaseEstimator):\n...     def __init__(self, *, param=1):\n...         self.param = param\n...     def fit(self, X, y=None):\n...         self.is_fitted_ = True\n...         return self\n...     def predict(self, X):\n...         return np.full(shape=X.shape[0], fill_value=self.param)\n>>> estimator = MyEstimator(param=2)\n>>> estimator.get_params()\n{'param': 2}\n>>> X = np.array([[1, 2], [2, 3], [3, 4]])\n>>> y = np.array([1, 0, 1])\n>>> estimator.fit(X, y).predict(X)\narray([2, 2, 2])\n>>> estimator.set_params(param=3).fit(X, y).predict(X)\narray([3, 3, 3])\n
\n
\n", "bases": "mlsauce.nonconformist.nc.BaseScorer"}, "mlsauce.nonconformist.RegressorNormalizer.__init__": {"fullname": "mlsauce.nonconformist.RegressorNormalizer.__init__", "modulename": "mlsauce.nonconformist", "qualname": "RegressorNormalizer.__init__", "kind": "function", "doc": "

\n", "signature": "(base_model, normalizer_model, err_func)"}, "mlsauce.nonconformist.RegressorNormalizer.base_model": {"fullname": "mlsauce.nonconformist.RegressorNormalizer.base_model", "modulename": "mlsauce.nonconformist", "qualname": "RegressorNormalizer.base_model", "kind": "variable", "doc": "

\n"}, "mlsauce.nonconformist.RegressorNormalizer.normalizer_model": {"fullname": "mlsauce.nonconformist.RegressorNormalizer.normalizer_model", "modulename": "mlsauce.nonconformist", "qualname": "RegressorNormalizer.normalizer_model", "kind": "variable", "doc": "

\n"}, "mlsauce.nonconformist.RegressorNormalizer.err_func": {"fullname": "mlsauce.nonconformist.RegressorNormalizer.err_func", "modulename": "mlsauce.nonconformist", "qualname": "RegressorNormalizer.err_func", "kind": "variable", "doc": "

\n"}, "mlsauce.nonconformist.RegressorNormalizer.fit": {"fullname": "mlsauce.nonconformist.RegressorNormalizer.fit", "modulename": "mlsauce.nonconformist", "qualname": "RegressorNormalizer.fit", "kind": "function", "doc": "

\n", "signature": "(self, x, y):", "funcdef": "def"}, "mlsauce.nonconformist.RegressorNormalizer.score": {"fullname": "mlsauce.nonconformist.RegressorNormalizer.score", "modulename": "mlsauce.nonconformist", "qualname": "RegressorNormalizer.score", "kind": "function", "doc": "

\n", "signature": "(self, x, y=None):", "funcdef": "def"}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"fullname": "mlsauce.nonconformist.RegressorNormalizer.set_fit_request", "modulename": "mlsauce.nonconformist", "qualname": "RegressorNormalizer.set_fit_request", "kind": "function", "doc": "

A descriptor for request methods.

\n\n

New in version 1.3.

\n\n

Parameters

\n\n

name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

\n\n

keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

\n\n

validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

\n\n

Notes

\n\n

This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

\n\n

References

\n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"fullname": "mlsauce.nonconformist.RegressorNormalizer.set_score_request", "modulename": "mlsauce.nonconformist", "qualname": "RegressorNormalizer.set_score_request", "kind": "function", "doc": "

A descriptor for request methods.

\n\n

New in version 1.3.

\n\n

Parameters

\n\n

name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

\n\n

keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

\n\n

validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

\n\n

Notes

\n\n

This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

\n\n

References

\n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.nonconformist.IcpRegressor": {"fullname": "mlsauce.nonconformist.IcpRegressor", "modulename": "mlsauce.nonconformist", "qualname": "IcpRegressor", "kind": "class", "doc": "

Inductive conformal regressor.

\n\n

Parameters

\n\n

nc_function : BaseScorer\n Nonconformity scorer object used to calculate nonconformity of\n calibration examples and test patterns. Should implement fit(x, y),\n calc_nc(x, y) and predict(x, nc_scores, significance).

\n\n

Attributes

\n\n

cal_x : numpy array of shape [n_cal_examples, n_features]\n Inputs of calibration set.

\n\n

cal_y : numpy array of shape [n_cal_examples]\n Outputs of calibration set.

\n\n

nc_function : BaseScorer\n Nonconformity scorer object used to calculate nonconformity scores.

\n\n

See also

\n\n

IcpClassifier

\n\n

References

\n\n

Examples

\n\n
\n
>>> import numpy as np\n>>> from sklearn.datasets import load_boston\n>>> from sklearn.tree import DecisionTreeRegressor\n>>> from nonconformist.base import RegressorAdapter\n>>> from nonconformist.icp import IcpRegressor\n>>> from nonconformist.nc import RegressorNc, AbsErrorErrFunc\n>>> boston = load_boston()\n>>> idx = np.random.permutation(boston.target.size)\n>>> train = idx[:int(idx.size / 3)]\n>>> cal = idx[int(idx.size / 3):int(2 * idx.size / 3)]\n>>> test = idx[int(2 * idx.size / 3):]\n>>> model = RegressorAdapter(DecisionTreeRegressor())\n>>> nc = RegressorNc(model, AbsErrorErrFunc())\n>>> icp = IcpRegressor(nc)\n>>> icp.fit(boston.data[train, :], boston.target[train])\n>>> icp.calibrate(boston.data[cal, :], boston.target[cal])\n>>> icp.predict(boston.data[test, :], significance=0.10)\n...     # doctest: +SKIP\narray([[  5. ,  20.6],\n        [ 15.5,  31.1],\n        ...,\n        [ 14.2,  29.8],\n        [ 11.6,  27.2]])\n
\n
\n\n
\n
\n
    \n
\n
\n", "bases": "mlsauce.nonconformist.icp.BaseIcp, mlsauce.nonconformist.base.RegressorMixin"}, "mlsauce.nonconformist.IcpRegressor.__init__": {"fullname": "mlsauce.nonconformist.IcpRegressor.__init__", "modulename": "mlsauce.nonconformist", "qualname": "IcpRegressor.__init__", "kind": "function", "doc": "

\n", "signature": "(nc_function, condition=None)"}, "mlsauce.nonconformist.IcpRegressor.predict": {"fullname": "mlsauce.nonconformist.IcpRegressor.predict", "modulename": "mlsauce.nonconformist", "qualname": "IcpRegressor.predict", "kind": "function", "doc": "

Predict the output values for a set of input patterns.

\n\n

Parameters

\n\n

x : numpy array of shape [n_samples, n_features]\n Inputs of patters for which to predict output values.

\n\n

significance : float\n Significance level (maximum allowed error rate) of predictions.\n Should be a float between 0 and 1. If None, then intervals for\n all significance levels (0.01, 0.02, ..., 0.99) are output in a\n 3d-matrix.

\n\n

Returns

\n\n

p : numpy array of shape [n_samples, 2] or [n_samples, 2, 99}\n If significance is None, then p contains the interval (minimum\n and maximum boundaries) for each test pattern, and each significance\n level (0.01, 0.02, ..., 0.99). If significance is a float between\n 0 and 1, then p contains the prediction intervals (minimum and\n maximum boundaries) for the set of test patterns at the chosen\n significance level.

\n", "signature": "(self, x, significance=None):", "funcdef": "def"}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"fullname": "mlsauce.nonconformist.IcpRegressor.set_fit_request", "modulename": "mlsauce.nonconformist", "qualname": "IcpRegressor.set_fit_request", "kind": "function", "doc": "

A descriptor for request methods.

\n\n

New in version 1.3.

\n\n

Parameters

\n\n

name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

\n\n

keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

\n\n

validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

\n\n

Notes

\n\n

This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

\n\n

References

\n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"fullname": "mlsauce.nonconformist.IcpRegressor.set_predict_request", "modulename": "mlsauce.nonconformist", "qualname": "IcpRegressor.set_predict_request", "kind": "function", "doc": "

A descriptor for request methods.

\n\n

New in version 1.3.

\n\n

Parameters

\n\n

name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

\n\n

keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

\n\n

validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

\n\n

Notes

\n\n

This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

\n\n

References

\n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.predictioninterval": {"fullname": "mlsauce.predictioninterval", "modulename": "mlsauce.predictioninterval", "kind": "module", "doc": "

\n"}, "mlsauce.predictioninterval.PredictionInterval": {"fullname": "mlsauce.predictioninterval.PredictionInterval", "modulename": "mlsauce.predictioninterval", "qualname": "PredictionInterval", "kind": "class", "doc": "

Class PredictionInterval: Obtain prediction intervals.

\n\n

Attributes:

\n\n
obj: an object;\n    fitted object containing methods `fit` and `predict`\n\nmethod: a string;\n    method for constructing the prediction intervals.\n    Currently \"splitconformal\" (default) and \"localconformal\"\n\nlevel: a float;\n    Confidence level for prediction intervals. Default is 95,\n    equivalent to a miscoverage error of 5 (%)\n\nreplications: an integer;\n    Number of replications for simulated conformal (default is `None`)\n\ntype_pi: a string;\n    type of prediction interval: currently \"kde\" (default) or \"bootstrap\"\n\nseed: an integer;\n    Reproducibility of fit (there's a random split between fitting and calibration data)\n
\n", "bases": "sklearn.base.BaseEstimator, sklearn.base.RegressorMixin"}, "mlsauce.predictioninterval.PredictionInterval.__init__": {"fullname": "mlsauce.predictioninterval.PredictionInterval.__init__", "modulename": "mlsauce.predictioninterval", "qualname": "PredictionInterval.__init__", "kind": "function", "doc": "

\n", "signature": "(\tobj,\tmethod='splitconformal',\tlevel=95,\ttype_pi='bootstrap',\treplications=None,\tkernel=None,\tagg='mean',\tseed=123)"}, "mlsauce.predictioninterval.PredictionInterval.obj": {"fullname": "mlsauce.predictioninterval.PredictionInterval.obj", "modulename": "mlsauce.predictioninterval", "qualname": "PredictionInterval.obj", "kind": "variable", "doc": "

\n"}, "mlsauce.predictioninterval.PredictionInterval.method": {"fullname": "mlsauce.predictioninterval.PredictionInterval.method", "modulename": "mlsauce.predictioninterval", "qualname": "PredictionInterval.method", "kind": "variable", "doc": "

\n"}, "mlsauce.predictioninterval.PredictionInterval.level": {"fullname": "mlsauce.predictioninterval.PredictionInterval.level", "modulename": "mlsauce.predictioninterval", "qualname": "PredictionInterval.level", "kind": "variable", "doc": "

\n"}, "mlsauce.predictioninterval.PredictionInterval.type_pi": {"fullname": "mlsauce.predictioninterval.PredictionInterval.type_pi", "modulename": "mlsauce.predictioninterval", "qualname": "PredictionInterval.type_pi", "kind": "variable", "doc": "

\n"}, "mlsauce.predictioninterval.PredictionInterval.replications": {"fullname": "mlsauce.predictioninterval.PredictionInterval.replications", "modulename": "mlsauce.predictioninterval", "qualname": "PredictionInterval.replications", "kind": "variable", "doc": "

\n"}, "mlsauce.predictioninterval.PredictionInterval.kernel": {"fullname": "mlsauce.predictioninterval.PredictionInterval.kernel", "modulename": "mlsauce.predictioninterval", "qualname": "PredictionInterval.kernel", "kind": "variable", "doc": "

\n"}, "mlsauce.predictioninterval.PredictionInterval.agg": {"fullname": "mlsauce.predictioninterval.PredictionInterval.agg", "modulename": "mlsauce.predictioninterval", "qualname": "PredictionInterval.agg", "kind": "variable", "doc": "

\n"}, "mlsauce.predictioninterval.PredictionInterval.seed": {"fullname": "mlsauce.predictioninterval.PredictionInterval.seed", "modulename": "mlsauce.predictioninterval", "qualname": "PredictionInterval.seed", "kind": "variable", "doc": "

\n"}, "mlsauce.predictioninterval.PredictionInterval.alpha_": {"fullname": "mlsauce.predictioninterval.PredictionInterval.alpha_", "modulename": "mlsauce.predictioninterval", "qualname": "PredictionInterval.alpha_", "kind": "variable", "doc": "

\n"}, "mlsauce.predictioninterval.PredictionInterval.quantile_": {"fullname": "mlsauce.predictioninterval.PredictionInterval.quantile_", "modulename": "mlsauce.predictioninterval", "qualname": "PredictionInterval.quantile_", "kind": "variable", "doc": "

\n"}, "mlsauce.predictioninterval.PredictionInterval.icp_": {"fullname": "mlsauce.predictioninterval.PredictionInterval.icp_", "modulename": "mlsauce.predictioninterval", "qualname": "PredictionInterval.icp_", "kind": "variable", "doc": "

\n"}, "mlsauce.predictioninterval.PredictionInterval.calibrated_residuals_": {"fullname": "mlsauce.predictioninterval.PredictionInterval.calibrated_residuals_", "modulename": "mlsauce.predictioninterval", "qualname": "PredictionInterval.calibrated_residuals_", "kind": "variable", "doc": "

\n"}, "mlsauce.predictioninterval.PredictionInterval.scaled_calibrated_residuals_": {"fullname": "mlsauce.predictioninterval.PredictionInterval.scaled_calibrated_residuals_", "modulename": "mlsauce.predictioninterval", "qualname": "PredictionInterval.scaled_calibrated_residuals_", "kind": "variable", "doc": "

\n"}, "mlsauce.predictioninterval.PredictionInterval.calibrated_residuals_scaler_": {"fullname": "mlsauce.predictioninterval.PredictionInterval.calibrated_residuals_scaler_", "modulename": "mlsauce.predictioninterval", "qualname": "PredictionInterval.calibrated_residuals_scaler_", "kind": "variable", "doc": "

\n"}, "mlsauce.predictioninterval.PredictionInterval.kde_": {"fullname": "mlsauce.predictioninterval.PredictionInterval.kde_", "modulename": "mlsauce.predictioninterval", "qualname": "PredictionInterval.kde_", "kind": "variable", "doc": "

\n"}, "mlsauce.predictioninterval.PredictionInterval.fit": {"fullname": "mlsauce.predictioninterval.PredictionInterval.fit", "modulename": "mlsauce.predictioninterval", "qualname": "PredictionInterval.fit", "kind": "function", "doc": "

Fit the method to training data (X, y).

\n\n

Args:

\n\n
X: array-like, shape = [n_samples, n_features];\n    Training set vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\ny: array-like, shape = [n_samples, ]; Target values.\n
\n", "signature": "(self, X, y):", "funcdef": "def"}, "mlsauce.predictioninterval.PredictionInterval.predict": {"fullname": "mlsauce.predictioninterval.PredictionInterval.predict", "modulename": "mlsauce.predictioninterval", "qualname": "PredictionInterval.predict", "kind": "function", "doc": "

Obtain predictions and prediction intervals

\n\n

Args:

\n\n
X: array-like, shape = [n_samples, n_features];\n    Testing set vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\nreturn_pi: boolean\n    Whether the prediction interval is returned or not.\n    Default is False, for compatibility with other _estimators_.\n    If True, a tuple containing the predictions + lower and upper\n    bounds is returned.\n
\n", "signature": "(self, X, return_pi=False):", "funcdef": "def"}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"fullname": "mlsauce.predictioninterval.PredictionInterval.set_predict_request", "modulename": "mlsauce.predictioninterval", "qualname": "PredictionInterval.set_predict_request", "kind": "function", "doc": "

A descriptor for request methods.

\n\n

New in version 1.3.

\n\n

Parameters

\n\n

name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

\n\n

keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

\n\n

validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

\n\n

Notes

\n\n

This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

\n\n

References

\n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"fullname": "mlsauce.predictioninterval.PredictionInterval.set_score_request", "modulename": "mlsauce.predictioninterval", "qualname": "PredictionInterval.set_score_request", "kind": "function", "doc": "

A descriptor for request methods.

\n\n

New in version 1.3.

\n\n

Parameters

\n\n

name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

\n\n

keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

\n\n

validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

\n\n

Notes

\n\n

This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

\n\n

References

\n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.ridge": {"fullname": "mlsauce.ridge", "modulename": "mlsauce.ridge", "kind": "module", "doc": "

\n"}, "mlsauce.ridge.RidgeRegressor": {"fullname": "mlsauce.ridge.RidgeRegressor", "modulename": "mlsauce.ridge", "qualname": "RidgeRegressor", "kind": "class", "doc": "

Ridge.

\n\n

Attributes:

\n\n
reg_lambda: float\n    regularization parameter.\n\nbackend: str\n    type of backend; must be in ('cpu', 'gpu', 'tpu')\n
\n", "bases": "sklearn.base.BaseEstimator, sklearn.base.RegressorMixin"}, "mlsauce.ridge.RidgeRegressor.__init__": {"fullname": "mlsauce.ridge.RidgeRegressor.__init__", "modulename": "mlsauce.ridge", "qualname": "RidgeRegressor.__init__", "kind": "function", "doc": "

\n", "signature": "(reg_lambda=0.1, backend='cpu')"}, "mlsauce.ridge.RidgeRegressor.reg_lambda": {"fullname": "mlsauce.ridge.RidgeRegressor.reg_lambda", "modulename": "mlsauce.ridge", "qualname": "RidgeRegressor.reg_lambda", "kind": "variable", "doc": "

\n"}, "mlsauce.ridge.RidgeRegressor.backend": {"fullname": "mlsauce.ridge.RidgeRegressor.backend", "modulename": "mlsauce.ridge", "qualname": "RidgeRegressor.backend", "kind": "variable", "doc": "

\n"}, "mlsauce.ridge.RidgeRegressor.fit": {"fullname": "mlsauce.ridge.RidgeRegressor.fit", "modulename": "mlsauce.ridge", "qualname": "RidgeRegressor.fit", "kind": "function", "doc": "

Fit matrixops (classifier) to training data (X, y)

\n\n

Args:

\n\n
X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\ny: array-like, shape = [n_samples]\n    Target values.\n\n**kwargs: additional parameters to be passed to self.cook_training_set.\n
\n\n

Returns:

\n\n
self: object.\n
\n", "signature": "(self, X, y, **kwargs):", "funcdef": "def"}, "mlsauce.ridge.RidgeRegressor.predict": {"fullname": "mlsauce.ridge.RidgeRegressor.predict", "modulename": "mlsauce.ridge", "qualname": "RidgeRegressor.predict", "kind": "function", "doc": "

Predict test data X.

\n\n

Args:

\n\n
X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\n**kwargs: additional parameters to be passed to `predict_proba`\n
\n\n

Returns:

\n\n
model predictions: {array-like}\n
\n", "signature": "(self, X, **kwargs):", "funcdef": "def"}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"fullname": "mlsauce.ridge.RidgeRegressor.set_score_request", "modulename": "mlsauce.ridge", "qualname": "RidgeRegressor.set_score_request", "kind": "function", "doc": "

A descriptor for request methods.

\n\n

New in version 1.3.

\n\n

Parameters

\n\n

name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

\n\n

keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

\n\n

validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

\n\n

Notes

\n\n

This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

\n\n

References

\n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.setup": {"fullname": "mlsauce.setup", "modulename": "mlsauce.setup", "kind": "module", "doc": "

\n"}, "mlsauce.stump": {"fullname": "mlsauce.stump", "modulename": "mlsauce.stump", "kind": "module", "doc": "

\n"}, "mlsauce.stump.StumpClassifier": {"fullname": "mlsauce.stump.StumpClassifier", "modulename": "mlsauce.stump", "qualname": "StumpClassifier", "kind": "class", "doc": "

Stump classifier.

\n\n

Attributes:

\n\n
bins: int\n    Number of histogram bins; as in numpy.histogram.\n
\n", "bases": "sklearn.base.BaseEstimator, sklearn.base.ClassifierMixin"}, "mlsauce.stump.StumpClassifier.__init__": {"fullname": "mlsauce.stump.StumpClassifier.__init__", "modulename": "mlsauce.stump", "qualname": "StumpClassifier.__init__", "kind": "function", "doc": "

\n", "signature": "(bins='auto')"}, "mlsauce.stump.StumpClassifier.bins": {"fullname": "mlsauce.stump.StumpClassifier.bins", "modulename": "mlsauce.stump", "qualname": "StumpClassifier.bins", "kind": "variable", "doc": "

\n"}, "mlsauce.stump.StumpClassifier.obj": {"fullname": "mlsauce.stump.StumpClassifier.obj", "modulename": "mlsauce.stump", "qualname": "StumpClassifier.obj", "kind": "variable", "doc": "

\n"}, "mlsauce.stump.StumpClassifier.fit": {"fullname": "mlsauce.stump.StumpClassifier.fit", "modulename": "mlsauce.stump", "qualname": "StumpClassifier.fit", "kind": "function", "doc": "

Fit Stump to training data (X, y)

\n\n

Args:

\n\n
X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\ny: array-like, shape = [n_samples]\n    Target values.\n\nsample_weight: array_like, shape = [n_samples]\n    Observations weights.\n
\n\n

Returns:

\n\n
self: object.\n
\n", "signature": "(self, X, y, sample_weight=None, **kwargs):", "funcdef": "def"}, "mlsauce.stump.StumpClassifier.predict": {"fullname": "mlsauce.stump.StumpClassifier.predict", "modulename": "mlsauce.stump", "qualname": "StumpClassifier.predict", "kind": "function", "doc": "

Predict test data X.

\n\n

Args:

\n\n
X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\n**kwargs: additional parameters to be passed to `predict_proba`\n
\n\n

Returns:

\n\n
model predictions: {array-like}\n
\n", "signature": "(self, X, **kwargs):", "funcdef": "def"}, "mlsauce.stump.StumpClassifier.predict_proba": {"fullname": "mlsauce.stump.StumpClassifier.predict_proba", "modulename": "mlsauce.stump", "qualname": "StumpClassifier.predict_proba", "kind": "function", "doc": "

Predict probabilities for test data X.

\n\n

Args:

\n\n
X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\n**kwargs: additional parameters to be passed to\n    self.cook_test_set\n
\n\n

Returns:

\n\n
probability estimates for test data: {array-like}\n
\n", "signature": "(self, X, **kwargs):", "funcdef": "def"}, "mlsauce.stump.StumpClassifier.set_fit_request": {"fullname": "mlsauce.stump.StumpClassifier.set_fit_request", "modulename": "mlsauce.stump", "qualname": "StumpClassifier.set_fit_request", "kind": "function", "doc": "

A descriptor for request methods.

\n\n

New in version 1.3.

\n\n

Parameters

\n\n

name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

\n\n

keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

\n\n

validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

\n\n

Notes

\n\n

This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

\n\n

References

\n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.stump.StumpClassifier.set_score_request": {"fullname": "mlsauce.stump.StumpClassifier.set_score_request", "modulename": "mlsauce.stump", "qualname": "StumpClassifier.set_score_request", "kind": "function", "doc": "

A descriptor for request methods.

\n\n

New in version 1.3.

\n\n

Parameters

\n\n

name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

\n\n

keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

\n\n

validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

\n\n

Notes

\n\n

This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

\n\n

References

\n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.utils": {"fullname": "mlsauce.utils", "modulename": "mlsauce.utils", "kind": "module", "doc": "

\n"}, "mlsauce.utils.cluster": {"fullname": "mlsauce.utils.cluster", "modulename": "mlsauce.utils", "qualname": "cluster", "kind": "function", "doc": "

\n", "signature": "(\tX,\tn_clusters=None,\tmethod='kmeans',\ttype_scaling='standard',\ttraining=True,\tscaler=None,\tlabel_encoder=None,\tclusterer=None,\tseed=123):", "funcdef": "def"}, "mlsauce.utils.subsample": {"fullname": "mlsauce.utils.subsample", "modulename": "mlsauce.utils", "qualname": "subsample", "kind": "function", "doc": "

\n", "signature": "(y, row_sample=0.8, seed=123):", "funcdef": "def"}, "mlsauce.utils.merge_two_dicts": {"fullname": "mlsauce.utils.merge_two_dicts", "modulename": "mlsauce.utils", "qualname": "merge_two_dicts", "kind": "function", "doc": "

\n", "signature": "(x, y):", "funcdef": "def"}, "mlsauce.utils.flatten": {"fullname": "mlsauce.utils.flatten", "modulename": "mlsauce.utils", "qualname": "flatten", "kind": "function", "doc": "

\n", "signature": "(l):", "funcdef": "def"}, "mlsauce.utils.is_float": {"fullname": "mlsauce.utils.is_float", "modulename": "mlsauce.utils", "qualname": "is_float", "kind": "function", "doc": "

\n", "signature": "(x):", "funcdef": "def"}, "mlsauce.utils.is_factor": {"fullname": "mlsauce.utils.is_factor", "modulename": "mlsauce.utils", "qualname": "is_factor", "kind": "function", "doc": "

\n", "signature": "(y):", "funcdef": "def"}, "mlsauce.utils.Progbar": {"fullname": "mlsauce.utils.Progbar", "modulename": "mlsauce.utils", "qualname": "Progbar", "kind": "class", "doc": "

Displays a progress bar.

\n\n

Arguments

\n\n
target: Total number of steps expected, None if unknown.\nwidth: Progress bar width on screen.\nverbose: Verbosity mode, 0 (silent), 1 (verbose), 2 (semi-verbose)\nstateful_metrics: Iterable of string names of metrics that\n    should *not* be averaged over time. Metrics in this list\n    will be displayed as-is. All others will be averaged\n    by the progbar before display.\ninterval: Minimum visual progress update interval (in seconds).\n
\n"}, "mlsauce.utils.Progbar.__init__": {"fullname": "mlsauce.utils.Progbar.__init__", "modulename": "mlsauce.utils", "qualname": "Progbar.__init__", "kind": "function", "doc": "

\n", "signature": "(target, width=30, verbose=1, interval=0.05, stateful_metrics=None)"}, "mlsauce.utils.Progbar.target": {"fullname": "mlsauce.utils.Progbar.target", "modulename": "mlsauce.utils", "qualname": "Progbar.target", "kind": "variable", "doc": "

\n"}, "mlsauce.utils.Progbar.width": {"fullname": "mlsauce.utils.Progbar.width", "modulename": "mlsauce.utils", "qualname": "Progbar.width", "kind": "variable", "doc": "

\n"}, "mlsauce.utils.Progbar.verbose": {"fullname": "mlsauce.utils.Progbar.verbose", "modulename": "mlsauce.utils", "qualname": "Progbar.verbose", "kind": "variable", "doc": "

\n"}, "mlsauce.utils.Progbar.interval": {"fullname": "mlsauce.utils.Progbar.interval", "modulename": "mlsauce.utils", "qualname": "Progbar.interval", "kind": "variable", "doc": "

\n"}, "mlsauce.utils.Progbar.update": {"fullname": "mlsauce.utils.Progbar.update", "modulename": "mlsauce.utils", "qualname": "Progbar.update", "kind": "function", "doc": "

Updates the progress bar.

\n\n

Arguments

\n\n
current: Index of current step.\nvalues: List of tuples:\n    `(name, value_for_last_step)`.\n    If `name` is in `stateful_metrics`,\n    `value_for_last_step` will be displayed as-is.\n    Else, an average of the metric over time will be displayed.\n
\n", "signature": "(self, current, values=None):", "funcdef": "def"}, "mlsauce.utils.Progbar.add": {"fullname": "mlsauce.utils.Progbar.add", "modulename": "mlsauce.utils", "qualname": "Progbar.add", "kind": "function", "doc": "

\n", "signature": "(self, n, values=None):", "funcdef": "def"}, "mlsauce.utils.get_beta": {"fullname": "mlsauce.utils.get_beta", "modulename": "mlsauce.utils.get_beta", "kind": "module", "doc": "

\n"}, "mlsauce.utils.check_and_install": {"fullname": "mlsauce.utils.check_and_install", "modulename": "mlsauce.utils", "qualname": "check_and_install", "kind": "function", "doc": "

Check if a package is installed; if not, install it.

\n", "signature": "(package_name):", "funcdef": "def"}, "mlsauce.utils.is_multitask_estimator": {"fullname": "mlsauce.utils.is_multitask_estimator", "modulename": "mlsauce.utils", "qualname": "is_multitask_estimator", "kind": "function", "doc": "

\n", "signature": "(estimator):", "funcdef": "def"}, "mlsauce.utils.get_beta.get_beta": {"fullname": "mlsauce.utils.get_beta.get_beta", "modulename": "mlsauce.utils.get_beta", "qualname": "get_beta", "kind": "function", "doc": "

\n", "signature": "(X, y):", "funcdef": "def"}}, "docInfo": {"mlsauce": {"qualname": 0, "fullname": 1, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.AdaOpt": {"qualname": 1, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 6, "doc": 277}, "mlsauce.AdaOpt.__init__": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 245, "bases": 0, "doc": 3}, "mlsauce.AdaOpt.n_iterations": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.AdaOpt.learning_rate": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.AdaOpt.reg_lambda": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.AdaOpt.reg_alpha": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.AdaOpt.eta": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.AdaOpt.gamma": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.AdaOpt.k": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.AdaOpt.tolerance": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.AdaOpt.n_clusters": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.AdaOpt.batch_size": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.AdaOpt.row_sample": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.AdaOpt.type_dist": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.AdaOpt.n_jobs": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.AdaOpt.cache": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.AdaOpt.verbose": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.AdaOpt.n_clusters_input": {"qualname": 4, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.AdaOpt.clustering_method": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.AdaOpt.cluster_scaling": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.AdaOpt.seed": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.AdaOpt.fit": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 28, "bases": 0, "doc": 73}, "mlsauce.AdaOpt.predict": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 23, "bases": 0, "doc": 62}, "mlsauce.AdaOpt.predict_proba": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 23, "bases": 0, "doc": 69}, "mlsauce.AdaOpt.set_score_request": {"qualname": 4, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.LSBoostClassifier": {"qualname": 1, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 6, "doc": 980}, "mlsauce.LSBoostClassifier.__init__": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 276, "bases": 0, "doc": 3}, "mlsauce.LSBoostClassifier.base_model": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostClassifier.n_estimators": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostClassifier.learning_rate": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostClassifier.n_hidden_features": {"qualname": 4, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostClassifier.reg_lambda": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostClassifier.alpha": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostClassifier.row_sample": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostClassifier.col_sample": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostClassifier.dropout": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostClassifier.tolerance": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostClassifier.direct_link": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostClassifier.verbose": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostClassifier.seed": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostClassifier.backend": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostClassifier.obj": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostClassifier.solver": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostClassifier.activation": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostClassifier.n_clusters": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostClassifier.clustering_method": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostClassifier.cluster_scaling": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostClassifier.degree": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostClassifier.poly_": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostClassifier.weights_distr": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostClassifier.fit": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 28, "bases": 0, "doc": 74}, "mlsauce.LSBoostClassifier.predict": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 23, "bases": 0, "doc": 62}, "mlsauce.LSBoostClassifier.predict_proba": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 23, "bases": 0, "doc": 69}, "mlsauce.LSBoostClassifier.update": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 32, "bases": 0, "doc": 73}, "mlsauce.LSBoostClassifier.set_score_request": {"qualname": 4, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.GenericBoostingClassifier": {"qualname": 1, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 5, "doc": 271}, "mlsauce.GenericBoostingClassifier.__init__": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 279, "bases": 0, "doc": 3}, "mlsauce.GenericBoostingClassifier.base_model": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.GenericBoostingClassifier.set_score_request": {"qualname": 4, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.GenericBoostingRegressor": {"qualname": 1, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 5, "doc": 314}, "mlsauce.GenericBoostingRegressor.__init__": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 313, "bases": 0, "doc": 3}, "mlsauce.GenericBoostingRegressor.base_model": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"qualname": 4, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.GenericBoostingRegressor.set_score_request": {"qualname": 4, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.StumpClassifier": {"qualname": 1, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 6, "doc": 23}, "mlsauce.StumpClassifier.__init__": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 3}, "mlsauce.StumpClassifier.bins": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.StumpClassifier.obj": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.StumpClassifier.fit": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 39, "bases": 0, "doc": 71}, "mlsauce.StumpClassifier.predict": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 23, "bases": 0, "doc": 62}, "mlsauce.StumpClassifier.predict_proba": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 23, "bases": 0, "doc": 69}, "mlsauce.StumpClassifier.set_fit_request": {"qualname": 4, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.StumpClassifier.set_score_request": {"qualname": 4, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.ElasticNetRegressor": {"qualname": 1, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 6, "doc": 44}, "mlsauce.ElasticNetRegressor.__init__": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 41, "bases": 0, "doc": 3}, "mlsauce.ElasticNetRegressor.reg_lambda": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.ElasticNetRegressor.alpha": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.ElasticNetRegressor.backend": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.ElasticNetRegressor.fit": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 28, "bases": 0, "doc": 74}, "mlsauce.ElasticNetRegressor.predict": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 23, "bases": 0, "doc": 62}, "mlsauce.ElasticNetRegressor.set_score_request": {"qualname": 4, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.LassoRegressor": {"qualname": 1, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 6, "doc": 48}, "mlsauce.LassoRegressor.__init__": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 52, "bases": 0, "doc": 3}, "mlsauce.LassoRegressor.reg_lambda": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LassoRegressor.max_iter": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LassoRegressor.tol": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LassoRegressor.backend": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LassoRegressor.fit": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 28, "bases": 0, "doc": 74}, "mlsauce.LassoRegressor.predict": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 23, "bases": 0, "doc": 62}, "mlsauce.LassoRegressor.set_score_request": {"qualname": 4, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.LSBoostRegressor": {"qualname": 1, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 6, "doc": 1176}, "mlsauce.LSBoostRegressor.__init__": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 310, "bases": 0, "doc": 3}, "mlsauce.LSBoostRegressor.base_model": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostRegressor.n_estimators": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostRegressor.learning_rate": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostRegressor.n_hidden_features": {"qualname": 4, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostRegressor.reg_lambda": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostRegressor.alpha": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostRegressor.row_sample": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostRegressor.col_sample": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostRegressor.dropout": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostRegressor.tolerance": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostRegressor.direct_link": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostRegressor.verbose": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostRegressor.seed": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostRegressor.backend": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostRegressor.obj": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostRegressor.solver": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostRegressor.activation": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostRegressor.type_pi": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostRegressor.replications": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostRegressor.kernel": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostRegressor.n_clusters": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostRegressor.clustering_method": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostRegressor.cluster_scaling": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostRegressor.degree": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostRegressor.poly_": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostRegressor.weights_distr": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostRegressor.fit": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 28, "bases": 0, "doc": 74}, "mlsauce.LSBoostRegressor.predict": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 43, "bases": 0, "doc": 89}, "mlsauce.LSBoostRegressor.update": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 32, "bases": 0, "doc": 73}, "mlsauce.LSBoostRegressor.set_predict_request": {"qualname": 4, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.LSBoostRegressor.set_score_request": {"qualname": 4, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.RidgeRegressor": {"qualname": 1, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 6, "doc": 28}, "mlsauce.RidgeRegressor.__init__": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 30, "bases": 0, "doc": 3}, "mlsauce.RidgeRegressor.reg_lambda": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.RidgeRegressor.backend": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.RidgeRegressor.fit": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 28, "bases": 0, "doc": 74}, "mlsauce.RidgeRegressor.predict": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 23, "bases": 0, "doc": 62}, "mlsauce.RidgeRegressor.set_score_request": {"qualname": 4, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.LazyBoostingClassifier": {"qualname": 1, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 3, "doc": 673}, "mlsauce.LazyBoostingClassifier.__init__": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 116, "bases": 0, "doc": 3}, "mlsauce.LazyBoostingClassifier.verbose": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LazyBoostingClassifier.ignore_warnings": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LazyBoostingClassifier.custom_metric": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LazyBoostingClassifier.predictions": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LazyBoostingClassifier.sort_by": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LazyBoostingClassifier.models_": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LazyBoostingClassifier.best_model_": {"qualname": 4, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LazyBoostingClassifier.random_state": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LazyBoostingClassifier.estimators": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LazyBoostingClassifier.preprocess": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LazyBoostingClassifier.n_jobs": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LazyBoostingClassifier.fit": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 42, "bases": 0, "doc": 152}, "mlsauce.LazyBoostingClassifier.get_best_model": {"qualname": 4, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 38}, "mlsauce.LazyBoostingClassifier.provide_models": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 35, "bases": 0, "doc": 146}, "mlsauce.LazyBoostingClassifier.train_model": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 83, "bases": 0, "doc": 13}, "mlsauce.LazyBoostingRegressor": {"qualname": 1, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 3, "doc": 607}, "mlsauce.LazyBoostingRegressor.__init__": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 116, "bases": 0, "doc": 3}, "mlsauce.LazyBoostingRegressor.verbose": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LazyBoostingRegressor.ignore_warnings": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LazyBoostingRegressor.custom_metric": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LazyBoostingRegressor.predictions": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LazyBoostingRegressor.sort_by": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LazyBoostingRegressor.models_": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LazyBoostingRegressor.best_model_": {"qualname": 4, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LazyBoostingRegressor.random_state": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LazyBoostingRegressor.estimators": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LazyBoostingRegressor.preprocess": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LazyBoostingRegressor.n_jobs": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LazyBoostingRegressor.fit": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 42, "bases": 0, "doc": 158}, "mlsauce.LazyBoostingRegressor.get_best_model": {"qualname": 4, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 38}, "mlsauce.LazyBoostingRegressor.provide_models": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 35, "bases": 0, "doc": 147}, "mlsauce.LazyBoostingRegressor.train_model": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 83, "bases": 0, "doc": 14}, "mlsauce.MultiTaskRegressor": {"qualname": 1, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 6, "doc": 32}, "mlsauce.MultiTaskRegressor.__init__": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 9, "bases": 0, "doc": 3}, "mlsauce.MultiTaskRegressor.regr": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.MultiTaskRegressor.objs": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.MultiTaskRegressor.fit": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 22}, "mlsauce.MultiTaskRegressor.predict": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 30}, "mlsauce.MultiTaskRegressor.set_score_request": {"qualname": 4, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.download": {"qualname": 1, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 62, "bases": 0, "doc": 3}, "mlsauce.get_config": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 7, "bases": 0, "doc": 57}, "mlsauce.set_config": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 54, "bases": 0, "doc": 273}, "mlsauce.config_context": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 14, "bases": 0, "doc": 486}, "mlsauce.adaopt": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.adaopt.AdaOpt": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 6, "doc": 277}, "mlsauce.adaopt.AdaOpt.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 245, "bases": 0, "doc": 3}, "mlsauce.adaopt.AdaOpt.n_iterations": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.adaopt.AdaOpt.learning_rate": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.adaopt.AdaOpt.reg_lambda": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.adaopt.AdaOpt.reg_alpha": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.adaopt.AdaOpt.eta": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.adaopt.AdaOpt.gamma": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.adaopt.AdaOpt.k": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.adaopt.AdaOpt.tolerance": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.adaopt.AdaOpt.n_clusters": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.adaopt.AdaOpt.batch_size": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.adaopt.AdaOpt.row_sample": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.adaopt.AdaOpt.type_dist": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.adaopt.AdaOpt.n_jobs": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.adaopt.AdaOpt.cache": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.adaopt.AdaOpt.verbose": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.adaopt.AdaOpt.n_clusters_input": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.adaopt.AdaOpt.clustering_method": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.adaopt.AdaOpt.cluster_scaling": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.adaopt.AdaOpt.seed": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.adaopt.AdaOpt.fit": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 28, "bases": 0, "doc": 73}, "mlsauce.adaopt.AdaOpt.predict": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 23, "bases": 0, "doc": 62}, "mlsauce.adaopt.AdaOpt.predict_proba": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 23, "bases": 0, "doc": 69}, "mlsauce.adaopt.AdaOpt.set_score_request": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.booster": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostClassifier": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 6, "doc": 980}, "mlsauce.booster.LSBoostClassifier.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 276, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostClassifier.base_model": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostClassifier.n_estimators": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostClassifier.learning_rate": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostClassifier.n_hidden_features": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostClassifier.reg_lambda": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostClassifier.alpha": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostClassifier.row_sample": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostClassifier.col_sample": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostClassifier.dropout": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostClassifier.tolerance": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostClassifier.direct_link": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostClassifier.verbose": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostClassifier.seed": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostClassifier.backend": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostClassifier.obj": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostClassifier.solver": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostClassifier.activation": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostClassifier.n_clusters": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostClassifier.clustering_method": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostClassifier.cluster_scaling": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostClassifier.degree": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostClassifier.poly_": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostClassifier.weights_distr": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostClassifier.fit": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 28, "bases": 0, "doc": 74}, "mlsauce.booster.LSBoostClassifier.predict": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 23, "bases": 0, "doc": 62}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 23, "bases": 0, "doc": 69}, "mlsauce.booster.LSBoostClassifier.update": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 32, "bases": 0, "doc": 73}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.booster.LSBoostRegressor": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 6, "doc": 1176}, "mlsauce.booster.LSBoostRegressor.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 310, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostRegressor.base_model": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostRegressor.n_estimators": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostRegressor.learning_rate": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostRegressor.n_hidden_features": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostRegressor.reg_lambda": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostRegressor.alpha": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostRegressor.row_sample": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostRegressor.col_sample": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostRegressor.dropout": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostRegressor.tolerance": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostRegressor.direct_link": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostRegressor.verbose": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostRegressor.seed": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostRegressor.backend": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostRegressor.obj": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostRegressor.solver": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostRegressor.activation": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostRegressor.type_pi": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostRegressor.replications": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostRegressor.kernel": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostRegressor.n_clusters": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostRegressor.clustering_method": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostRegressor.cluster_scaling": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostRegressor.degree": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostRegressor.poly_": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostRegressor.weights_distr": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostRegressor.fit": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 28, "bases": 0, "doc": 74}, "mlsauce.booster.LSBoostRegressor.predict": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 43, "bases": 0, "doc": 89}, "mlsauce.booster.LSBoostRegressor.update": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 32, "bases": 0, "doc": 73}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.booster.GenericBoostingClassifier": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 5, "doc": 271}, "mlsauce.booster.GenericBoostingClassifier.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 279, "bases": 0, "doc": 3}, "mlsauce.booster.GenericBoostingClassifier.base_model": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.booster.GenericBoostingRegressor": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 5, "doc": 314}, "mlsauce.booster.GenericBoostingRegressor.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 313, "bases": 0, "doc": 3}, "mlsauce.booster.GenericBoostingRegressor.base_model": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.datasets": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.datasets.dowload": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.datasets.dowload.download": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 62, "bases": 0, "doc": 3}, "mlsauce.demo": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.elasticnet": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.elasticnet.ElasticNetRegressor": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 6, "doc": 44}, "mlsauce.elasticnet.ElasticNetRegressor.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 41, "bases": 0, "doc": 3}, "mlsauce.elasticnet.ElasticNetRegressor.reg_lambda": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.elasticnet.ElasticNetRegressor.alpha": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.elasticnet.ElasticNetRegressor.backend": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 28, "bases": 0, "doc": 74}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 23, "bases": 0, "doc": 62}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.lasso": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.lasso.LassoRegressor": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 6, "doc": 48}, "mlsauce.lasso.LassoRegressor.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 52, "bases": 0, "doc": 3}, "mlsauce.lasso.LassoRegressor.reg_lambda": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.lasso.LassoRegressor.max_iter": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.lasso.LassoRegressor.tol": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.lasso.LassoRegressor.backend": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.lasso.LassoRegressor.fit": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 28, "bases": 0, "doc": 74}, "mlsauce.lasso.LassoRegressor.predict": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 23, "bases": 0, "doc": 62}, "mlsauce.lasso.LassoRegressor.set_score_request": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.lazybooster": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.lazybooster.LazyBoostingClassifier": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 3, "doc": 673}, "mlsauce.lazybooster.LazyBoostingClassifier.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 116, "bases": 0, "doc": 3}, "mlsauce.lazybooster.LazyBoostingClassifier.verbose": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.lazybooster.LazyBoostingClassifier.ignore_warnings": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.lazybooster.LazyBoostingClassifier.custom_metric": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.lazybooster.LazyBoostingClassifier.predictions": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.lazybooster.LazyBoostingClassifier.sort_by": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.lazybooster.LazyBoostingClassifier.models_": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.lazybooster.LazyBoostingClassifier.best_model_": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.lazybooster.LazyBoostingClassifier.random_state": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.lazybooster.LazyBoostingClassifier.estimators": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.lazybooster.LazyBoostingClassifier.preprocess": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.lazybooster.LazyBoostingClassifier.n_jobs": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.lazybooster.LazyBoostingClassifier.fit": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 42, "bases": 0, "doc": 152}, "mlsauce.lazybooster.LazyBoostingClassifier.get_best_model": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 38}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 35, "bases": 0, "doc": 146}, "mlsauce.lazybooster.LazyBoostingClassifier.train_model": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 83, "bases": 0, "doc": 13}, "mlsauce.lazybooster.LazyBoostingRegressor": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 3, "doc": 607}, "mlsauce.lazybooster.LazyBoostingRegressor.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 116, "bases": 0, "doc": 3}, "mlsauce.lazybooster.LazyBoostingRegressor.verbose": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.lazybooster.LazyBoostingRegressor.ignore_warnings": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.lazybooster.LazyBoostingRegressor.custom_metric": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.lazybooster.LazyBoostingRegressor.predictions": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.lazybooster.LazyBoostingRegressor.sort_by": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.lazybooster.LazyBoostingRegressor.models_": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.lazybooster.LazyBoostingRegressor.best_model_": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.lazybooster.LazyBoostingRegressor.random_state": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.lazybooster.LazyBoostingRegressor.estimators": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.lazybooster.LazyBoostingRegressor.preprocess": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.lazybooster.LazyBoostingRegressor.n_jobs": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.lazybooster.LazyBoostingRegressor.fit": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 42, "bases": 0, "doc": 158}, "mlsauce.lazybooster.LazyBoostingRegressor.get_best_model": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 38}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 35, "bases": 0, "doc": 147}, "mlsauce.lazybooster.LazyBoostingRegressor.train_model": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 83, "bases": 0, "doc": 14}, "mlsauce.multitaskregressor": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.multitaskregressor.MultiTaskRegressor": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 6, "doc": 32}, "mlsauce.multitaskregressor.MultiTaskRegressor.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 9, "bases": 0, "doc": 3}, "mlsauce.multitaskregressor.MultiTaskRegressor.regr": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.multitaskregressor.MultiTaskRegressor.objs": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.multitaskregressor.MultiTaskRegressor.fit": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 22}, "mlsauce.multitaskregressor.MultiTaskRegressor.predict": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 30}, "mlsauce.multitaskregressor.MultiTaskRegressor.set_score_request": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.nonconformist": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.nonconformist.AbsErrorErrFunc": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 4, "doc": 32}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 65}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 69}, "mlsauce.nonconformist.QuantileRegErrFunc": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 4, "doc": 30}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 65}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 69}, "mlsauce.nonconformist.RegressorAdapter": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 4, "doc": 675}, "mlsauce.nonconformist.RegressorAdapter.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 3}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.nonconformist.RegressorNc": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 4, "doc": 102}, "mlsauce.nonconformist.RegressorNc.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 68, "bases": 0, "doc": 3}, "mlsauce.nonconformist.RegressorNc.predict": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 31, "bases": 0, "doc": 193}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.nonconformist.RegressorNormalizer": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 4, "doc": 675}, "mlsauce.nonconformist.RegressorNormalizer.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 22, "bases": 0, "doc": 3}, "mlsauce.nonconformist.RegressorNormalizer.base_model": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.nonconformist.RegressorNormalizer.normalizer_model": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.nonconformist.RegressorNormalizer.err_func": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.nonconformist.RegressorNormalizer.fit": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 3}, "mlsauce.nonconformist.RegressorNormalizer.score": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 3}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.nonconformist.IcpRegressor": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 8, "doc": 748}, "mlsauce.nonconformist.IcpRegressor.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 3}, "mlsauce.nonconformist.IcpRegressor.predict": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 161}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.predictioninterval": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.predictioninterval.PredictionInterval": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 6, "doc": 100}, "mlsauce.predictioninterval.PredictionInterval.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 100, "bases": 0, "doc": 3}, "mlsauce.predictioninterval.PredictionInterval.obj": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.predictioninterval.PredictionInterval.method": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.predictioninterval.PredictionInterval.level": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.predictioninterval.PredictionInterval.type_pi": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.predictioninterval.PredictionInterval.replications": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.predictioninterval.PredictionInterval.kernel": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.predictioninterval.PredictionInterval.agg": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.predictioninterval.PredictionInterval.seed": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.predictioninterval.PredictionInterval.alpha_": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.predictioninterval.PredictionInterval.quantile_": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.predictioninterval.PredictionInterval.icp_": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.predictioninterval.PredictionInterval.calibrated_residuals_": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.predictioninterval.PredictionInterval.scaled_calibrated_residuals_": {"qualname": 5, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.predictioninterval.PredictionInterval.calibrated_residuals_scaler_": {"qualname": 5, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.predictioninterval.PredictionInterval.kde_": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.predictioninterval.PredictionInterval.fit": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 57}, "mlsauce.predictioninterval.PredictionInterval.predict": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 27, "bases": 0, "doc": 75}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.ridge": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.ridge.RidgeRegressor": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 6, "doc": 28}, "mlsauce.ridge.RidgeRegressor.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 30, "bases": 0, "doc": 3}, "mlsauce.ridge.RidgeRegressor.reg_lambda": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.ridge.RidgeRegressor.backend": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.ridge.RidgeRegressor.fit": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 28, "bases": 0, "doc": 74}, "mlsauce.ridge.RidgeRegressor.predict": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 23, "bases": 0, "doc": 62}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.setup": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.stump": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.stump.StumpClassifier": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 6, "doc": 23}, "mlsauce.stump.StumpClassifier.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 3}, "mlsauce.stump.StumpClassifier.bins": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.stump.StumpClassifier.obj": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.stump.StumpClassifier.fit": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 39, "bases": 0, "doc": 71}, "mlsauce.stump.StumpClassifier.predict": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 23, "bases": 0, "doc": 62}, "mlsauce.stump.StumpClassifier.predict_proba": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 23, "bases": 0, "doc": 69}, "mlsauce.stump.StumpClassifier.set_fit_request": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.stump.StumpClassifier.set_score_request": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.utils": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.utils.cluster": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 111, "bases": 0, "doc": 3}, "mlsauce.utils.subsample": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 33, "bases": 0, "doc": 3}, "mlsauce.utils.merge_two_dicts": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 3}, "mlsauce.utils.flatten": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "mlsauce.utils.is_float": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "mlsauce.utils.is_factor": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "mlsauce.utils.Progbar": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 82}, "mlsauce.utils.Progbar.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 51, "bases": 0, "doc": 3}, "mlsauce.utils.Progbar.target": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.utils.Progbar.width": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.utils.Progbar.verbose": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.utils.Progbar.interval": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.utils.Progbar.update": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 57}, "mlsauce.utils.Progbar.add": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 3}, "mlsauce.utils.get_beta": {"qualname": 0, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.utils.check_and_install": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 12, "bases": 0, "doc": 13}, "mlsauce.utils.is_multitask_estimator": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "mlsauce.utils.get_beta.get_beta": {"qualname": 2, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 3}}, "length": 432, "save": true}, "index": {"qualname": {"root": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.LSBoostClassifier.poly_": {"tf": 1}, "mlsauce.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.StumpClassifier.__init__": {"tf": 1}, "mlsauce.ElasticNetRegressor.__init__": {"tf": 1}, "mlsauce.LassoRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.poly_": {"tf": 1}, "mlsauce.RidgeRegressor.__init__": {"tf": 1}, "mlsauce.LazyBoostingClassifier.__init__": {"tf": 1}, "mlsauce.LazyBoostingClassifier.models_": {"tf": 1}, "mlsauce.LazyBoostingClassifier.best_model_": {"tf": 1}, "mlsauce.LazyBoostingRegressor.__init__": {"tf": 1}, "mlsauce.LazyBoostingRegressor.models_": {"tf": 1}, "mlsauce.LazyBoostingRegressor.best_model_": {"tf": 1}, "mlsauce.MultiTaskRegressor.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.poly_": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.poly_": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.__init__": {"tf": 1}, "mlsauce.lasso.LassoRegressor.__init__": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.__init__": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.models_": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.best_model_": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.__init__": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.models_": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.best_model_": {"tf": 1}, "mlsauce.multitaskregressor.MultiTaskRegressor.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.__init__": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.__init__": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.__init__": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.alpha_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.quantile_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.icp_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.calibrated_residuals_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.scaled_calibrated_residuals_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.calibrated_residuals_scaler_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.kde_": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.__init__": {"tf": 1}, "mlsauce.stump.StumpClassifier.__init__": {"tf": 1}, "mlsauce.utils.Progbar.__init__": {"tf": 1}}, "df": 49, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.AdaOpt.n_iterations": {"tf": 1}, "mlsauce.AdaOpt.learning_rate": {"tf": 1}, "mlsauce.AdaOpt.reg_lambda": {"tf": 1}, "mlsauce.AdaOpt.reg_alpha": {"tf": 1}, "mlsauce.AdaOpt.eta": {"tf": 1}, "mlsauce.AdaOpt.gamma": {"tf": 1}, "mlsauce.AdaOpt.k": {"tf": 1}, "mlsauce.AdaOpt.tolerance": {"tf": 1}, "mlsauce.AdaOpt.n_clusters": {"tf": 1}, "mlsauce.AdaOpt.batch_size": {"tf": 1}, "mlsauce.AdaOpt.row_sample": {"tf": 1}, "mlsauce.AdaOpt.type_dist": {"tf": 1}, "mlsauce.AdaOpt.n_jobs": {"tf": 1}, "mlsauce.AdaOpt.cache": {"tf": 1}, "mlsauce.AdaOpt.verbose": {"tf": 1}, "mlsauce.AdaOpt.n_clusters_input": {"tf": 1}, "mlsauce.AdaOpt.clustering_method": {"tf": 1}, "mlsauce.AdaOpt.cluster_scaling": {"tf": 1}, "mlsauce.AdaOpt.seed": {"tf": 1}, "mlsauce.AdaOpt.fit": {"tf": 1}, "mlsauce.AdaOpt.predict": {"tf": 1}, "mlsauce.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.n_iterations": {"tf": 1}, "mlsauce.adaopt.AdaOpt.learning_rate": {"tf": 1}, "mlsauce.adaopt.AdaOpt.reg_lambda": {"tf": 1}, "mlsauce.adaopt.AdaOpt.reg_alpha": {"tf": 1}, "mlsauce.adaopt.AdaOpt.eta": {"tf": 1}, "mlsauce.adaopt.AdaOpt.gamma": {"tf": 1}, "mlsauce.adaopt.AdaOpt.k": {"tf": 1}, "mlsauce.adaopt.AdaOpt.tolerance": {"tf": 1}, "mlsauce.adaopt.AdaOpt.n_clusters": {"tf": 1}, "mlsauce.adaopt.AdaOpt.batch_size": {"tf": 1}, "mlsauce.adaopt.AdaOpt.row_sample": {"tf": 1}, "mlsauce.adaopt.AdaOpt.type_dist": {"tf": 1}, "mlsauce.adaopt.AdaOpt.n_jobs": {"tf": 1}, "mlsauce.adaopt.AdaOpt.cache": {"tf": 1}, "mlsauce.adaopt.AdaOpt.verbose": {"tf": 1}, "mlsauce.adaopt.AdaOpt.n_clusters_input": {"tf": 1}, "mlsauce.adaopt.AdaOpt.clustering_method": {"tf": 1}, "mlsauce.adaopt.AdaOpt.cluster_scaling": {"tf": 1}, "mlsauce.adaopt.AdaOpt.seed": {"tf": 1}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}}, "df": 50}}}}, "d": {"docs": {"mlsauce.utils.Progbar.add": {"tf": 1}}, "df": 1}}, "l": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {"mlsauce.AdaOpt.reg_alpha": {"tf": 1}, "mlsauce.LSBoostClassifier.alpha": {"tf": 1}, "mlsauce.ElasticNetRegressor.alpha": {"tf": 1}, "mlsauce.LSBoostRegressor.alpha": {"tf": 1}, "mlsauce.adaopt.AdaOpt.reg_alpha": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.alpha": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.alpha": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.alpha": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.alpha_": {"tf": 1}}, "df": 9}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.LSBoostClassifier.activation": {"tf": 1}, "mlsauce.LSBoostRegressor.activation": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.activation": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.activation": {"tf": 1}}, "df": 4}}}}}}}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}}, "df": 3}}}}}}}}}}}}}}, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}}, "df": 4}}}}, "g": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.predictioninterval.PredictionInterval.agg": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.utils.check_and_install": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.StumpClassifier.__init__": {"tf": 1}, "mlsauce.ElasticNetRegressor.__init__": {"tf": 1}, "mlsauce.LassoRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.RidgeRegressor.__init__": {"tf": 1}, "mlsauce.LazyBoostingClassifier.__init__": {"tf": 1}, "mlsauce.LazyBoostingRegressor.__init__": {"tf": 1}, "mlsauce.MultiTaskRegressor.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.__init__": {"tf": 1}, "mlsauce.lasso.LassoRegressor.__init__": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.__init__": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.__init__": {"tf": 1}, "mlsauce.multitaskregressor.MultiTaskRegressor.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.__init__": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.__init__": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.__init__": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.__init__": {"tf": 1}, "mlsauce.stump.StumpClassifier.__init__": {"tf": 1}, "mlsauce.utils.Progbar.__init__": {"tf": 1}}, "df": 30}}, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt.n_clusters_input": {"tf": 1}, "mlsauce.adaopt.AdaOpt.n_clusters_input": {"tf": 1}}, "df": 2}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}}, "df": 2}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.utils.Progbar.interval": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.utils.check_and_install": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.LassoRegressor.max_iter": {"tf": 1}, "mlsauce.lasso.LassoRegressor.max_iter": {"tf": 1}}, "df": 2, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.AdaOpt.n_iterations": {"tf": 1}, "mlsauce.adaopt.AdaOpt.n_iterations": {"tf": 1}}, "df": 2}}}}}}}}}, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.LazyBoostingClassifier.ignore_warnings": {"tf": 1}, "mlsauce.LazyBoostingRegressor.ignore_warnings": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.ignore_warnings": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.ignore_warnings": {"tf": 1}}, "df": 4}}}}}, "c": {"docs": {}, "df": 0, "p": {"docs": {"mlsauce.predictioninterval.PredictionInterval.icp_": {"tf": 1}}, "df": 1, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.__init__": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}}, "df": 5}}}}}}}}}}}, "s": {"docs": {"mlsauce.utils.is_float": {"tf": 1}, "mlsauce.utils.is_factor": {"tf": 1}, "mlsauce.utils.is_multitask_estimator": {"tf": 1}}, "df": 3}}, "n": {"docs": {"mlsauce.AdaOpt.n_iterations": {"tf": 1}, "mlsauce.AdaOpt.n_clusters": {"tf": 1}, "mlsauce.AdaOpt.n_jobs": {"tf": 1}, "mlsauce.AdaOpt.n_clusters_input": {"tf": 1}, "mlsauce.LSBoostClassifier.n_estimators": {"tf": 1}, "mlsauce.LSBoostClassifier.n_hidden_features": {"tf": 1}, "mlsauce.LSBoostClassifier.n_clusters": {"tf": 1}, "mlsauce.LSBoostRegressor.n_estimators": {"tf": 1}, "mlsauce.LSBoostRegressor.n_hidden_features": {"tf": 1}, "mlsauce.LSBoostRegressor.n_clusters": {"tf": 1}, "mlsauce.LazyBoostingClassifier.n_jobs": {"tf": 1}, "mlsauce.LazyBoostingRegressor.n_jobs": {"tf": 1}, "mlsauce.adaopt.AdaOpt.n_iterations": {"tf": 1}, "mlsauce.adaopt.AdaOpt.n_clusters": {"tf": 1}, "mlsauce.adaopt.AdaOpt.n_jobs": {"tf": 1}, "mlsauce.adaopt.AdaOpt.n_clusters_input": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.n_estimators": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.n_hidden_features": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.n_clusters": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.n_estimators": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.n_hidden_features": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.n_clusters": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.n_jobs": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.n_jobs": {"tf": 1}}, "df": 24, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.nonconformist.RegressorNormalizer.normalizer_model": {"tf": 1}}, "df": 1}}}}}}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.AdaOpt.learning_rate": {"tf": 1}, "mlsauce.LSBoostClassifier.learning_rate": {"tf": 1}, "mlsauce.LSBoostRegressor.learning_rate": {"tf": 1}, "mlsauce.adaopt.AdaOpt.learning_rate": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.learning_rate": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.learning_rate": {"tf": 1}}, "df": 6}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.predictioninterval.PredictionInterval.level": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {"mlsauce.AdaOpt.reg_lambda": {"tf": 1}, "mlsauce.LSBoostClassifier.reg_lambda": {"tf": 1}, "mlsauce.ElasticNetRegressor.reg_lambda": {"tf": 1}, "mlsauce.LassoRegressor.reg_lambda": {"tf": 1}, "mlsauce.LSBoostRegressor.reg_lambda": {"tf": 1}, "mlsauce.RidgeRegressor.reg_lambda": {"tf": 1}, "mlsauce.adaopt.AdaOpt.reg_lambda": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.reg_lambda": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.reg_lambda": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.reg_lambda": {"tf": 1}, "mlsauce.lasso.LassoRegressor.reg_lambda": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.reg_lambda": {"tf": 1}}, "df": 12}}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.LassoRegressor": {"tf": 1}, "mlsauce.LassoRegressor.__init__": {"tf": 1}, "mlsauce.LassoRegressor.reg_lambda": {"tf": 1}, "mlsauce.LassoRegressor.max_iter": {"tf": 1}, "mlsauce.LassoRegressor.tol": {"tf": 1}, "mlsauce.LassoRegressor.backend": {"tf": 1}, "mlsauce.LassoRegressor.fit": {"tf": 1}, "mlsauce.LassoRegressor.predict": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor": {"tf": 1}, "mlsauce.lasso.LassoRegressor.__init__": {"tf": 1}, "mlsauce.lasso.LassoRegressor.reg_lambda": {"tf": 1}, "mlsauce.lasso.LassoRegressor.max_iter": {"tf": 1}, "mlsauce.lasso.LassoRegressor.tol": {"tf": 1}, "mlsauce.lasso.LassoRegressor.backend": {"tf": 1}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}}, "df": 18}}}}}}}}}}}}, "z": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingClassifier.__init__": {"tf": 1}, "mlsauce.LazyBoostingClassifier.verbose": {"tf": 1}, "mlsauce.LazyBoostingClassifier.ignore_warnings": {"tf": 1}, "mlsauce.LazyBoostingClassifier.custom_metric": {"tf": 1}, "mlsauce.LazyBoostingClassifier.predictions": {"tf": 1}, "mlsauce.LazyBoostingClassifier.sort_by": {"tf": 1}, "mlsauce.LazyBoostingClassifier.models_": {"tf": 1}, "mlsauce.LazyBoostingClassifier.best_model_": {"tf": 1}, "mlsauce.LazyBoostingClassifier.random_state": {"tf": 1}, "mlsauce.LazyBoostingClassifier.estimators": {"tf": 1}, "mlsauce.LazyBoostingClassifier.preprocess": {"tf": 1}, "mlsauce.LazyBoostingClassifier.n_jobs": {"tf": 1}, "mlsauce.LazyBoostingClassifier.fit": {"tf": 1}, "mlsauce.LazyBoostingClassifier.get_best_model": {"tf": 1}, "mlsauce.LazyBoostingClassifier.provide_models": {"tf": 1}, "mlsauce.LazyBoostingClassifier.train_model": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.__init__": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.verbose": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.ignore_warnings": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.custom_metric": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.predictions": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.sort_by": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.models_": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.best_model_": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.random_state": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.estimators": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.preprocess": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.n_jobs": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.fit": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.get_best_model": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.train_model": {"tf": 1}}, "df": 34}}}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.LazyBoostingRegressor.__init__": {"tf": 1}, "mlsauce.LazyBoostingRegressor.verbose": {"tf": 1}, "mlsauce.LazyBoostingRegressor.ignore_warnings": {"tf": 1}, "mlsauce.LazyBoostingRegressor.custom_metric": {"tf": 1}, "mlsauce.LazyBoostingRegressor.predictions": {"tf": 1}, "mlsauce.LazyBoostingRegressor.sort_by": {"tf": 1}, "mlsauce.LazyBoostingRegressor.models_": {"tf": 1}, "mlsauce.LazyBoostingRegressor.best_model_": {"tf": 1}, "mlsauce.LazyBoostingRegressor.random_state": {"tf": 1}, "mlsauce.LazyBoostingRegressor.estimators": {"tf": 1}, "mlsauce.LazyBoostingRegressor.preprocess": {"tf": 1}, "mlsauce.LazyBoostingRegressor.n_jobs": {"tf": 1}, "mlsauce.LazyBoostingRegressor.fit": {"tf": 1}, "mlsauce.LazyBoostingRegressor.get_best_model": {"tf": 1}, "mlsauce.LazyBoostingRegressor.provide_models": {"tf": 1}, "mlsauce.LazyBoostingRegressor.train_model": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.__init__": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.verbose": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.ignore_warnings": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.custom_metric": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.predictions": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.sort_by": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.models_": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.best_model_": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.random_state": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.estimators": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.preprocess": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.n_jobs": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.fit": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.get_best_model": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.train_model": {"tf": 1}}, "df": 34}}}}}}}}}}}}}}}}}}}}, "s": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.LSBoostClassifier.base_model": {"tf": 1}, "mlsauce.LSBoostClassifier.n_estimators": {"tf": 1}, "mlsauce.LSBoostClassifier.learning_rate": {"tf": 1}, "mlsauce.LSBoostClassifier.n_hidden_features": {"tf": 1}, "mlsauce.LSBoostClassifier.reg_lambda": {"tf": 1}, "mlsauce.LSBoostClassifier.alpha": {"tf": 1}, "mlsauce.LSBoostClassifier.row_sample": {"tf": 1}, "mlsauce.LSBoostClassifier.col_sample": {"tf": 1}, "mlsauce.LSBoostClassifier.dropout": {"tf": 1}, "mlsauce.LSBoostClassifier.tolerance": {"tf": 1}, "mlsauce.LSBoostClassifier.direct_link": {"tf": 1}, "mlsauce.LSBoostClassifier.verbose": {"tf": 1}, "mlsauce.LSBoostClassifier.seed": {"tf": 1}, "mlsauce.LSBoostClassifier.backend": {"tf": 1}, "mlsauce.LSBoostClassifier.obj": {"tf": 1}, "mlsauce.LSBoostClassifier.solver": {"tf": 1}, "mlsauce.LSBoostClassifier.activation": {"tf": 1}, "mlsauce.LSBoostClassifier.n_clusters": {"tf": 1}, "mlsauce.LSBoostClassifier.clustering_method": {"tf": 1}, "mlsauce.LSBoostClassifier.cluster_scaling": {"tf": 1}, "mlsauce.LSBoostClassifier.degree": {"tf": 1}, "mlsauce.LSBoostClassifier.poly_": {"tf": 1}, "mlsauce.LSBoostClassifier.weights_distr": {"tf": 1}, "mlsauce.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier.update": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.base_model": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.n_estimators": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.learning_rate": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.n_hidden_features": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.reg_lambda": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.alpha": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.row_sample": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.col_sample": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.dropout": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.tolerance": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.direct_link": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.verbose": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.seed": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.backend": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.obj": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.solver": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.activation": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.n_clusters": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.clustering_method": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.cluster_scaling": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.degree": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.poly_": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.weights_distr": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.update": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}}, "df": 60}}}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.base_model": {"tf": 1}, "mlsauce.LSBoostRegressor.n_estimators": {"tf": 1}, "mlsauce.LSBoostRegressor.learning_rate": {"tf": 1}, "mlsauce.LSBoostRegressor.n_hidden_features": {"tf": 1}, "mlsauce.LSBoostRegressor.reg_lambda": {"tf": 1}, "mlsauce.LSBoostRegressor.alpha": {"tf": 1}, "mlsauce.LSBoostRegressor.row_sample": {"tf": 1}, "mlsauce.LSBoostRegressor.col_sample": {"tf": 1}, "mlsauce.LSBoostRegressor.dropout": {"tf": 1}, "mlsauce.LSBoostRegressor.tolerance": {"tf": 1}, "mlsauce.LSBoostRegressor.direct_link": {"tf": 1}, "mlsauce.LSBoostRegressor.verbose": {"tf": 1}, "mlsauce.LSBoostRegressor.seed": {"tf": 1}, "mlsauce.LSBoostRegressor.backend": {"tf": 1}, "mlsauce.LSBoostRegressor.obj": {"tf": 1}, "mlsauce.LSBoostRegressor.solver": {"tf": 1}, "mlsauce.LSBoostRegressor.activation": {"tf": 1}, "mlsauce.LSBoostRegressor.type_pi": {"tf": 1}, "mlsauce.LSBoostRegressor.replications": {"tf": 1}, "mlsauce.LSBoostRegressor.kernel": {"tf": 1}, "mlsauce.LSBoostRegressor.n_clusters": {"tf": 1}, "mlsauce.LSBoostRegressor.clustering_method": {"tf": 1}, "mlsauce.LSBoostRegressor.cluster_scaling": {"tf": 1}, "mlsauce.LSBoostRegressor.degree": {"tf": 1}, "mlsauce.LSBoostRegressor.poly_": {"tf": 1}, "mlsauce.LSBoostRegressor.weights_distr": {"tf": 1}, "mlsauce.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor.update": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.base_model": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.n_estimators": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.learning_rate": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.n_hidden_features": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.reg_lambda": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.alpha": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.row_sample": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.col_sample": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.dropout": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.tolerance": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.direct_link": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.verbose": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.seed": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.backend": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.obj": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.solver": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.activation": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.type_pi": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.replications": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.kernel": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.n_clusters": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.clustering_method": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.cluster_scaling": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.degree": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.poly_": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.weights_distr": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.update": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}}, "df": 66}}}}}}}}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"docs": {"mlsauce.LSBoostClassifier.direct_link": {"tf": 1}, "mlsauce.LSBoostRegressor.direct_link": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.direct_link": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.direct_link": {"tf": 1}}, "df": 4}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.learning_rate": {"tf": 1}, "mlsauce.LSBoostClassifier.learning_rate": {"tf": 1}, "mlsauce.LSBoostRegressor.learning_rate": {"tf": 1}, "mlsauce.adaopt.AdaOpt.learning_rate": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.learning_rate": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.learning_rate": {"tf": 1}}, "df": 6}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"mlsauce.LazyBoostingClassifier.random_state": {"tf": 1}, "mlsauce.LazyBoostingRegressor.random_state": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.random_state": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.random_state": {"tf": 1}}, "df": 4}}}}}, "e": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.AdaOpt.reg_lambda": {"tf": 1}, "mlsauce.AdaOpt.reg_alpha": {"tf": 1}, "mlsauce.LSBoostClassifier.reg_lambda": {"tf": 1}, "mlsauce.ElasticNetRegressor.reg_lambda": {"tf": 1}, "mlsauce.LassoRegressor.reg_lambda": {"tf": 1}, "mlsauce.LSBoostRegressor.reg_lambda": {"tf": 1}, "mlsauce.RidgeRegressor.reg_lambda": {"tf": 1}, "mlsauce.adaopt.AdaOpt.reg_lambda": {"tf": 1}, "mlsauce.adaopt.AdaOpt.reg_alpha": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.reg_lambda": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.reg_lambda": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.reg_lambda": {"tf": 1}, "mlsauce.lasso.LassoRegressor.reg_lambda": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.reg_lambda": {"tf": 1}}, "df": 14, "r": {"docs": {"mlsauce.MultiTaskRegressor.regr": {"tf": 1}, "mlsauce.multitaskregressor.MultiTaskRegressor.regr": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}}, "df": 4}}}}}}}, "n": {"docs": {}, "df": 0, "c": {"docs": {"mlsauce.nonconformist.RegressorNc": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}}, "df": 6}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.base_model": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.normalizer_model": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.err_func": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.fit": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.score": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}}, "df": 9}}}}}}}}}}}}}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.MultiTaskRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.multitaskregressor.MultiTaskRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 37}}}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.LSBoostRegressor.replications": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.replications": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.replications": {"tf": 1}}, "df": 3}}}}}}}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.predictioninterval.PredictionInterval.calibrated_residuals_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.scaled_calibrated_residuals_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.calibrated_residuals_scaler_": {"tf": 1}}, "df": 3}}}}}}}}, "o": {"docs": {}, "df": 0, "w": {"docs": {"mlsauce.AdaOpt.row_sample": {"tf": 1}, "mlsauce.LSBoostClassifier.row_sample": {"tf": 1}, "mlsauce.LSBoostRegressor.row_sample": {"tf": 1}, "mlsauce.adaopt.AdaOpt.row_sample": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.row_sample": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.row_sample": {"tf": 1}}, "df": 6}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.RidgeRegressor": {"tf": 1}, "mlsauce.RidgeRegressor.__init__": {"tf": 1}, "mlsauce.RidgeRegressor.reg_lambda": {"tf": 1}, "mlsauce.RidgeRegressor.backend": {"tf": 1}, "mlsauce.RidgeRegressor.fit": {"tf": 1}, "mlsauce.RidgeRegressor.predict": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.__init__": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.reg_lambda": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.backend": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}}, "df": 14}}}}}}}}}}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"mlsauce.AdaOpt.eta": {"tf": 1}, "mlsauce.adaopt.AdaOpt.eta": {"tf": 1}}, "df": 2}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.utils.is_multitask_estimator": {"tf": 1}}, "df": 1, "s": {"docs": {"mlsauce.LSBoostClassifier.n_estimators": {"tf": 1}, "mlsauce.LSBoostRegressor.n_estimators": {"tf": 1}, "mlsauce.LazyBoostingClassifier.estimators": {"tf": 1}, "mlsauce.LazyBoostingRegressor.estimators": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.n_estimators": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.n_estimators": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.estimators": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.estimators": {"tf": 1}}, "df": 8}}}}}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.ElasticNetRegressor": {"tf": 1}, "mlsauce.ElasticNetRegressor.__init__": {"tf": 1}, "mlsauce.ElasticNetRegressor.reg_lambda": {"tf": 1}, "mlsauce.ElasticNetRegressor.alpha": {"tf": 1}, "mlsauce.ElasticNetRegressor.backend": {"tf": 1}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.__init__": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.reg_lambda": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.alpha": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.backend": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}}, "df": 16}}}}}}}}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.nonconformist.RegressorNormalizer.err_func": {"tf": 1}}, "df": 1}}}, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"mlsauce.AdaOpt.gamma": {"tf": 1}, "mlsauce.adaopt.AdaOpt.gamma": {"tf": 1}}, "df": 2}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingClassifier.base_model": {"tf": 1}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.base_model": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1}}, "df": 8}}}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.GenericBoostingRegressor.base_model": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.base_model": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1}}, "df": 10}}}}}}}}}}}}}}}}}}}}}}, "t": {"docs": {"mlsauce.LazyBoostingClassifier.get_best_model": {"tf": 1}, "mlsauce.LazyBoostingRegressor.get_best_model": {"tf": 1}, "mlsauce.get_config": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.get_best_model": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.get_best_model": {"tf": 1}, "mlsauce.utils.get_beta": {"tf": 1}, "mlsauce.utils.get_beta.get_beta": {"tf": 1}}, "df": 7}}}, "k": {"docs": {"mlsauce.AdaOpt.k": {"tf": 1}, "mlsauce.adaopt.AdaOpt.k": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.LSBoostRegressor.kernel": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.kernel": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.kernel": {"tf": 1}}, "df": 3}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.predictioninterval.PredictionInterval.kde_": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.LassoRegressor.tol": {"tf": 1}, "mlsauce.lasso.LassoRegressor.tol": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.tolerance": {"tf": 1}, "mlsauce.LSBoostClassifier.tolerance": {"tf": 1}, "mlsauce.LSBoostRegressor.tolerance": {"tf": 1}, "mlsauce.adaopt.AdaOpt.tolerance": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.tolerance": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.tolerance": {"tf": 1}}, "df": 6}}}}}}}}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.type_dist": {"tf": 1}, "mlsauce.LSBoostRegressor.type_pi": {"tf": 1}, "mlsauce.adaopt.AdaOpt.type_dist": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.type_pi": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.type_pi": {"tf": 1}}, "df": 5}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.LazyBoostingClassifier.train_model": {"tf": 1}, "mlsauce.LazyBoostingRegressor.train_model": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.train_model": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.train_model": {"tf": 1}}, "df": 4}}}}, "w": {"docs": {}, "df": 0, "o": {"docs": {"mlsauce.utils.merge_two_dicts": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.utils.Progbar.target": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.AdaOpt.cluster_scaling": {"tf": 1}, "mlsauce.LSBoostClassifier.cluster_scaling": {"tf": 1}, "mlsauce.LSBoostRegressor.cluster_scaling": {"tf": 1}, "mlsauce.adaopt.AdaOpt.cluster_scaling": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.cluster_scaling": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.cluster_scaling": {"tf": 1}, "mlsauce.utils.cluster": {"tf": 1}}, "df": 7, "s": {"docs": {"mlsauce.AdaOpt.n_clusters": {"tf": 1}, "mlsauce.AdaOpt.n_clusters_input": {"tf": 1}, "mlsauce.LSBoostClassifier.n_clusters": {"tf": 1}, "mlsauce.LSBoostRegressor.n_clusters": {"tf": 1}, "mlsauce.adaopt.AdaOpt.n_clusters": {"tf": 1}, "mlsauce.adaopt.AdaOpt.n_clusters_input": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.n_clusters": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.n_clusters": {"tf": 1}}, "df": 8}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.AdaOpt.clustering_method": {"tf": 1}, "mlsauce.LSBoostClassifier.clustering_method": {"tf": 1}, "mlsauce.LSBoostRegressor.clustering_method": {"tf": 1}, "mlsauce.adaopt.AdaOpt.clustering_method": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.clustering_method": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.clustering_method": {"tf": 1}}, "df": 6}}}}}}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.cache": {"tf": 1}, "mlsauce.adaopt.AdaOpt.cache": {"tf": 1}}, "df": 2}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.predictioninterval.PredictionInterval.calibrated_residuals_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.scaled_calibrated_residuals_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.calibrated_residuals_scaler_": {"tf": 1}}, "df": 3}}}}}}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.LSBoostClassifier.col_sample": {"tf": 1}, "mlsauce.LSBoostRegressor.col_sample": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.col_sample": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.col_sample": {"tf": 1}}, "df": 4}, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.get_config": {"tf": 1}, "mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 3}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.config_context": {"tf": 1}}, "df": 1}}}}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"mlsauce.LazyBoostingClassifier.custom_metric": {"tf": 1}, "mlsauce.LazyBoostingRegressor.custom_metric": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.custom_metric": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.custom_metric": {"tf": 1}}, "df": 4}}}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"mlsauce.utils.check_and_install": {"tf": 1}}, "df": 1}}}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"mlsauce.AdaOpt.batch_size": {"tf": 1}, "mlsauce.adaopt.AdaOpt.batch_size": {"tf": 1}}, "df": 2}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.LSBoostClassifier.base_model": {"tf": 1}, "mlsauce.GenericBoostingClassifier.base_model": {"tf": 1}, "mlsauce.GenericBoostingRegressor.base_model": {"tf": 1}, "mlsauce.LSBoostRegressor.base_model": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.base_model": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.base_model": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.base_model": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.base_model": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.base_model": {"tf": 1}}, "df": 9}}, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.LSBoostClassifier.backend": {"tf": 1}, "mlsauce.ElasticNetRegressor.backend": {"tf": 1}, "mlsauce.LassoRegressor.backend": {"tf": 1}, "mlsauce.LSBoostRegressor.backend": {"tf": 1}, "mlsauce.RidgeRegressor.backend": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.backend": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.backend": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.backend": {"tf": 1}, "mlsauce.lasso.LassoRegressor.backend": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.backend": {"tf": 1}}, "df": 10}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.StumpClassifier.bins": {"tf": 1}, "mlsauce.stump.StumpClassifier.bins": {"tf": 1}}, "df": 2}}}, "y": {"docs": {"mlsauce.LazyBoostingClassifier.sort_by": {"tf": 1}, "mlsauce.LazyBoostingRegressor.sort_by": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.sort_by": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.sort_by": {"tf": 1}}, "df": 4}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.LazyBoostingClassifier.best_model_": {"tf": 1}, "mlsauce.LazyBoostingClassifier.get_best_model": {"tf": 1}, "mlsauce.LazyBoostingRegressor.best_model_": {"tf": 1}, "mlsauce.LazyBoostingRegressor.get_best_model": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.best_model_": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.get_best_model": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.best_model_": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.get_best_model": {"tf": 1}}, "df": 8}}, "t": {"docs": {}, "df": 0, "a": {"docs": {"mlsauce.utils.get_beta": {"tf": 1}, "mlsauce.utils.get_beta.get_beta": {"tf": 1}}, "df": 2}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.batch_size": {"tf": 1}, "mlsauce.adaopt.AdaOpt.batch_size": {"tf": 1}}, "df": 2}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.row_sample": {"tf": 1}, "mlsauce.LSBoostClassifier.row_sample": {"tf": 1}, "mlsauce.LSBoostClassifier.col_sample": {"tf": 1}, "mlsauce.LSBoostRegressor.row_sample": {"tf": 1}, "mlsauce.LSBoostRegressor.col_sample": {"tf": 1}, "mlsauce.adaopt.AdaOpt.row_sample": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.row_sample": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.col_sample": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.row_sample": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.col_sample": {"tf": 1}}, "df": 10}}}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.AdaOpt.cluster_scaling": {"tf": 1}, "mlsauce.LSBoostClassifier.cluster_scaling": {"tf": 1}, "mlsauce.LSBoostRegressor.cluster_scaling": {"tf": 1}, "mlsauce.adaopt.AdaOpt.cluster_scaling": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.cluster_scaling": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.cluster_scaling": {"tf": 1}}, "df": 6}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.predictioninterval.PredictionInterval.scaled_calibrated_residuals_": {"tf": 1}}, "df": 1}, "r": {"docs": {"mlsauce.predictioninterval.PredictionInterval.calibrated_residuals_scaler_": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.MultiTaskRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.multitaskregressor.MultiTaskRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.score": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 24}}}}, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.AdaOpt.seed": {"tf": 1}, "mlsauce.LSBoostClassifier.seed": {"tf": 1}, "mlsauce.LSBoostRegressor.seed": {"tf": 1}, "mlsauce.adaopt.AdaOpt.seed": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.seed": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.seed": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.seed": {"tf": 1}}, "df": 7}}, "t": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.MultiTaskRegressor.set_score_request": {"tf": 1}, "mlsauce.set_config": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.multitaskregressor.MultiTaskRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 38}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.LSBoostClassifier.solver": {"tf": 1}, "mlsauce.LSBoostRegressor.solver": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.solver": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.solver": {"tf": 1}}, "df": 4}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.LazyBoostingClassifier.sort_by": {"tf": 1}, "mlsauce.LazyBoostingRegressor.sort_by": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.sort_by": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.sort_by": {"tf": 1}}, "df": 4}}}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.StumpClassifier": {"tf": 1}, "mlsauce.StumpClassifier.__init__": {"tf": 1}, "mlsauce.StumpClassifier.bins": {"tf": 1}, "mlsauce.StumpClassifier.obj": {"tf": 1}, "mlsauce.StumpClassifier.fit": {"tf": 1}, "mlsauce.StumpClassifier.predict": {"tf": 1}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier": {"tf": 1}, "mlsauce.stump.StumpClassifier.__init__": {"tf": 1}, "mlsauce.stump.StumpClassifier.bins": {"tf": 1}, "mlsauce.stump.StumpClassifier.obj": {"tf": 1}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 18}}}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.LazyBoostingClassifier.random_state": {"tf": 1}, "mlsauce.LazyBoostingRegressor.random_state": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.random_state": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.random_state": {"tf": 1}}, "df": 4}}}}, "u": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.utils.subsample": {"tf": 1}}, "df": 1}}}}}}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt.type_dist": {"tf": 1}, "mlsauce.adaopt.AdaOpt.type_dist": {"tf": 1}}, "df": 2, "r": {"docs": {"mlsauce.LSBoostClassifier.weights_distr": {"tf": 1}, "mlsauce.LSBoostRegressor.weights_distr": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.weights_distr": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.weights_distr": {"tf": 1}}, "df": 4}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.LSBoostClassifier.direct_link": {"tf": 1}, "mlsauce.LSBoostRegressor.direct_link": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.direct_link": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.direct_link": {"tf": 1}}, "df": 4}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.utils.merge_two_dicts": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.LSBoostClassifier.dropout": {"tf": 1}, "mlsauce.LSBoostRegressor.dropout": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.dropout": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.dropout": {"tf": 1}}, "df": 4}}}}}}, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.LSBoostClassifier.degree": {"tf": 1}, "mlsauce.LSBoostRegressor.degree": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.degree": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.degree": {"tf": 1}}, "df": 4}}}}}, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.download": {"tf": 1}, "mlsauce.datasets.dowload.download": {"tf": 1}}, "df": 2}}}}}}}}, "j": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.AdaOpt.n_jobs": {"tf": 1}, "mlsauce.LazyBoostingClassifier.n_jobs": {"tf": 1}, "mlsauce.LazyBoostingRegressor.n_jobs": {"tf": 1}, "mlsauce.adaopt.AdaOpt.n_jobs": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.n_jobs": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.n_jobs": {"tf": 1}}, "df": 6}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.verbose": {"tf": 1}, "mlsauce.LSBoostClassifier.verbose": {"tf": 1}, "mlsauce.LSBoostRegressor.verbose": {"tf": 1}, "mlsauce.LazyBoostingClassifier.verbose": {"tf": 1}, "mlsauce.LazyBoostingRegressor.verbose": {"tf": 1}, "mlsauce.adaopt.AdaOpt.verbose": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.verbose": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.verbose": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.verbose": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.verbose": {"tf": 1}, "mlsauce.utils.Progbar.verbose": {"tf": 1}}, "df": 11}}}}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.AdaOpt.clustering_method": {"tf": 1}, "mlsauce.LSBoostClassifier.clustering_method": {"tf": 1}, "mlsauce.LSBoostRegressor.clustering_method": {"tf": 1}, "mlsauce.adaopt.AdaOpt.clustering_method": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.clustering_method": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.clustering_method": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.method": {"tf": 1}}, "df": 7}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"mlsauce.LazyBoostingClassifier.custom_metric": {"tf": 1}, "mlsauce.LazyBoostingRegressor.custom_metric": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.custom_metric": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.custom_metric": {"tf": 1}}, "df": 4}}}}, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.utils.merge_two_dicts": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.LSBoostClassifier.base_model": {"tf": 1}, "mlsauce.GenericBoostingClassifier.base_model": {"tf": 1}, "mlsauce.GenericBoostingRegressor.base_model": {"tf": 1}, "mlsauce.LSBoostRegressor.base_model": {"tf": 1}, "mlsauce.LazyBoostingClassifier.best_model_": {"tf": 1}, "mlsauce.LazyBoostingClassifier.get_best_model": {"tf": 1}, "mlsauce.LazyBoostingClassifier.train_model": {"tf": 1}, "mlsauce.LazyBoostingRegressor.best_model_": {"tf": 1}, "mlsauce.LazyBoostingRegressor.get_best_model": {"tf": 1}, "mlsauce.LazyBoostingRegressor.train_model": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.base_model": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.base_model": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.base_model": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.base_model": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.best_model_": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.get_best_model": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.train_model": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.best_model_": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.get_best_model": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.train_model": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.base_model": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.normalizer_model": {"tf": 1}}, "df": 22, "s": {"docs": {"mlsauce.LazyBoostingClassifier.models_": {"tf": 1}, "mlsauce.LazyBoostingClassifier.provide_models": {"tf": 1}, "mlsauce.LazyBoostingRegressor.models_": {"tf": 1}, "mlsauce.LazyBoostingRegressor.provide_models": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.models_": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.models_": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 1}}, "df": 8}}}}}, "a": {"docs": {}, "df": 0, "x": {"docs": {"mlsauce.LassoRegressor.max_iter": {"tf": 1}, "mlsauce.lasso.LassoRegressor.max_iter": {"tf": 1}}, "df": 2}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "k": {"docs": {"mlsauce.utils.is_multitask_estimator": {"tf": 1}}, "df": 1, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.MultiTaskRegressor": {"tf": 1}, "mlsauce.MultiTaskRegressor.__init__": {"tf": 1}, "mlsauce.MultiTaskRegressor.regr": {"tf": 1}, "mlsauce.MultiTaskRegressor.objs": {"tf": 1}, "mlsauce.MultiTaskRegressor.fit": {"tf": 1}, "mlsauce.MultiTaskRegressor.predict": {"tf": 1}, "mlsauce.MultiTaskRegressor.set_score_request": {"tf": 1}, "mlsauce.multitaskregressor.MultiTaskRegressor": {"tf": 1}, "mlsauce.multitaskregressor.MultiTaskRegressor.__init__": {"tf": 1}, "mlsauce.multitaskregressor.MultiTaskRegressor.regr": {"tf": 1}, "mlsauce.multitaskregressor.MultiTaskRegressor.objs": {"tf": 1}, "mlsauce.multitaskregressor.MultiTaskRegressor.fit": {"tf": 1}, "mlsauce.multitaskregressor.MultiTaskRegressor.predict": {"tf": 1}, "mlsauce.multitaskregressor.MultiTaskRegressor.set_score_request": {"tf": 1}}, "df": 14}}}}}}}}}}}}}}}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt.fit": {"tf": 1}, "mlsauce.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.StumpClassifier.fit": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.LassoRegressor.fit": {"tf": 1}, "mlsauce.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.RidgeRegressor.fit": {"tf": 1}, "mlsauce.LazyBoostingClassifier.fit": {"tf": 1}, "mlsauce.LazyBoostingRegressor.fit": {"tf": 1}, "mlsauce.MultiTaskRegressor.fit": {"tf": 1}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.fit": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.fit": {"tf": 1}, "mlsauce.multitaskregressor.MultiTaskRegressor.fit": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.fit": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}}, "df": 28}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.LSBoostClassifier.n_hidden_features": {"tf": 1}, "mlsauce.LSBoostRegressor.n_hidden_features": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.n_hidden_features": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.n_hidden_features": {"tf": 1}}, "df": 4}}}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"mlsauce.nonconformist.RegressorNormalizer.err_func": {"tf": 1}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.utils.flatten": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.utils.is_float": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.utils.is_factor": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt.predict": {"tf": 1}, "mlsauce.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.StumpClassifier.predict": {"tf": 1}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.LassoRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.RidgeRegressor.predict": {"tf": 1}, "mlsauce.MultiTaskRegressor.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1}, "mlsauce.multitaskregressor.MultiTaskRegressor.predict": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1}}, "df": 33, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.LazyBoostingClassifier.predictions": {"tf": 1}, "mlsauce.LazyBoostingRegressor.predictions": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.predictions": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.predictions": {"tf": 1}}, "df": 4}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.predictioninterval.PredictionInterval": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.__init__": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.obj": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.method": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.level": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.type_pi": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.replications": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.kernel": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.agg": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.seed": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.alpha_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.quantile_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.icp_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.calibrated_residuals_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.scaled_calibrated_residuals_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.calibrated_residuals_scaler_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.kde_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}}, "df": 21}}}}}}}}}}}}}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.LazyBoostingClassifier.preprocess": {"tf": 1}, "mlsauce.LazyBoostingRegressor.preprocess": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.preprocess": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.preprocess": {"tf": 1}}, "df": 4}}}}}}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {"mlsauce.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1}}, "df": 6}}, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.LazyBoostingClassifier.provide_models": {"tf": 1}, "mlsauce.LazyBoostingRegressor.provide_models": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 1}}, "df": 4}}}}, "g": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.utils.Progbar": {"tf": 1}, "mlsauce.utils.Progbar.__init__": {"tf": 1}, "mlsauce.utils.Progbar.target": {"tf": 1}, "mlsauce.utils.Progbar.width": {"tf": 1}, "mlsauce.utils.Progbar.verbose": {"tf": 1}, "mlsauce.utils.Progbar.interval": {"tf": 1}, "mlsauce.utils.Progbar.update": {"tf": 1}, "mlsauce.utils.Progbar.add": {"tf": 1}}, "df": 8}}}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"mlsauce.LSBoostClassifier.poly_": {"tf": 1}, "mlsauce.LSBoostRegressor.poly_": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.poly_": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.poly_": {"tf": 1}}, "df": 4}}}, "i": {"docs": {"mlsauce.LSBoostRegressor.type_pi": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.type_pi": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.type_pi": {"tf": 1}}, "df": 3}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.LSBoostClassifier.n_hidden_features": {"tf": 1}, "mlsauce.LSBoostRegressor.n_hidden_features": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.n_hidden_features": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.n_hidden_features": {"tf": 1}}, "df": 4}}}}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "j": {"docs": {"mlsauce.LSBoostClassifier.obj": {"tf": 1}, "mlsauce.StumpClassifier.obj": {"tf": 1}, "mlsauce.LSBoostRegressor.obj": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.obj": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.obj": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.obj": {"tf": 1}, "mlsauce.stump.StumpClassifier.obj": {"tf": 1}}, "df": 7, "s": {"docs": {"mlsauce.MultiTaskRegressor.objs": {"tf": 1}, "mlsauce.multitaskregressor.MultiTaskRegressor.objs": {"tf": 1}}, "df": 2}}}}, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.LSBoostClassifier.weights_distr": {"tf": 1}, "mlsauce.LSBoostRegressor.weights_distr": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.weights_distr": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.weights_distr": {"tf": 1}}, "df": 4}}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.LazyBoostingClassifier.ignore_warnings": {"tf": 1}, "mlsauce.LazyBoostingRegressor.ignore_warnings": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.ignore_warnings": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.ignore_warnings": {"tf": 1}}, "df": 4}}}}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"mlsauce.utils.Progbar.width": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.LSBoostClassifier.update": {"tf": 1}, "mlsauce.LSBoostRegressor.update": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.update": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.update": {"tf": 1}, "mlsauce.utils.Progbar.update": {"tf": 1}}, "df": 5}}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.predictioninterval.PredictionInterval.quantile_": {"tf": 1}}, "df": 1, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"mlsauce.nonconformist.QuantileRegErrFunc": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}}, "df": 3}}}}}}}}}}}}}}}}}}}}, "fullname": {"root": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.LSBoostClassifier.poly_": {"tf": 1}, "mlsauce.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.StumpClassifier.__init__": {"tf": 1}, "mlsauce.ElasticNetRegressor.__init__": {"tf": 1}, "mlsauce.LassoRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.poly_": {"tf": 1}, "mlsauce.RidgeRegressor.__init__": {"tf": 1}, "mlsauce.LazyBoostingClassifier.__init__": {"tf": 1}, "mlsauce.LazyBoostingClassifier.models_": {"tf": 1}, "mlsauce.LazyBoostingClassifier.best_model_": {"tf": 1}, "mlsauce.LazyBoostingRegressor.__init__": {"tf": 1}, "mlsauce.LazyBoostingRegressor.models_": {"tf": 1}, "mlsauce.LazyBoostingRegressor.best_model_": {"tf": 1}, "mlsauce.MultiTaskRegressor.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.poly_": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.poly_": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.__init__": {"tf": 1}, "mlsauce.lasso.LassoRegressor.__init__": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.__init__": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.models_": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.best_model_": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.__init__": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.models_": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.best_model_": {"tf": 1}, "mlsauce.multitaskregressor.MultiTaskRegressor.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.__init__": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.__init__": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.__init__": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.alpha_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.quantile_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.icp_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.calibrated_residuals_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.scaled_calibrated_residuals_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.calibrated_residuals_scaler_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.kde_": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.__init__": {"tf": 1}, "mlsauce.stump.StumpClassifier.__init__": {"tf": 1}, "mlsauce.utils.Progbar.__init__": {"tf": 1}}, "df": 49, "m": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce": {"tf": 1}, "mlsauce.AdaOpt": {"tf": 1}, "mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.AdaOpt.n_iterations": {"tf": 1}, "mlsauce.AdaOpt.learning_rate": {"tf": 1}, "mlsauce.AdaOpt.reg_lambda": {"tf": 1}, "mlsauce.AdaOpt.reg_alpha": {"tf": 1}, "mlsauce.AdaOpt.eta": {"tf": 1}, "mlsauce.AdaOpt.gamma": {"tf": 1}, "mlsauce.AdaOpt.k": {"tf": 1}, "mlsauce.AdaOpt.tolerance": {"tf": 1}, "mlsauce.AdaOpt.n_clusters": {"tf": 1}, "mlsauce.AdaOpt.batch_size": {"tf": 1}, "mlsauce.AdaOpt.row_sample": {"tf": 1}, "mlsauce.AdaOpt.type_dist": {"tf": 1}, "mlsauce.AdaOpt.n_jobs": {"tf": 1}, "mlsauce.AdaOpt.cache": {"tf": 1}, "mlsauce.AdaOpt.verbose": {"tf": 1}, "mlsauce.AdaOpt.n_clusters_input": {"tf": 1}, "mlsauce.AdaOpt.clustering_method": {"tf": 1}, "mlsauce.AdaOpt.cluster_scaling": {"tf": 1}, "mlsauce.AdaOpt.seed": {"tf": 1}, "mlsauce.AdaOpt.fit": {"tf": 1}, "mlsauce.AdaOpt.predict": {"tf": 1}, "mlsauce.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.LSBoostClassifier.base_model": {"tf": 1}, "mlsauce.LSBoostClassifier.n_estimators": {"tf": 1}, "mlsauce.LSBoostClassifier.learning_rate": {"tf": 1}, "mlsauce.LSBoostClassifier.n_hidden_features": {"tf": 1}, "mlsauce.LSBoostClassifier.reg_lambda": {"tf": 1}, "mlsauce.LSBoostClassifier.alpha": {"tf": 1}, "mlsauce.LSBoostClassifier.row_sample": {"tf": 1}, "mlsauce.LSBoostClassifier.col_sample": {"tf": 1}, "mlsauce.LSBoostClassifier.dropout": {"tf": 1}, "mlsauce.LSBoostClassifier.tolerance": {"tf": 1}, "mlsauce.LSBoostClassifier.direct_link": {"tf": 1}, "mlsauce.LSBoostClassifier.verbose": {"tf": 1}, "mlsauce.LSBoostClassifier.seed": {"tf": 1}, "mlsauce.LSBoostClassifier.backend": {"tf": 1}, "mlsauce.LSBoostClassifier.obj": {"tf": 1}, "mlsauce.LSBoostClassifier.solver": {"tf": 1}, "mlsauce.LSBoostClassifier.activation": {"tf": 1}, "mlsauce.LSBoostClassifier.n_clusters": {"tf": 1}, "mlsauce.LSBoostClassifier.clustering_method": {"tf": 1}, "mlsauce.LSBoostClassifier.cluster_scaling": {"tf": 1}, "mlsauce.LSBoostClassifier.degree": {"tf": 1}, "mlsauce.LSBoostClassifier.poly_": {"tf": 1}, "mlsauce.LSBoostClassifier.weights_distr": {"tf": 1}, "mlsauce.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier.update": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingClassifier.base_model": {"tf": 1}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.GenericBoostingRegressor.base_model": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier": {"tf": 1}, "mlsauce.StumpClassifier.__init__": {"tf": 1}, "mlsauce.StumpClassifier.bins": {"tf": 1}, "mlsauce.StumpClassifier.obj": {"tf": 1}, "mlsauce.StumpClassifier.fit": {"tf": 1}, "mlsauce.StumpClassifier.predict": {"tf": 1}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor": {"tf": 1}, "mlsauce.ElasticNetRegressor.__init__": {"tf": 1}, "mlsauce.ElasticNetRegressor.reg_lambda": {"tf": 1}, "mlsauce.ElasticNetRegressor.alpha": {"tf": 1}, "mlsauce.ElasticNetRegressor.backend": {"tf": 1}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor": {"tf": 1}, "mlsauce.LassoRegressor.__init__": {"tf": 1}, "mlsauce.LassoRegressor.reg_lambda": {"tf": 1}, "mlsauce.LassoRegressor.max_iter": {"tf": 1}, "mlsauce.LassoRegressor.tol": {"tf": 1}, "mlsauce.LassoRegressor.backend": {"tf": 1}, "mlsauce.LassoRegressor.fit": {"tf": 1}, "mlsauce.LassoRegressor.predict": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.base_model": {"tf": 1}, "mlsauce.LSBoostRegressor.n_estimators": {"tf": 1}, "mlsauce.LSBoostRegressor.learning_rate": {"tf": 1}, "mlsauce.LSBoostRegressor.n_hidden_features": {"tf": 1}, "mlsauce.LSBoostRegressor.reg_lambda": {"tf": 1}, "mlsauce.LSBoostRegressor.alpha": {"tf": 1}, "mlsauce.LSBoostRegressor.row_sample": {"tf": 1}, "mlsauce.LSBoostRegressor.col_sample": {"tf": 1}, "mlsauce.LSBoostRegressor.dropout": {"tf": 1}, "mlsauce.LSBoostRegressor.tolerance": {"tf": 1}, "mlsauce.LSBoostRegressor.direct_link": {"tf": 1}, "mlsauce.LSBoostRegressor.verbose": {"tf": 1}, "mlsauce.LSBoostRegressor.seed": {"tf": 1}, "mlsauce.LSBoostRegressor.backend": {"tf": 1}, "mlsauce.LSBoostRegressor.obj": {"tf": 1}, "mlsauce.LSBoostRegressor.solver": {"tf": 1}, "mlsauce.LSBoostRegressor.activation": {"tf": 1}, "mlsauce.LSBoostRegressor.type_pi": {"tf": 1}, "mlsauce.LSBoostRegressor.replications": {"tf": 1}, "mlsauce.LSBoostRegressor.kernel": {"tf": 1}, "mlsauce.LSBoostRegressor.n_clusters": {"tf": 1}, "mlsauce.LSBoostRegressor.clustering_method": {"tf": 1}, "mlsauce.LSBoostRegressor.cluster_scaling": {"tf": 1}, "mlsauce.LSBoostRegressor.degree": {"tf": 1}, "mlsauce.LSBoostRegressor.poly_": {"tf": 1}, "mlsauce.LSBoostRegressor.weights_distr": {"tf": 1}, "mlsauce.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor.update": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor": {"tf": 1}, "mlsauce.RidgeRegressor.__init__": {"tf": 1}, "mlsauce.RidgeRegressor.reg_lambda": {"tf": 1}, "mlsauce.RidgeRegressor.backend": {"tf": 1}, "mlsauce.RidgeRegressor.fit": {"tf": 1}, "mlsauce.RidgeRegressor.predict": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingClassifier.__init__": {"tf": 1}, "mlsauce.LazyBoostingClassifier.verbose": {"tf": 1}, "mlsauce.LazyBoostingClassifier.ignore_warnings": {"tf": 1}, "mlsauce.LazyBoostingClassifier.custom_metric": {"tf": 1}, "mlsauce.LazyBoostingClassifier.predictions": {"tf": 1}, "mlsauce.LazyBoostingClassifier.sort_by": {"tf": 1}, "mlsauce.LazyBoostingClassifier.models_": {"tf": 1}, "mlsauce.LazyBoostingClassifier.best_model_": {"tf": 1}, "mlsauce.LazyBoostingClassifier.random_state": {"tf": 1}, "mlsauce.LazyBoostingClassifier.estimators": {"tf": 1}, "mlsauce.LazyBoostingClassifier.preprocess": {"tf": 1}, "mlsauce.LazyBoostingClassifier.n_jobs": {"tf": 1}, "mlsauce.LazyBoostingClassifier.fit": {"tf": 1}, "mlsauce.LazyBoostingClassifier.get_best_model": {"tf": 1}, "mlsauce.LazyBoostingClassifier.provide_models": {"tf": 1}, "mlsauce.LazyBoostingClassifier.train_model": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.LazyBoostingRegressor.__init__": {"tf": 1}, "mlsauce.LazyBoostingRegressor.verbose": {"tf": 1}, "mlsauce.LazyBoostingRegressor.ignore_warnings": {"tf": 1}, "mlsauce.LazyBoostingRegressor.custom_metric": {"tf": 1}, "mlsauce.LazyBoostingRegressor.predictions": {"tf": 1}, "mlsauce.LazyBoostingRegressor.sort_by": {"tf": 1}, "mlsauce.LazyBoostingRegressor.models_": {"tf": 1}, "mlsauce.LazyBoostingRegressor.best_model_": {"tf": 1}, "mlsauce.LazyBoostingRegressor.random_state": {"tf": 1}, "mlsauce.LazyBoostingRegressor.estimators": {"tf": 1}, "mlsauce.LazyBoostingRegressor.preprocess": {"tf": 1}, "mlsauce.LazyBoostingRegressor.n_jobs": {"tf": 1}, "mlsauce.LazyBoostingRegressor.fit": {"tf": 1}, "mlsauce.LazyBoostingRegressor.get_best_model": {"tf": 1}, "mlsauce.LazyBoostingRegressor.provide_models": {"tf": 1}, "mlsauce.LazyBoostingRegressor.train_model": {"tf": 1}, "mlsauce.MultiTaskRegressor": {"tf": 1}, "mlsauce.MultiTaskRegressor.__init__": {"tf": 1}, "mlsauce.MultiTaskRegressor.regr": {"tf": 1}, "mlsauce.MultiTaskRegressor.objs": {"tf": 1}, "mlsauce.MultiTaskRegressor.fit": {"tf": 1}, "mlsauce.MultiTaskRegressor.predict": {"tf": 1}, "mlsauce.MultiTaskRegressor.set_score_request": {"tf": 1}, "mlsauce.download": {"tf": 1}, "mlsauce.get_config": {"tf": 1}, "mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}, "mlsauce.adaopt": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.n_iterations": {"tf": 1}, "mlsauce.adaopt.AdaOpt.learning_rate": {"tf": 1}, "mlsauce.adaopt.AdaOpt.reg_lambda": {"tf": 1}, "mlsauce.adaopt.AdaOpt.reg_alpha": {"tf": 1}, "mlsauce.adaopt.AdaOpt.eta": {"tf": 1}, "mlsauce.adaopt.AdaOpt.gamma": {"tf": 1}, "mlsauce.adaopt.AdaOpt.k": {"tf": 1}, "mlsauce.adaopt.AdaOpt.tolerance": {"tf": 1}, "mlsauce.adaopt.AdaOpt.n_clusters": {"tf": 1}, "mlsauce.adaopt.AdaOpt.batch_size": {"tf": 1}, "mlsauce.adaopt.AdaOpt.row_sample": {"tf": 1}, "mlsauce.adaopt.AdaOpt.type_dist": {"tf": 1}, "mlsauce.adaopt.AdaOpt.n_jobs": {"tf": 1}, "mlsauce.adaopt.AdaOpt.cache": {"tf": 1}, "mlsauce.adaopt.AdaOpt.verbose": {"tf": 1}, "mlsauce.adaopt.AdaOpt.n_clusters_input": {"tf": 1}, "mlsauce.adaopt.AdaOpt.clustering_method": {"tf": 1}, "mlsauce.adaopt.AdaOpt.cluster_scaling": {"tf": 1}, "mlsauce.adaopt.AdaOpt.seed": {"tf": 1}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.base_model": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.n_estimators": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.learning_rate": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.n_hidden_features": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.reg_lambda": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.alpha": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.row_sample": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.col_sample": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.dropout": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.tolerance": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.direct_link": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.verbose": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.seed": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.backend": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.obj": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.solver": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.activation": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.n_clusters": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.clustering_method": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.cluster_scaling": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.degree": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.poly_": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.weights_distr": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.update": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.base_model": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.n_estimators": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.learning_rate": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.n_hidden_features": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.reg_lambda": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.alpha": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.row_sample": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.col_sample": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.dropout": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.tolerance": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.direct_link": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.verbose": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.seed": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.backend": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.obj": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.solver": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.activation": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.type_pi": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.replications": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.kernel": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.n_clusters": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.clustering_method": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.cluster_scaling": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.degree": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.poly_": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.weights_distr": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.update": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.base_model": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.base_model": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.datasets": {"tf": 1}, "mlsauce.datasets.dowload": {"tf": 1}, "mlsauce.datasets.dowload.download": {"tf": 1}, "mlsauce.demo": {"tf": 1}, "mlsauce.elasticnet": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.__init__": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.reg_lambda": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.alpha": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.backend": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso": {"tf": 1}, "mlsauce.lasso.LassoRegressor": {"tf": 1}, "mlsauce.lasso.LassoRegressor.__init__": {"tf": 1}, "mlsauce.lasso.LassoRegressor.reg_lambda": {"tf": 1}, "mlsauce.lasso.LassoRegressor.max_iter": {"tf": 1}, "mlsauce.lasso.LassoRegressor.tol": {"tf": 1}, "mlsauce.lasso.LassoRegressor.backend": {"tf": 1}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.lazybooster": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.__init__": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.verbose": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.ignore_warnings": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.custom_metric": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.predictions": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.sort_by": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.models_": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.best_model_": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.random_state": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.estimators": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.preprocess": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.n_jobs": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.fit": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.get_best_model": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.train_model": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.__init__": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.verbose": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.ignore_warnings": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.custom_metric": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.predictions": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.sort_by": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.models_": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.best_model_": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.random_state": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.estimators": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.preprocess": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.n_jobs": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.fit": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.get_best_model": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.train_model": {"tf": 1}, "mlsauce.multitaskregressor": {"tf": 1}, "mlsauce.multitaskregressor.MultiTaskRegressor": {"tf": 1}, "mlsauce.multitaskregressor.MultiTaskRegressor.__init__": {"tf": 1}, "mlsauce.multitaskregressor.MultiTaskRegressor.regr": {"tf": 1}, "mlsauce.multitaskregressor.MultiTaskRegressor.objs": {"tf": 1}, "mlsauce.multitaskregressor.MultiTaskRegressor.fit": {"tf": 1}, "mlsauce.multitaskregressor.MultiTaskRegressor.predict": {"tf": 1}, "mlsauce.multitaskregressor.MultiTaskRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.base_model": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.normalizer_model": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.err_func": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.fit": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.score": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.__init__": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.__init__": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.obj": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.method": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.level": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.type_pi": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.replications": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.kernel": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.agg": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.seed": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.alpha_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.quantile_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.icp_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.calibrated_residuals_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.scaled_calibrated_residuals_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.calibrated_residuals_scaler_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.kde_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge": {"tf": 1}, "mlsauce.ridge.RidgeRegressor": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.__init__": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.reg_lambda": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.backend": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.setup": {"tf": 1}, "mlsauce.stump": {"tf": 1}, "mlsauce.stump.StumpClassifier": {"tf": 1}, "mlsauce.stump.StumpClassifier.__init__": {"tf": 1}, "mlsauce.stump.StumpClassifier.bins": {"tf": 1}, "mlsauce.stump.StumpClassifier.obj": {"tf": 1}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.utils": {"tf": 1}, "mlsauce.utils.cluster": {"tf": 1}, "mlsauce.utils.subsample": {"tf": 1}, "mlsauce.utils.merge_two_dicts": {"tf": 1}, "mlsauce.utils.flatten": {"tf": 1}, "mlsauce.utils.is_float": {"tf": 1}, "mlsauce.utils.is_factor": {"tf": 1}, "mlsauce.utils.Progbar": {"tf": 1}, "mlsauce.utils.Progbar.__init__": {"tf": 1}, "mlsauce.utils.Progbar.target": {"tf": 1}, "mlsauce.utils.Progbar.width": {"tf": 1}, "mlsauce.utils.Progbar.verbose": {"tf": 1}, "mlsauce.utils.Progbar.interval": {"tf": 1}, "mlsauce.utils.Progbar.update": {"tf": 1}, "mlsauce.utils.Progbar.add": {"tf": 1}, "mlsauce.utils.get_beta": {"tf": 1}, "mlsauce.utils.check_and_install": {"tf": 1}, "mlsauce.utils.is_multitask_estimator": {"tf": 1}, "mlsauce.utils.get_beta.get_beta": {"tf": 1}}, "df": 432}}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.AdaOpt.clustering_method": {"tf": 1}, "mlsauce.LSBoostClassifier.clustering_method": {"tf": 1}, "mlsauce.LSBoostRegressor.clustering_method": {"tf": 1}, "mlsauce.adaopt.AdaOpt.clustering_method": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.clustering_method": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.clustering_method": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.method": {"tf": 1}}, "df": 7}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"mlsauce.LazyBoostingClassifier.custom_metric": {"tf": 1}, "mlsauce.LazyBoostingRegressor.custom_metric": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.custom_metric": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.custom_metric": {"tf": 1}}, "df": 4}}}}, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.utils.merge_two_dicts": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.LSBoostClassifier.base_model": {"tf": 1}, "mlsauce.GenericBoostingClassifier.base_model": {"tf": 1}, "mlsauce.GenericBoostingRegressor.base_model": {"tf": 1}, "mlsauce.LSBoostRegressor.base_model": {"tf": 1}, "mlsauce.LazyBoostingClassifier.best_model_": {"tf": 1}, "mlsauce.LazyBoostingClassifier.get_best_model": {"tf": 1}, "mlsauce.LazyBoostingClassifier.train_model": {"tf": 1}, "mlsauce.LazyBoostingRegressor.best_model_": {"tf": 1}, "mlsauce.LazyBoostingRegressor.get_best_model": {"tf": 1}, "mlsauce.LazyBoostingRegressor.train_model": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.base_model": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.base_model": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.base_model": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.base_model": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.best_model_": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.get_best_model": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.train_model": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.best_model_": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.get_best_model": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.train_model": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.base_model": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.normalizer_model": {"tf": 1}}, "df": 22, "s": {"docs": {"mlsauce.LazyBoostingClassifier.models_": {"tf": 1}, "mlsauce.LazyBoostingClassifier.provide_models": {"tf": 1}, "mlsauce.LazyBoostingRegressor.models_": {"tf": 1}, "mlsauce.LazyBoostingRegressor.provide_models": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.models_": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.models_": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 1}}, "df": 8}}}}}, "a": {"docs": {}, "df": 0, "x": {"docs": {"mlsauce.LassoRegressor.max_iter": {"tf": 1}, "mlsauce.lasso.LassoRegressor.max_iter": {"tf": 1}}, "df": 2}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "k": {"docs": {"mlsauce.utils.is_multitask_estimator": {"tf": 1}}, "df": 1, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.MultiTaskRegressor": {"tf": 1}, "mlsauce.MultiTaskRegressor.__init__": {"tf": 1}, "mlsauce.MultiTaskRegressor.regr": {"tf": 1}, "mlsauce.MultiTaskRegressor.objs": {"tf": 1}, "mlsauce.MultiTaskRegressor.fit": {"tf": 1}, "mlsauce.MultiTaskRegressor.predict": {"tf": 1}, "mlsauce.MultiTaskRegressor.set_score_request": {"tf": 1}, "mlsauce.multitaskregressor": {"tf": 1}, "mlsauce.multitaskregressor.MultiTaskRegressor": {"tf": 1.4142135623730951}, "mlsauce.multitaskregressor.MultiTaskRegressor.__init__": {"tf": 1.4142135623730951}, "mlsauce.multitaskregressor.MultiTaskRegressor.regr": {"tf": 1.4142135623730951}, "mlsauce.multitaskregressor.MultiTaskRegressor.objs": {"tf": 1.4142135623730951}, "mlsauce.multitaskregressor.MultiTaskRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.multitaskregressor.MultiTaskRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.multitaskregressor.MultiTaskRegressor.set_score_request": {"tf": 1.4142135623730951}}, "df": 15}}}}}}}}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.AdaOpt.n_iterations": {"tf": 1}, "mlsauce.AdaOpt.learning_rate": {"tf": 1}, "mlsauce.AdaOpt.reg_lambda": {"tf": 1}, "mlsauce.AdaOpt.reg_alpha": {"tf": 1}, "mlsauce.AdaOpt.eta": {"tf": 1}, "mlsauce.AdaOpt.gamma": {"tf": 1}, "mlsauce.AdaOpt.k": {"tf": 1}, "mlsauce.AdaOpt.tolerance": {"tf": 1}, "mlsauce.AdaOpt.n_clusters": {"tf": 1}, "mlsauce.AdaOpt.batch_size": {"tf": 1}, "mlsauce.AdaOpt.row_sample": {"tf": 1}, "mlsauce.AdaOpt.type_dist": {"tf": 1}, "mlsauce.AdaOpt.n_jobs": {"tf": 1}, "mlsauce.AdaOpt.cache": {"tf": 1}, "mlsauce.AdaOpt.verbose": {"tf": 1}, "mlsauce.AdaOpt.n_clusters_input": {"tf": 1}, "mlsauce.AdaOpt.clustering_method": {"tf": 1}, "mlsauce.AdaOpt.cluster_scaling": {"tf": 1}, "mlsauce.AdaOpt.seed": {"tf": 1}, "mlsauce.AdaOpt.fit": {"tf": 1}, "mlsauce.AdaOpt.predict": {"tf": 1}, "mlsauce.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.adaopt": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.n_iterations": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.learning_rate": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.reg_lambda": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.reg_alpha": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.eta": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.gamma": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.k": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.tolerance": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.n_clusters": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.batch_size": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.row_sample": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.type_dist": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.n_jobs": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.cache": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.verbose": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.n_clusters_input": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.clustering_method": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.cluster_scaling": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.seed": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1.4142135623730951}}, "df": 51}}}}, "d": {"docs": {"mlsauce.utils.Progbar.add": {"tf": 1}}, "df": 1}}, "l": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {"mlsauce.AdaOpt.reg_alpha": {"tf": 1}, "mlsauce.LSBoostClassifier.alpha": {"tf": 1}, "mlsauce.ElasticNetRegressor.alpha": {"tf": 1}, "mlsauce.LSBoostRegressor.alpha": {"tf": 1}, "mlsauce.adaopt.AdaOpt.reg_alpha": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.alpha": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.alpha": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.alpha": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.alpha_": {"tf": 1}}, "df": 9}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.LSBoostClassifier.activation": {"tf": 1}, "mlsauce.LSBoostRegressor.activation": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.activation": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.activation": {"tf": 1}}, "df": 4}}}}}}}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}}, "df": 3}}}}}}}}}}}}}}, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}}, "df": 4}}}}, "g": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.predictioninterval.PredictionInterval.agg": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.utils.check_and_install": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.StumpClassifier.__init__": {"tf": 1}, "mlsauce.ElasticNetRegressor.__init__": {"tf": 1}, "mlsauce.LassoRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.RidgeRegressor.__init__": {"tf": 1}, "mlsauce.LazyBoostingClassifier.__init__": {"tf": 1}, "mlsauce.LazyBoostingRegressor.__init__": {"tf": 1}, "mlsauce.MultiTaskRegressor.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.__init__": {"tf": 1}, "mlsauce.lasso.LassoRegressor.__init__": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.__init__": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.__init__": {"tf": 1}, "mlsauce.multitaskregressor.MultiTaskRegressor.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.__init__": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.__init__": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.__init__": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.__init__": {"tf": 1}, "mlsauce.stump.StumpClassifier.__init__": {"tf": 1}, "mlsauce.utils.Progbar.__init__": {"tf": 1}}, "df": 30}}, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt.n_clusters_input": {"tf": 1}, "mlsauce.adaopt.AdaOpt.n_clusters_input": {"tf": 1}}, "df": 2}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}}, "df": 2}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.utils.Progbar.interval": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.utils.check_and_install": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.LassoRegressor.max_iter": {"tf": 1}, "mlsauce.lasso.LassoRegressor.max_iter": {"tf": 1}}, "df": 2, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.AdaOpt.n_iterations": {"tf": 1}, "mlsauce.adaopt.AdaOpt.n_iterations": {"tf": 1}}, "df": 2}}}}}}}}}, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.LazyBoostingClassifier.ignore_warnings": {"tf": 1}, "mlsauce.LazyBoostingRegressor.ignore_warnings": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.ignore_warnings": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.ignore_warnings": {"tf": 1}}, "df": 4}}}}}, "c": {"docs": {}, "df": 0, "p": {"docs": {"mlsauce.predictioninterval.PredictionInterval.icp_": {"tf": 1}}, "df": 1, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.__init__": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}}, "df": 5}}}}}}}}}}}, "s": {"docs": {"mlsauce.utils.is_float": {"tf": 1}, "mlsauce.utils.is_factor": {"tf": 1}, "mlsauce.utils.is_multitask_estimator": {"tf": 1}}, "df": 3}}, "n": {"docs": {"mlsauce.AdaOpt.n_iterations": {"tf": 1}, "mlsauce.AdaOpt.n_clusters": {"tf": 1}, "mlsauce.AdaOpt.n_jobs": {"tf": 1}, "mlsauce.AdaOpt.n_clusters_input": {"tf": 1}, "mlsauce.LSBoostClassifier.n_estimators": {"tf": 1}, "mlsauce.LSBoostClassifier.n_hidden_features": {"tf": 1}, "mlsauce.LSBoostClassifier.n_clusters": {"tf": 1}, "mlsauce.LSBoostRegressor.n_estimators": {"tf": 1}, "mlsauce.LSBoostRegressor.n_hidden_features": {"tf": 1}, "mlsauce.LSBoostRegressor.n_clusters": {"tf": 1}, "mlsauce.LazyBoostingClassifier.n_jobs": {"tf": 1}, "mlsauce.LazyBoostingRegressor.n_jobs": {"tf": 1}, "mlsauce.adaopt.AdaOpt.n_iterations": {"tf": 1}, "mlsauce.adaopt.AdaOpt.n_clusters": {"tf": 1}, "mlsauce.adaopt.AdaOpt.n_jobs": {"tf": 1}, "mlsauce.adaopt.AdaOpt.n_clusters_input": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.n_estimators": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.n_hidden_features": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.n_clusters": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.n_estimators": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.n_hidden_features": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.n_clusters": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.n_jobs": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.n_jobs": {"tf": 1}}, "df": 24, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.nonconformist": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.base_model": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.normalizer_model": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.err_func": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.fit": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.score": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.__init__": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}}, "df": 31}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.nonconformist.RegressorNormalizer.normalizer_model": {"tf": 1}}, "df": 1}}}}}}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.AdaOpt.learning_rate": {"tf": 1}, "mlsauce.LSBoostClassifier.learning_rate": {"tf": 1}, "mlsauce.LSBoostRegressor.learning_rate": {"tf": 1}, "mlsauce.adaopt.AdaOpt.learning_rate": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.learning_rate": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.learning_rate": {"tf": 1}}, "df": 6}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.predictioninterval.PredictionInterval.level": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {"mlsauce.AdaOpt.reg_lambda": {"tf": 1}, "mlsauce.LSBoostClassifier.reg_lambda": {"tf": 1}, "mlsauce.ElasticNetRegressor.reg_lambda": {"tf": 1}, "mlsauce.LassoRegressor.reg_lambda": {"tf": 1}, "mlsauce.LSBoostRegressor.reg_lambda": {"tf": 1}, "mlsauce.RidgeRegressor.reg_lambda": {"tf": 1}, "mlsauce.adaopt.AdaOpt.reg_lambda": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.reg_lambda": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.reg_lambda": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.reg_lambda": {"tf": 1}, "mlsauce.lasso.LassoRegressor.reg_lambda": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.reg_lambda": {"tf": 1}}, "df": 12}}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {"mlsauce.lasso": {"tf": 1}, "mlsauce.lasso.LassoRegressor": {"tf": 1}, "mlsauce.lasso.LassoRegressor.__init__": {"tf": 1}, "mlsauce.lasso.LassoRegressor.reg_lambda": {"tf": 1}, "mlsauce.lasso.LassoRegressor.max_iter": {"tf": 1}, "mlsauce.lasso.LassoRegressor.tol": {"tf": 1}, "mlsauce.lasso.LassoRegressor.backend": {"tf": 1}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}}, "df": 10, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.LassoRegressor": {"tf": 1}, "mlsauce.LassoRegressor.__init__": {"tf": 1}, "mlsauce.LassoRegressor.reg_lambda": {"tf": 1}, "mlsauce.LassoRegressor.max_iter": {"tf": 1}, "mlsauce.LassoRegressor.tol": {"tf": 1}, "mlsauce.LassoRegressor.backend": {"tf": 1}, "mlsauce.LassoRegressor.fit": {"tf": 1}, "mlsauce.LassoRegressor.predict": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor": {"tf": 1}, "mlsauce.lasso.LassoRegressor.__init__": {"tf": 1}, "mlsauce.lasso.LassoRegressor.reg_lambda": {"tf": 1}, "mlsauce.lasso.LassoRegressor.max_iter": {"tf": 1}, "mlsauce.lasso.LassoRegressor.tol": {"tf": 1}, "mlsauce.lasso.LassoRegressor.backend": {"tf": 1}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}}, "df": 18}}}}}}}}}}}}, "z": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingClassifier.__init__": {"tf": 1}, "mlsauce.LazyBoostingClassifier.verbose": {"tf": 1}, "mlsauce.LazyBoostingClassifier.ignore_warnings": {"tf": 1}, "mlsauce.LazyBoostingClassifier.custom_metric": {"tf": 1}, "mlsauce.LazyBoostingClassifier.predictions": {"tf": 1}, "mlsauce.LazyBoostingClassifier.sort_by": {"tf": 1}, "mlsauce.LazyBoostingClassifier.models_": {"tf": 1}, "mlsauce.LazyBoostingClassifier.best_model_": {"tf": 1}, "mlsauce.LazyBoostingClassifier.random_state": {"tf": 1}, "mlsauce.LazyBoostingClassifier.estimators": {"tf": 1}, "mlsauce.LazyBoostingClassifier.preprocess": {"tf": 1}, "mlsauce.LazyBoostingClassifier.n_jobs": {"tf": 1}, "mlsauce.LazyBoostingClassifier.fit": {"tf": 1}, "mlsauce.LazyBoostingClassifier.get_best_model": {"tf": 1}, "mlsauce.LazyBoostingClassifier.provide_models": {"tf": 1}, "mlsauce.LazyBoostingClassifier.train_model": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.__init__": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.verbose": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.ignore_warnings": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.custom_metric": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.predictions": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.sort_by": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.models_": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.best_model_": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.random_state": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.estimators": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.preprocess": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.n_jobs": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.fit": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.get_best_model": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.train_model": {"tf": 1}}, "df": 34}}}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.LazyBoostingRegressor.__init__": {"tf": 1}, "mlsauce.LazyBoostingRegressor.verbose": {"tf": 1}, "mlsauce.LazyBoostingRegressor.ignore_warnings": {"tf": 1}, "mlsauce.LazyBoostingRegressor.custom_metric": {"tf": 1}, "mlsauce.LazyBoostingRegressor.predictions": {"tf": 1}, "mlsauce.LazyBoostingRegressor.sort_by": {"tf": 1}, "mlsauce.LazyBoostingRegressor.models_": {"tf": 1}, "mlsauce.LazyBoostingRegressor.best_model_": {"tf": 1}, "mlsauce.LazyBoostingRegressor.random_state": {"tf": 1}, "mlsauce.LazyBoostingRegressor.estimators": {"tf": 1}, "mlsauce.LazyBoostingRegressor.preprocess": {"tf": 1}, "mlsauce.LazyBoostingRegressor.n_jobs": {"tf": 1}, "mlsauce.LazyBoostingRegressor.fit": {"tf": 1}, "mlsauce.LazyBoostingRegressor.get_best_model": {"tf": 1}, "mlsauce.LazyBoostingRegressor.provide_models": {"tf": 1}, "mlsauce.LazyBoostingRegressor.train_model": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.__init__": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.verbose": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.ignore_warnings": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.custom_metric": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.predictions": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.sort_by": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.models_": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.best_model_": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.random_state": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.estimators": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.preprocess": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.n_jobs": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.fit": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.get_best_model": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.train_model": {"tf": 1}}, "df": 34}}}}}}}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.lazybooster": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.__init__": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.verbose": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.ignore_warnings": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.custom_metric": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.predictions": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.sort_by": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.models_": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.best_model_": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.random_state": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.estimators": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.preprocess": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.n_jobs": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.fit": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.get_best_model": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.train_model": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.__init__": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.verbose": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.ignore_warnings": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.custom_metric": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.predictions": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.sort_by": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.models_": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.best_model_": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.random_state": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.estimators": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.preprocess": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.n_jobs": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.fit": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.get_best_model": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.train_model": {"tf": 1}}, "df": 35}}}}}}}}}}, "s": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.LSBoostClassifier.base_model": {"tf": 1}, "mlsauce.LSBoostClassifier.n_estimators": {"tf": 1}, "mlsauce.LSBoostClassifier.learning_rate": {"tf": 1}, "mlsauce.LSBoostClassifier.n_hidden_features": {"tf": 1}, "mlsauce.LSBoostClassifier.reg_lambda": {"tf": 1}, "mlsauce.LSBoostClassifier.alpha": {"tf": 1}, "mlsauce.LSBoostClassifier.row_sample": {"tf": 1}, "mlsauce.LSBoostClassifier.col_sample": {"tf": 1}, "mlsauce.LSBoostClassifier.dropout": {"tf": 1}, "mlsauce.LSBoostClassifier.tolerance": {"tf": 1}, "mlsauce.LSBoostClassifier.direct_link": {"tf": 1}, "mlsauce.LSBoostClassifier.verbose": {"tf": 1}, "mlsauce.LSBoostClassifier.seed": {"tf": 1}, "mlsauce.LSBoostClassifier.backend": {"tf": 1}, "mlsauce.LSBoostClassifier.obj": {"tf": 1}, "mlsauce.LSBoostClassifier.solver": {"tf": 1}, "mlsauce.LSBoostClassifier.activation": {"tf": 1}, "mlsauce.LSBoostClassifier.n_clusters": {"tf": 1}, "mlsauce.LSBoostClassifier.clustering_method": {"tf": 1}, "mlsauce.LSBoostClassifier.cluster_scaling": {"tf": 1}, "mlsauce.LSBoostClassifier.degree": {"tf": 1}, "mlsauce.LSBoostClassifier.poly_": {"tf": 1}, "mlsauce.LSBoostClassifier.weights_distr": {"tf": 1}, "mlsauce.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier.update": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.base_model": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.n_estimators": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.learning_rate": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.n_hidden_features": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.reg_lambda": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.alpha": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.row_sample": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.col_sample": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.dropout": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.tolerance": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.direct_link": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.verbose": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.seed": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.backend": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.obj": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.solver": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.activation": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.n_clusters": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.clustering_method": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.cluster_scaling": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.degree": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.poly_": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.weights_distr": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.update": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}}, "df": 60}}}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.base_model": {"tf": 1}, "mlsauce.LSBoostRegressor.n_estimators": {"tf": 1}, "mlsauce.LSBoostRegressor.learning_rate": {"tf": 1}, "mlsauce.LSBoostRegressor.n_hidden_features": {"tf": 1}, "mlsauce.LSBoostRegressor.reg_lambda": {"tf": 1}, "mlsauce.LSBoostRegressor.alpha": {"tf": 1}, "mlsauce.LSBoostRegressor.row_sample": {"tf": 1}, "mlsauce.LSBoostRegressor.col_sample": {"tf": 1}, "mlsauce.LSBoostRegressor.dropout": {"tf": 1}, "mlsauce.LSBoostRegressor.tolerance": {"tf": 1}, "mlsauce.LSBoostRegressor.direct_link": {"tf": 1}, "mlsauce.LSBoostRegressor.verbose": {"tf": 1}, "mlsauce.LSBoostRegressor.seed": {"tf": 1}, "mlsauce.LSBoostRegressor.backend": {"tf": 1}, "mlsauce.LSBoostRegressor.obj": {"tf": 1}, "mlsauce.LSBoostRegressor.solver": {"tf": 1}, "mlsauce.LSBoostRegressor.activation": {"tf": 1}, "mlsauce.LSBoostRegressor.type_pi": {"tf": 1}, "mlsauce.LSBoostRegressor.replications": {"tf": 1}, "mlsauce.LSBoostRegressor.kernel": {"tf": 1}, "mlsauce.LSBoostRegressor.n_clusters": {"tf": 1}, "mlsauce.LSBoostRegressor.clustering_method": {"tf": 1}, "mlsauce.LSBoostRegressor.cluster_scaling": {"tf": 1}, "mlsauce.LSBoostRegressor.degree": {"tf": 1}, "mlsauce.LSBoostRegressor.poly_": {"tf": 1}, "mlsauce.LSBoostRegressor.weights_distr": {"tf": 1}, "mlsauce.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor.update": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.base_model": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.n_estimators": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.learning_rate": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.n_hidden_features": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.reg_lambda": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.alpha": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.row_sample": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.col_sample": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.dropout": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.tolerance": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.direct_link": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.verbose": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.seed": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.backend": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.obj": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.solver": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.activation": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.type_pi": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.replications": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.kernel": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.n_clusters": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.clustering_method": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.cluster_scaling": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.degree": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.poly_": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.weights_distr": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.update": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}}, "df": 66}}}}}}}}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"docs": {"mlsauce.LSBoostClassifier.direct_link": {"tf": 1}, "mlsauce.LSBoostRegressor.direct_link": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.direct_link": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.direct_link": {"tf": 1}}, "df": 4}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.learning_rate": {"tf": 1}, "mlsauce.LSBoostClassifier.learning_rate": {"tf": 1}, "mlsauce.LSBoostRegressor.learning_rate": {"tf": 1}, "mlsauce.adaopt.AdaOpt.learning_rate": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.learning_rate": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.learning_rate": {"tf": 1}}, "df": 6}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"mlsauce.LazyBoostingClassifier.random_state": {"tf": 1}, "mlsauce.LazyBoostingRegressor.random_state": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.random_state": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.random_state": {"tf": 1}}, "df": 4}}}}}, "e": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.AdaOpt.reg_lambda": {"tf": 1}, "mlsauce.AdaOpt.reg_alpha": {"tf": 1}, "mlsauce.LSBoostClassifier.reg_lambda": {"tf": 1}, "mlsauce.ElasticNetRegressor.reg_lambda": {"tf": 1}, "mlsauce.LassoRegressor.reg_lambda": {"tf": 1}, "mlsauce.LSBoostRegressor.reg_lambda": {"tf": 1}, "mlsauce.RidgeRegressor.reg_lambda": {"tf": 1}, "mlsauce.adaopt.AdaOpt.reg_lambda": {"tf": 1}, "mlsauce.adaopt.AdaOpt.reg_alpha": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.reg_lambda": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.reg_lambda": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.reg_lambda": {"tf": 1}, "mlsauce.lasso.LassoRegressor.reg_lambda": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.reg_lambda": {"tf": 1}}, "df": 14, "r": {"docs": {"mlsauce.MultiTaskRegressor.regr": {"tf": 1}, "mlsauce.multitaskregressor.MultiTaskRegressor.regr": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}}, "df": 4}}}}}}}, "n": {"docs": {}, "df": 0, "c": {"docs": {"mlsauce.nonconformist.RegressorNc": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}}, "df": 6}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.base_model": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.normalizer_model": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.err_func": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.fit": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.score": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}}, "df": 9}}}}}}}}}}}}}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.MultiTaskRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.multitaskregressor.MultiTaskRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 37}}}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.LSBoostRegressor.replications": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.replications": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.replications": {"tf": 1}}, "df": 3}}}}}}}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.predictioninterval.PredictionInterval.calibrated_residuals_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.scaled_calibrated_residuals_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.calibrated_residuals_scaler_": {"tf": 1}}, "df": 3}}}}}}}}, "o": {"docs": {}, "df": 0, "w": {"docs": {"mlsauce.AdaOpt.row_sample": {"tf": 1}, "mlsauce.LSBoostClassifier.row_sample": {"tf": 1}, "mlsauce.LSBoostRegressor.row_sample": {"tf": 1}, "mlsauce.adaopt.AdaOpt.row_sample": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.row_sample": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.row_sample": {"tf": 1}}, "df": 6}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.ridge": {"tf": 1}, "mlsauce.ridge.RidgeRegressor": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.__init__": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.reg_lambda": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.backend": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}}, "df": 8, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.RidgeRegressor": {"tf": 1}, "mlsauce.RidgeRegressor.__init__": {"tf": 1}, "mlsauce.RidgeRegressor.reg_lambda": {"tf": 1}, "mlsauce.RidgeRegressor.backend": {"tf": 1}, "mlsauce.RidgeRegressor.fit": {"tf": 1}, "mlsauce.RidgeRegressor.predict": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.__init__": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.reg_lambda": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.backend": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}}, "df": 14}}}}}}}}}}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"mlsauce.AdaOpt.eta": {"tf": 1}, "mlsauce.adaopt.AdaOpt.eta": {"tf": 1}}, "df": 2}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.utils.is_multitask_estimator": {"tf": 1}}, "df": 1, "s": {"docs": {"mlsauce.LSBoostClassifier.n_estimators": {"tf": 1}, "mlsauce.LSBoostRegressor.n_estimators": {"tf": 1}, "mlsauce.LazyBoostingClassifier.estimators": {"tf": 1}, "mlsauce.LazyBoostingRegressor.estimators": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.n_estimators": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.n_estimators": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.estimators": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.estimators": {"tf": 1}}, "df": 8}}}}}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.elasticnet": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.__init__": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.reg_lambda": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.alpha": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.backend": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}}, "df": 9, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.ElasticNetRegressor": {"tf": 1}, "mlsauce.ElasticNetRegressor.__init__": {"tf": 1}, "mlsauce.ElasticNetRegressor.reg_lambda": {"tf": 1}, "mlsauce.ElasticNetRegressor.alpha": {"tf": 1}, "mlsauce.ElasticNetRegressor.backend": {"tf": 1}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.__init__": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.reg_lambda": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.alpha": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.backend": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}}, "df": 16}}}}}}}}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.nonconformist.RegressorNormalizer.err_func": {"tf": 1}}, "df": 1}}}, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"mlsauce.AdaOpt.gamma": {"tf": 1}, "mlsauce.adaopt.AdaOpt.gamma": {"tf": 1}}, "df": 2}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingClassifier.base_model": {"tf": 1}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.base_model": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1}}, "df": 8}}}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.GenericBoostingRegressor.base_model": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.base_model": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1}}, "df": 10}}}}}}}}}}}}}}}}}}}}}}, "t": {"docs": {"mlsauce.LazyBoostingClassifier.get_best_model": {"tf": 1}, "mlsauce.LazyBoostingRegressor.get_best_model": {"tf": 1}, "mlsauce.get_config": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.get_best_model": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.get_best_model": {"tf": 1}, "mlsauce.utils.get_beta": {"tf": 1}, "mlsauce.utils.get_beta.get_beta": {"tf": 1.4142135623730951}}, "df": 7}}}, "k": {"docs": {"mlsauce.AdaOpt.k": {"tf": 1}, "mlsauce.adaopt.AdaOpt.k": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.LSBoostRegressor.kernel": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.kernel": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.kernel": {"tf": 1}}, "df": 3}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.predictioninterval.PredictionInterval.kde_": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.LassoRegressor.tol": {"tf": 1}, "mlsauce.lasso.LassoRegressor.tol": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.tolerance": {"tf": 1}, "mlsauce.LSBoostClassifier.tolerance": {"tf": 1}, "mlsauce.LSBoostRegressor.tolerance": {"tf": 1}, "mlsauce.adaopt.AdaOpt.tolerance": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.tolerance": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.tolerance": {"tf": 1}}, "df": 6}}}}}}}}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.type_dist": {"tf": 1}, "mlsauce.LSBoostRegressor.type_pi": {"tf": 1}, "mlsauce.adaopt.AdaOpt.type_dist": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.type_pi": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.type_pi": {"tf": 1}}, "df": 5}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.LazyBoostingClassifier.train_model": {"tf": 1}, "mlsauce.LazyBoostingRegressor.train_model": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.train_model": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.train_model": {"tf": 1}}, "df": 4}}}}, "w": {"docs": {}, "df": 0, "o": {"docs": {"mlsauce.utils.merge_two_dicts": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.utils.Progbar.target": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.AdaOpt.cluster_scaling": {"tf": 1}, "mlsauce.LSBoostClassifier.cluster_scaling": {"tf": 1}, "mlsauce.LSBoostRegressor.cluster_scaling": {"tf": 1}, "mlsauce.adaopt.AdaOpt.cluster_scaling": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.cluster_scaling": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.cluster_scaling": {"tf": 1}, "mlsauce.utils.cluster": {"tf": 1}}, "df": 7, "s": {"docs": {"mlsauce.AdaOpt.n_clusters": {"tf": 1}, "mlsauce.AdaOpt.n_clusters_input": {"tf": 1}, "mlsauce.LSBoostClassifier.n_clusters": {"tf": 1}, "mlsauce.LSBoostRegressor.n_clusters": {"tf": 1}, "mlsauce.adaopt.AdaOpt.n_clusters": {"tf": 1}, "mlsauce.adaopt.AdaOpt.n_clusters_input": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.n_clusters": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.n_clusters": {"tf": 1}}, "df": 8}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.AdaOpt.clustering_method": {"tf": 1}, "mlsauce.LSBoostClassifier.clustering_method": {"tf": 1}, "mlsauce.LSBoostRegressor.clustering_method": {"tf": 1}, "mlsauce.adaopt.AdaOpt.clustering_method": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.clustering_method": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.clustering_method": {"tf": 1}}, "df": 6}}}}}}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.cache": {"tf": 1}, "mlsauce.adaopt.AdaOpt.cache": {"tf": 1}}, "df": 2}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.predictioninterval.PredictionInterval.calibrated_residuals_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.scaled_calibrated_residuals_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.calibrated_residuals_scaler_": {"tf": 1}}, "df": 3}}}}}}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.LSBoostClassifier.col_sample": {"tf": 1}, "mlsauce.LSBoostRegressor.col_sample": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.col_sample": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.col_sample": {"tf": 1}}, "df": 4}, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.get_config": {"tf": 1}, "mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 3}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.config_context": {"tf": 1}}, "df": 1}}}}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"mlsauce.LazyBoostingClassifier.custom_metric": {"tf": 1}, "mlsauce.LazyBoostingRegressor.custom_metric": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.custom_metric": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.custom_metric": {"tf": 1}}, "df": 4}}}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"mlsauce.utils.check_and_install": {"tf": 1}}, "df": 1}}}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"mlsauce.AdaOpt.batch_size": {"tf": 1}, "mlsauce.adaopt.AdaOpt.batch_size": {"tf": 1}}, "df": 2}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.LSBoostClassifier.base_model": {"tf": 1}, "mlsauce.GenericBoostingClassifier.base_model": {"tf": 1}, "mlsauce.GenericBoostingRegressor.base_model": {"tf": 1}, "mlsauce.LSBoostRegressor.base_model": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.base_model": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.base_model": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.base_model": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.base_model": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.base_model": {"tf": 1}}, "df": 9}}, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.LSBoostClassifier.backend": {"tf": 1}, "mlsauce.ElasticNetRegressor.backend": {"tf": 1}, "mlsauce.LassoRegressor.backend": {"tf": 1}, "mlsauce.LSBoostRegressor.backend": {"tf": 1}, "mlsauce.RidgeRegressor.backend": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.backend": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.backend": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.backend": {"tf": 1}, "mlsauce.lasso.LassoRegressor.backend": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.backend": {"tf": 1}}, "df": 10}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.StumpClassifier.bins": {"tf": 1}, "mlsauce.stump.StumpClassifier.bins": {"tf": 1}}, "df": 2}}}, "y": {"docs": {"mlsauce.LazyBoostingClassifier.sort_by": {"tf": 1}, "mlsauce.LazyBoostingRegressor.sort_by": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.sort_by": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.sort_by": {"tf": 1}}, "df": 4}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.LazyBoostingClassifier.best_model_": {"tf": 1}, "mlsauce.LazyBoostingClassifier.get_best_model": {"tf": 1}, "mlsauce.LazyBoostingRegressor.best_model_": {"tf": 1}, "mlsauce.LazyBoostingRegressor.get_best_model": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.best_model_": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.get_best_model": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.best_model_": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.get_best_model": {"tf": 1}}, "df": 8}}, "t": {"docs": {}, "df": 0, "a": {"docs": {"mlsauce.utils.get_beta": {"tf": 1}, "mlsauce.utils.get_beta.get_beta": {"tf": 1.4142135623730951}}, "df": 2}}}, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.booster": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.base_model": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.n_estimators": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.learning_rate": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.n_hidden_features": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.reg_lambda": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.alpha": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.row_sample": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.col_sample": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.dropout": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.tolerance": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.direct_link": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.verbose": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.seed": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.backend": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.obj": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.solver": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.activation": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.n_clusters": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.clustering_method": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.cluster_scaling": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.degree": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.poly_": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.weights_distr": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.update": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.base_model": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.n_estimators": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.learning_rate": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.n_hidden_features": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.reg_lambda": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.alpha": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.row_sample": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.col_sample": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.dropout": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.tolerance": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.direct_link": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.verbose": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.seed": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.backend": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.obj": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.solver": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.activation": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.type_pi": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.replications": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.kernel": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.n_clusters": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.clustering_method": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.cluster_scaling": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.degree": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.poly_": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.weights_distr": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.update": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.base_model": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.base_model": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1}}, "df": 73}}}}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.batch_size": {"tf": 1}, "mlsauce.adaopt.AdaOpt.batch_size": {"tf": 1}}, "df": 2}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.row_sample": {"tf": 1}, "mlsauce.LSBoostClassifier.row_sample": {"tf": 1}, "mlsauce.LSBoostClassifier.col_sample": {"tf": 1}, "mlsauce.LSBoostRegressor.row_sample": {"tf": 1}, "mlsauce.LSBoostRegressor.col_sample": {"tf": 1}, "mlsauce.adaopt.AdaOpt.row_sample": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.row_sample": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.col_sample": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.row_sample": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.col_sample": {"tf": 1}}, "df": 10}}}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.AdaOpt.cluster_scaling": {"tf": 1}, "mlsauce.LSBoostClassifier.cluster_scaling": {"tf": 1}, "mlsauce.LSBoostRegressor.cluster_scaling": {"tf": 1}, "mlsauce.adaopt.AdaOpt.cluster_scaling": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.cluster_scaling": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.cluster_scaling": {"tf": 1}}, "df": 6}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.predictioninterval.PredictionInterval.scaled_calibrated_residuals_": {"tf": 1}}, "df": 1}, "r": {"docs": {"mlsauce.predictioninterval.PredictionInterval.calibrated_residuals_scaler_": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.MultiTaskRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.multitaskregressor.MultiTaskRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.score": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 24}}}}, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.AdaOpt.seed": {"tf": 1}, "mlsauce.LSBoostClassifier.seed": {"tf": 1}, "mlsauce.LSBoostRegressor.seed": {"tf": 1}, "mlsauce.adaopt.AdaOpt.seed": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.seed": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.seed": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.seed": {"tf": 1}}, "df": 7}}, "t": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.MultiTaskRegressor.set_score_request": {"tf": 1}, "mlsauce.set_config": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.multitaskregressor.MultiTaskRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 38, "u": {"docs": {}, "df": 0, "p": {"docs": {"mlsauce.setup": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.LSBoostClassifier.solver": {"tf": 1}, "mlsauce.LSBoostRegressor.solver": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.solver": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.solver": {"tf": 1}}, "df": 4}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.LazyBoostingClassifier.sort_by": {"tf": 1}, "mlsauce.LazyBoostingRegressor.sort_by": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.sort_by": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.sort_by": {"tf": 1}}, "df": 4}}}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {"mlsauce.stump": {"tf": 1}, "mlsauce.stump.StumpClassifier": {"tf": 1}, "mlsauce.stump.StumpClassifier.__init__": {"tf": 1}, "mlsauce.stump.StumpClassifier.bins": {"tf": 1}, "mlsauce.stump.StumpClassifier.obj": {"tf": 1}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 10, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.StumpClassifier": {"tf": 1}, "mlsauce.StumpClassifier.__init__": {"tf": 1}, "mlsauce.StumpClassifier.bins": {"tf": 1}, "mlsauce.StumpClassifier.obj": {"tf": 1}, "mlsauce.StumpClassifier.fit": {"tf": 1}, "mlsauce.StumpClassifier.predict": {"tf": 1}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier": {"tf": 1}, "mlsauce.stump.StumpClassifier.__init__": {"tf": 1}, "mlsauce.stump.StumpClassifier.bins": {"tf": 1}, "mlsauce.stump.StumpClassifier.obj": {"tf": 1}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 18}}}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.LazyBoostingClassifier.random_state": {"tf": 1}, "mlsauce.LazyBoostingRegressor.random_state": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.random_state": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.random_state": {"tf": 1}}, "df": 4}}}}, "u": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.utils.subsample": {"tf": 1}}, "df": 1}}}}}}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt.type_dist": {"tf": 1}, "mlsauce.adaopt.AdaOpt.type_dist": {"tf": 1}}, "df": 2, "r": {"docs": {"mlsauce.LSBoostClassifier.weights_distr": {"tf": 1}, "mlsauce.LSBoostRegressor.weights_distr": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.weights_distr": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.weights_distr": {"tf": 1}}, "df": 4}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.LSBoostClassifier.direct_link": {"tf": 1}, "mlsauce.LSBoostRegressor.direct_link": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.direct_link": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.direct_link": {"tf": 1}}, "df": 4}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.utils.merge_two_dicts": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.LSBoostClassifier.dropout": {"tf": 1}, "mlsauce.LSBoostRegressor.dropout": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.dropout": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.dropout": {"tf": 1}}, "df": 4}}}}}}, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.LSBoostClassifier.degree": {"tf": 1}, "mlsauce.LSBoostRegressor.degree": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.degree": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.degree": {"tf": 1}}, "df": 4}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {"mlsauce.demo": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.download": {"tf": 1}, "mlsauce.datasets.dowload.download": {"tf": 1}}, "df": 2}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.datasets.dowload": {"tf": 1}, "mlsauce.datasets.dowload.download": {"tf": 1}}, "df": 2}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.datasets": {"tf": 1}, "mlsauce.datasets.dowload": {"tf": 1}, "mlsauce.datasets.dowload.download": {"tf": 1}}, "df": 3}}}}}}}}, "j": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.AdaOpt.n_jobs": {"tf": 1}, "mlsauce.LazyBoostingClassifier.n_jobs": {"tf": 1}, "mlsauce.LazyBoostingRegressor.n_jobs": {"tf": 1}, "mlsauce.adaopt.AdaOpt.n_jobs": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.n_jobs": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.n_jobs": {"tf": 1}}, "df": 6}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.verbose": {"tf": 1}, "mlsauce.LSBoostClassifier.verbose": {"tf": 1}, "mlsauce.LSBoostRegressor.verbose": {"tf": 1}, "mlsauce.LazyBoostingClassifier.verbose": {"tf": 1}, "mlsauce.LazyBoostingRegressor.verbose": {"tf": 1}, "mlsauce.adaopt.AdaOpt.verbose": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.verbose": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.verbose": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.verbose": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.verbose": {"tf": 1}, "mlsauce.utils.Progbar.verbose": {"tf": 1}}, "df": 11}}}}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt.fit": {"tf": 1}, "mlsauce.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.StumpClassifier.fit": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.LassoRegressor.fit": {"tf": 1}, "mlsauce.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.RidgeRegressor.fit": {"tf": 1}, "mlsauce.LazyBoostingClassifier.fit": {"tf": 1}, "mlsauce.LazyBoostingRegressor.fit": {"tf": 1}, "mlsauce.MultiTaskRegressor.fit": {"tf": 1}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.fit": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.fit": {"tf": 1}, "mlsauce.multitaskregressor.MultiTaskRegressor.fit": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.fit": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}}, "df": 28}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.LSBoostClassifier.n_hidden_features": {"tf": 1}, "mlsauce.LSBoostRegressor.n_hidden_features": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.n_hidden_features": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.n_hidden_features": {"tf": 1}}, "df": 4}}}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"mlsauce.nonconformist.RegressorNormalizer.err_func": {"tf": 1}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.utils.flatten": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.utils.is_float": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.utils.is_factor": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt.predict": {"tf": 1}, "mlsauce.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.StumpClassifier.predict": {"tf": 1}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.LassoRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.RidgeRegressor.predict": {"tf": 1}, "mlsauce.MultiTaskRegressor.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1}, "mlsauce.multitaskregressor.MultiTaskRegressor.predict": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1}}, "df": 33, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.LazyBoostingClassifier.predictions": {"tf": 1}, "mlsauce.LazyBoostingRegressor.predictions": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.predictions": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.predictions": {"tf": 1}}, "df": 4}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.predictioninterval": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.__init__": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.obj": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.method": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.level": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.type_pi": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.replications": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.kernel": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.agg": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.seed": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.alpha_": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.quantile_": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.icp_": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.calibrated_residuals_": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.scaled_calibrated_residuals_": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.calibrated_residuals_scaler_": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.kde_": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1.4142135623730951}}, "df": 22}}}}}}}}}}}}}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.LazyBoostingClassifier.preprocess": {"tf": 1}, "mlsauce.LazyBoostingRegressor.preprocess": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.preprocess": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.preprocess": {"tf": 1}}, "df": 4}}}}}}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {"mlsauce.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1}}, "df": 6}}, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.LazyBoostingClassifier.provide_models": {"tf": 1}, "mlsauce.LazyBoostingRegressor.provide_models": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 1}}, "df": 4}}}}, "g": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.utils.Progbar": {"tf": 1}, "mlsauce.utils.Progbar.__init__": {"tf": 1}, "mlsauce.utils.Progbar.target": {"tf": 1}, "mlsauce.utils.Progbar.width": {"tf": 1}, "mlsauce.utils.Progbar.verbose": {"tf": 1}, "mlsauce.utils.Progbar.interval": {"tf": 1}, "mlsauce.utils.Progbar.update": {"tf": 1}, "mlsauce.utils.Progbar.add": {"tf": 1}}, "df": 8}}}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"mlsauce.LSBoostClassifier.poly_": {"tf": 1}, "mlsauce.LSBoostRegressor.poly_": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.poly_": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.poly_": {"tf": 1}}, "df": 4}}}, "i": {"docs": {"mlsauce.LSBoostRegressor.type_pi": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.type_pi": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.type_pi": {"tf": 1}}, "df": 3}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.LSBoostClassifier.n_hidden_features": {"tf": 1}, "mlsauce.LSBoostRegressor.n_hidden_features": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.n_hidden_features": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.n_hidden_features": {"tf": 1}}, "df": 4}}}}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "j": {"docs": {"mlsauce.LSBoostClassifier.obj": {"tf": 1}, "mlsauce.StumpClassifier.obj": {"tf": 1}, "mlsauce.LSBoostRegressor.obj": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.obj": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.obj": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.obj": {"tf": 1}, "mlsauce.stump.StumpClassifier.obj": {"tf": 1}}, "df": 7, "s": {"docs": {"mlsauce.MultiTaskRegressor.objs": {"tf": 1}, "mlsauce.multitaskregressor.MultiTaskRegressor.objs": {"tf": 1}}, "df": 2}}}}, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.LSBoostClassifier.weights_distr": {"tf": 1}, "mlsauce.LSBoostRegressor.weights_distr": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.weights_distr": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.weights_distr": {"tf": 1}}, "df": 4}}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.LazyBoostingClassifier.ignore_warnings": {"tf": 1}, "mlsauce.LazyBoostingRegressor.ignore_warnings": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.ignore_warnings": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.ignore_warnings": {"tf": 1}}, "df": 4}}}}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"mlsauce.utils.Progbar.width": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.LSBoostClassifier.update": {"tf": 1}, "mlsauce.LSBoostRegressor.update": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.update": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.update": {"tf": 1}, "mlsauce.utils.Progbar.update": {"tf": 1}}, "df": 5}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.utils": {"tf": 1}, "mlsauce.utils.cluster": {"tf": 1}, "mlsauce.utils.subsample": {"tf": 1}, "mlsauce.utils.merge_two_dicts": {"tf": 1}, "mlsauce.utils.flatten": {"tf": 1}, "mlsauce.utils.is_float": {"tf": 1}, "mlsauce.utils.is_factor": {"tf": 1}, "mlsauce.utils.Progbar": {"tf": 1}, "mlsauce.utils.Progbar.__init__": {"tf": 1}, "mlsauce.utils.Progbar.target": {"tf": 1}, "mlsauce.utils.Progbar.width": {"tf": 1}, "mlsauce.utils.Progbar.verbose": {"tf": 1}, "mlsauce.utils.Progbar.interval": {"tf": 1}, "mlsauce.utils.Progbar.update": {"tf": 1}, "mlsauce.utils.Progbar.add": {"tf": 1}, "mlsauce.utils.get_beta": {"tf": 1}, "mlsauce.utils.check_and_install": {"tf": 1}, "mlsauce.utils.is_multitask_estimator": {"tf": 1}, "mlsauce.utils.get_beta.get_beta": {"tf": 1}}, "df": 19}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.predictioninterval.PredictionInterval.quantile_": {"tf": 1}}, "df": 1, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"mlsauce.nonconformist.QuantileRegErrFunc": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}}, "df": 3}}}}}}}}}}}}}}}}}}}}, "annotation": {"root": {"docs": {}, "df": 0}}, "default_value": {"root": {"docs": {}, "df": 0}}, "signature": {"root": {"0": {"0": {"0": {"1": {"docs": {"mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.__init__": {"tf": 1}}, "df": 8}, "docs": {}, "df": 0}, "1": {"docs": {"mlsauce.LassoRegressor.__init__": {"tf": 1}, "mlsauce.lasso.LassoRegressor.__init__": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "1": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1.4142135623730951}}, "df": 2}, "5": {"docs": {"mlsauce.utils.Progbar.__init__": {"tf": 1}}, "df": 1}, "6": {"docs": {"mlsauce.nonconformist.RegressorNc.__init__": {"tf": 1}}, "df": 1}, "docs": {"mlsauce.AdaOpt.__init__": {"tf": 3.1622776601683795}, "mlsauce.LSBoostClassifier.__init__": {"tf": 2.449489742783178}, "mlsauce.LSBoostClassifier.update": {"tf": 1}, "mlsauce.GenericBoostingClassifier.__init__": {"tf": 2.449489742783178}, "mlsauce.GenericBoostingRegressor.__init__": {"tf": 2.449489742783178}, "mlsauce.ElasticNetRegressor.__init__": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.__init__": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.__init__": {"tf": 2.449489742783178}, "mlsauce.LSBoostRegressor.update": {"tf": 1}, "mlsauce.RidgeRegressor.__init__": {"tf": 1}, "mlsauce.LazyBoostingClassifier.__init__": {"tf": 1}, "mlsauce.LazyBoostingRegressor.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 3.1622776601683795}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 2.449489742783178}, "mlsauce.booster.LSBoostClassifier.update": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 2.449489742783178}, "mlsauce.booster.LSBoostRegressor.update": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.__init__": {"tf": 2.449489742783178}, "mlsauce.booster.GenericBoostingRegressor.__init__": {"tf": 2.449489742783178}, "mlsauce.elasticnet.ElasticNetRegressor.__init__": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.__init__": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier.__init__": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.__init__": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.__init__": {"tf": 1}, "mlsauce.utils.subsample": {"tf": 1}, "mlsauce.utils.Progbar.__init__": {"tf": 1}}, "df": 26}, "1": {"0": {"0": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.__init__": {"tf": 1}}, "df": 10}, "docs": {"mlsauce.LassoRegressor.__init__": {"tf": 1}, "mlsauce.lasso.LassoRegressor.__init__": {"tf": 1}}, "df": 2}, "2": {"3": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.__init__": {"tf": 1}, "mlsauce.utils.cluster": {"tf": 1}, "mlsauce.utils.subsample": {"tf": 1}}, "df": 13}, "docs": {}, "df": 0}, "docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.LSBoostClassifier.__init__": {"tf": 2.449489742783178}, "mlsauce.GenericBoostingClassifier.__init__": {"tf": 2.449489742783178}, "mlsauce.GenericBoostingRegressor.__init__": {"tf": 2.449489742783178}, "mlsauce.ElasticNetRegressor.__init__": {"tf": 1}, "mlsauce.LassoRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 2.449489742783178}, "mlsauce.RidgeRegressor.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 2.449489742783178}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 2.449489742783178}, "mlsauce.booster.GenericBoostingClassifier.__init__": {"tf": 2.449489742783178}, "mlsauce.booster.GenericBoostingRegressor.__init__": {"tf": 2.449489742783178}, "mlsauce.elasticnet.ElasticNetRegressor.__init__": {"tf": 1}, "mlsauce.lasso.LassoRegressor.__init__": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.__init__": {"tf": 1}, "mlsauce.utils.Progbar.__init__": {"tf": 1}}, "df": 17, "e": {"docs": {"mlsauce.nonconformist.RegressorNc.__init__": {"tf": 1}}, "df": 1}}, "3": {"0": {"docs": {"mlsauce.utils.Progbar.__init__": {"tf": 1}}, "df": 1}, "9": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 2.449489742783178}, "mlsauce.LSBoostClassifier.__init__": {"tf": 3.4641016151377544}, "mlsauce.GenericBoostingClassifier.__init__": {"tf": 3.4641016151377544}, "mlsauce.GenericBoostingRegressor.__init__": {"tf": 3.4641016151377544}, "mlsauce.StumpClassifier.__init__": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.__init__": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.__init__": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.__init__": {"tf": 3.4641016151377544}, "mlsauce.RidgeRegressor.__init__": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingClassifier.__init__": {"tf": 2}, "mlsauce.LazyBoostingRegressor.__init__": {"tf": 2}, "mlsauce.download": {"tf": 2.449489742783178}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 2.449489742783178}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 3.4641016151377544}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 3.4641016151377544}, "mlsauce.booster.GenericBoostingClassifier.__init__": {"tf": 3.4641016151377544}, "mlsauce.booster.GenericBoostingRegressor.__init__": {"tf": 3.4641016151377544}, "mlsauce.datasets.dowload.download": {"tf": 2.449489742783178}, "mlsauce.elasticnet.ElasticNetRegressor.__init__": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.__init__": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier.__init__": {"tf": 2}, "mlsauce.lazybooster.LazyBoostingRegressor.__init__": {"tf": 2}, "mlsauce.predictioninterval.PredictionInterval.__init__": {"tf": 2.449489742783178}, "mlsauce.ridge.RidgeRegressor.__init__": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.__init__": {"tf": 1.4142135623730951}, "mlsauce.utils.cluster": {"tf": 2}}, "df": 26}, "docs": {"mlsauce.AdaOpt.__init__": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1.4142135623730951}}, "df": 2}, "4": {"2": {"docs": {"mlsauce.LazyBoostingClassifier.__init__": {"tf": 1}, "mlsauce.LazyBoostingRegressor.__init__": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.__init__": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.__init__": {"tf": 1}}, "df": 4}, "docs": {}, "df": 0}, "5": {"0": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}}, "df": 2}, "docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.LSBoostClassifier.__init__": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingClassifier.__init__": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor.__init__": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingClassifier.__init__": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor.__init__": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.__init__": {"tf": 1}}, "df": 12}, "8": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}, "mlsauce.utils.subsample": {"tf": 1}}, "df": 3}, "9": {"5": {"docs": {"mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.__init__": {"tf": 1}}, "df": 3}, "docs": {"mlsauce.LSBoostClassifier.update": {"tf": 1}, "mlsauce.LSBoostRegressor.update": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.update": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.update": {"tf": 1}}, "df": 4}, "docs": {"mlsauce.AdaOpt.__init__": {"tf": 13.45362404707371}, "mlsauce.AdaOpt.fit": {"tf": 4.898979485566356}, "mlsauce.AdaOpt.predict": {"tf": 4.47213595499958}, "mlsauce.AdaOpt.predict_proba": {"tf": 4.47213595499958}, "mlsauce.AdaOpt.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.LSBoostClassifier.__init__": {"tf": 14.317821063276353}, "mlsauce.LSBoostClassifier.fit": {"tf": 4.898979485566356}, "mlsauce.LSBoostClassifier.predict": {"tf": 4.47213595499958}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 4.47213595499958}, "mlsauce.LSBoostClassifier.update": {"tf": 5.0990195135927845}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.GenericBoostingClassifier.__init__": {"tf": 14.422205101855956}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.GenericBoostingRegressor.__init__": {"tf": 15.329709716755891}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 3.1622776601683795}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.StumpClassifier.__init__": {"tf": 3.7416573867739413}, "mlsauce.StumpClassifier.fit": {"tf": 5.656854249492381}, "mlsauce.StumpClassifier.predict": {"tf": 4.47213595499958}, "mlsauce.StumpClassifier.predict_proba": {"tf": 4.47213595499958}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 3.1622776601683795}, "mlsauce.StumpClassifier.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.ElasticNetRegressor.__init__": {"tf": 5.477225575051661}, "mlsauce.ElasticNetRegressor.fit": {"tf": 4.898979485566356}, "mlsauce.ElasticNetRegressor.predict": {"tf": 4.47213595499958}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.LassoRegressor.__init__": {"tf": 6.164414002968976}, "mlsauce.LassoRegressor.fit": {"tf": 4.898979485566356}, "mlsauce.LassoRegressor.predict": {"tf": 4.47213595499958}, "mlsauce.LassoRegressor.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.LSBoostRegressor.__init__": {"tf": 15.231546211727817}, "mlsauce.LSBoostRegressor.fit": {"tf": 4.898979485566356}, "mlsauce.LSBoostRegressor.predict": {"tf": 6}, "mlsauce.LSBoostRegressor.update": {"tf": 5.0990195135927845}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 3.1622776601683795}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.RidgeRegressor.__init__": {"tf": 4.69041575982343}, "mlsauce.RidgeRegressor.fit": {"tf": 4.898979485566356}, "mlsauce.RidgeRegressor.predict": {"tf": 4.47213595499958}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.LazyBoostingClassifier.__init__": {"tf": 9.433981132056603}, "mlsauce.LazyBoostingClassifier.fit": {"tf": 5.656854249492381}, "mlsauce.LazyBoostingClassifier.get_best_model": {"tf": 3.1622776601683795}, "mlsauce.LazyBoostingClassifier.provide_models": {"tf": 5.0990195135927845}, "mlsauce.LazyBoostingClassifier.train_model": {"tf": 8.12403840463596}, "mlsauce.LazyBoostingRegressor.__init__": {"tf": 9.433981132056603}, "mlsauce.LazyBoostingRegressor.fit": {"tf": 5.656854249492381}, "mlsauce.LazyBoostingRegressor.get_best_model": {"tf": 3.1622776601683795}, "mlsauce.LazyBoostingRegressor.provide_models": {"tf": 5.0990195135927845}, "mlsauce.LazyBoostingRegressor.train_model": {"tf": 8.12403840463596}, "mlsauce.MultiTaskRegressor.__init__": {"tf": 2.8284271247461903}, "mlsauce.MultiTaskRegressor.fit": {"tf": 4.242640687119285}, "mlsauce.MultiTaskRegressor.predict": {"tf": 3.7416573867739413}, "mlsauce.MultiTaskRegressor.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.download": {"tf": 6.782329983125268}, "mlsauce.get_config": {"tf": 2.6457513110645907}, "mlsauce.set_config": {"tf": 6.48074069840786}, "mlsauce.config_context": {"tf": 3.4641016151377544}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 13.45362404707371}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 4.898979485566356}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 4.47213595499958}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 4.47213595499958}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 14.317821063276353}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 4.898979485566356}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 4.47213595499958}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 4.47213595499958}, "mlsauce.booster.LSBoostClassifier.update": {"tf": 5.0990195135927845}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 15.231546211727817}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 4.898979485566356}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 6}, "mlsauce.booster.LSBoostRegressor.update": {"tf": 5.0990195135927845}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 3.1622776601683795}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.booster.GenericBoostingClassifier.__init__": {"tf": 14.422205101855956}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.booster.GenericBoostingRegressor.__init__": {"tf": 15.329709716755891}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 3.1622776601683795}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.datasets.dowload.download": {"tf": 6.782329983125268}, "mlsauce.elasticnet.ElasticNetRegressor.__init__": {"tf": 5.477225575051661}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 4.898979485566356}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 4.47213595499958}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.lasso.LassoRegressor.__init__": {"tf": 6.164414002968976}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 4.898979485566356}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 4.47213595499958}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.lazybooster.LazyBoostingClassifier.__init__": {"tf": 9.433981132056603}, "mlsauce.lazybooster.LazyBoostingClassifier.fit": {"tf": 5.656854249492381}, "mlsauce.lazybooster.LazyBoostingClassifier.get_best_model": {"tf": 3.1622776601683795}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 5.0990195135927845}, "mlsauce.lazybooster.LazyBoostingClassifier.train_model": {"tf": 8.12403840463596}, "mlsauce.lazybooster.LazyBoostingRegressor.__init__": {"tf": 9.433981132056603}, "mlsauce.lazybooster.LazyBoostingRegressor.fit": {"tf": 5.656854249492381}, "mlsauce.lazybooster.LazyBoostingRegressor.get_best_model": {"tf": 3.1622776601683795}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 5.0990195135927845}, "mlsauce.lazybooster.LazyBoostingRegressor.train_model": {"tf": 8.12403840463596}, "mlsauce.multitaskregressor.MultiTaskRegressor.__init__": {"tf": 2.8284271247461903}, "mlsauce.multitaskregressor.MultiTaskRegressor.fit": {"tf": 4.242640687119285}, "mlsauce.multitaskregressor.MultiTaskRegressor.predict": {"tf": 3.7416573867739413}, "mlsauce.multitaskregressor.MultiTaskRegressor.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 4.242640687119285}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 4.242640687119285}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 4.242640687119285}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 4.242640687119285}, "mlsauce.nonconformist.RegressorAdapter.__init__": {"tf": 4}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 3.1622776601683795}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 3.1622776601683795}, "mlsauce.nonconformist.RegressorNc.__init__": {"tf": 7.280109889280518}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 5.0990195135927845}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 3.1622776601683795}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 3.1622776601683795}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.nonconformist.RegressorNormalizer.__init__": {"tf": 4}, "mlsauce.nonconformist.RegressorNormalizer.fit": {"tf": 4.242640687119285}, "mlsauce.nonconformist.RegressorNormalizer.score": {"tf": 4.69041575982343}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 3.1622776601683795}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.nonconformist.IcpRegressor.__init__": {"tf": 4}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 4.69041575982343}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 3.1622776601683795}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 3.1622776601683795}, "mlsauce.predictioninterval.PredictionInterval.__init__": {"tf": 8.831760866327848}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 4.242640687119285}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 4.69041575982343}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 3.1622776601683795}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.ridge.RidgeRegressor.__init__": {"tf": 4.69041575982343}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 4.898979485566356}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 4.47213595499958}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.stump.StumpClassifier.__init__": {"tf": 3.7416573867739413}, "mlsauce.stump.StumpClassifier.fit": {"tf": 5.656854249492381}, "mlsauce.stump.StumpClassifier.predict": {"tf": 4.47213595499958}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 4.47213595499958}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 3.1622776601683795}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.utils.cluster": {"tf": 9.327379053088816}, "mlsauce.utils.subsample": {"tf": 5.0990195135927845}, "mlsauce.utils.merge_two_dicts": {"tf": 3.7416573867739413}, "mlsauce.utils.flatten": {"tf": 3.1622776601683795}, "mlsauce.utils.is_float": {"tf": 3.1622776601683795}, "mlsauce.utils.is_factor": {"tf": 3.1622776601683795}, "mlsauce.utils.Progbar.__init__": {"tf": 6.324555320336759}, "mlsauce.utils.Progbar.update": {"tf": 4.69041575982343}, "mlsauce.utils.Progbar.add": {"tf": 4.69041575982343}, "mlsauce.utils.get_beta": {"tf": 3.7416573867739413}, "mlsauce.utils.check_and_install": {"tf": 3.1622776601683795}, "mlsauce.utils.is_multitask_estimator": {"tf": 3.1622776601683795}, "mlsauce.utils.get_beta.get_beta": {"tf": 3.7416573867739413}}, "df": 152, "n": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 2}, "mlsauce.LSBoostClassifier.__init__": {"tf": 1.7320508075688772}, "mlsauce.GenericBoostingClassifier.__init__": {"tf": 1.7320508075688772}, "mlsauce.GenericBoostingRegressor.__init__": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1.7320508075688772}, "mlsauce.LazyBoostingClassifier.__init__": {"tf": 1}, "mlsauce.LazyBoostingRegressor.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 2}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1.7320508075688772}, "mlsauce.booster.GenericBoostingClassifier.__init__": {"tf": 1.7320508075688772}, "mlsauce.booster.GenericBoostingRegressor.__init__": {"tf": 1.7320508075688772}, "mlsauce.lazybooster.LazyBoostingClassifier.__init__": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.__init__": {"tf": 1}, "mlsauce.utils.cluster": {"tf": 1}, "mlsauce.utils.Progbar.add": {"tf": 1}}, "df": 16, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.LSBoostClassifier.__init__": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingRegressor.__init__": {"tf": 2}, "mlsauce.StumpClassifier.fit": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 2.23606797749979}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.LazyBoostingClassifier.__init__": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingClassifier.train_model": {"tf": 1}, "mlsauce.LazyBoostingRegressor.__init__": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor.train_model": {"tf": 1}, "mlsauce.set_config": {"tf": 2}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 2.23606797749979}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.__init__": {"tf": 2}, "mlsauce.lazybooster.LazyBoostingClassifier.__init__": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier.train_model": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.__init__": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor.train_model": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.score": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.__init__": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.__init__": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1}, "mlsauce.utils.cluster": {"tf": 2}, "mlsauce.utils.Progbar.__init__": {"tf": 1}, "mlsauce.utils.Progbar.update": {"tf": 1}, "mlsauce.utils.Progbar.add": {"tf": 1}}, "df": 34}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.nonconformist.RegressorNc.__init__": {"tf": 1}}, "df": 1}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.nonconformist.RegressorNc.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.__init__": {"tf": 1}}, "df": 2}}}}}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.LazyBoostingClassifier.train_model": {"tf": 1}, "mlsauce.LazyBoostingRegressor.train_model": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.train_model": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.train_model": {"tf": 1}, "mlsauce.utils.check_and_install": {"tf": 1}}, "df": 5}}}, "e": {"docs": {}, "df": 0, "w": {"docs": {"mlsauce.config_context": {"tf": 1}}, "df": 1}}, "c": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.__init__": {"tf": 1}}, "df": 5}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.LassoRegressor.__init__": {"tf": 1}, "mlsauce.lasso.LassoRegressor.__init__": {"tf": 1}}, "df": 2, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}}, "df": 2}}}}}}}}}, "n": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}}, "df": 2}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.utils.Progbar.__init__": {"tf": 1}}, "df": 1}}}}}}}, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.LazyBoostingClassifier.__init__": {"tf": 1}, "mlsauce.LazyBoostingRegressor.__init__": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.__init__": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.__init__": {"tf": 1}}, "df": 4}}}}}}, "l": {"docs": {"mlsauce.utils.flatten": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.__init__": {"tf": 1}}, "df": 10}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.__init__": {"tf": 1}}, "df": 3}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.ElasticNetRegressor.__init__": {"tf": 1}, "mlsauce.LassoRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.RidgeRegressor.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.__init__": {"tf": 1}, "mlsauce.lasso.LassoRegressor.__init__": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.__init__": {"tf": 1}}, "df": 16}}}}, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.utils.cluster": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"docs": {"mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.__init__": {"tf": 1}}, "df": 8}}}, "t": {"docs": {"mlsauce.nonconformist.RegressorNc.__init__": {"tf": 1}}, "df": 1}}, "r": {"docs": {"mlsauce.download": {"tf": 1}, "mlsauce.datasets.dowload.download": {"tf": 1}}, "df": 2, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.__init__": {"tf": 1}}, "df": 10}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"mlsauce.LazyBoostingClassifier.__init__": {"tf": 1}, "mlsauce.LazyBoostingRegressor.__init__": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.__init__": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.__init__": {"tf": 1}}, "df": 4}}}}}, "e": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.ElasticNetRegressor.__init__": {"tf": 1}, "mlsauce.LassoRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.RidgeRegressor.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.__init__": {"tf": 1}, "mlsauce.lasso.LassoRegressor.__init__": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.__init__": {"tf": 1}}, "df": 16, "r": {"docs": {"mlsauce.LazyBoostingRegressor.train_model": {"tf": 1}, "mlsauce.MultiTaskRegressor.__init__": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.train_model": {"tf": 1}, "mlsauce.multitaskregressor.MultiTaskRegressor.__init__": {"tf": 1}}, "df": 4}}, "l": {"docs": {}, "df": 0, "u": {"docs": {"mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.__init__": {"tf": 1}}, "df": 8}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.__init__": {"tf": 1}}, "df": 5}}}}}}}}}}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "w": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.utils.subsample": {"tf": 1}}, "df": 11}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.__init__": {"tf": 1}}, "df": 8}}}}, "m": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.LazyBoostingRegressor.__init__": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.__init__": {"tf": 1}}, "df": 2}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.ElasticNetRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.__init__": {"tf": 1}}, "df": 12}}}, "l": {"docs": {"mlsauce.LazyBoostingClassifier.__init__": {"tf": 1}, "mlsauce.LazyBoostingRegressor.__init__": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.__init__": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.__init__": {"tf": 1}}, "df": 4}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.__init__": {"tf": 1}}, "df": 8}}}}}}}}, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "y": {"docs": {"mlsauce.LazyBoostingClassifier.__init__": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.__init__": {"tf": 1}}, "df": 2}}}}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {"mlsauce.StumpClassifier.__init__": {"tf": 1}, "mlsauce.stump.StumpClassifier.__init__": {"tf": 1}}, "df": 2}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.set_config": {"tf": 1}}, "df": 1}}}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"mlsauce.nonconformist.RegressorNc.__init__": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}, "g": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.predictioninterval.PredictionInterval.__init__": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.LSBoostClassifier.update": {"tf": 1}, "mlsauce.LSBoostRegressor.update": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.update": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.update": {"tf": 1}}, "df": 6}}, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}}, "df": 2}}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.utils.is_multitask_estimator": {"tf": 1}}, "df": 1, "s": {"docs": {"mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.LazyBoostingClassifier.__init__": {"tf": 1}, "mlsauce.LazyBoostingRegressor.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.__init__": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.__init__": {"tf": 1}}, "df": 12}}}}}}}}}, "x": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.__init__": {"tf": 1}}, "df": 4}}}}}}}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.nonconformist.RegressorNc.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.__init__": {"tf": 1}}, "df": 2}}, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.utils.cluster": {"tf": 1}}, "df": 1}}}}}}}, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}}, "df": 2}}}}, "t": {"docs": {"mlsauce.nonconformist.RegressorNc.__init__": {"tf": 1}}, "df": 1}}, "k": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}}, "df": 2, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.utils.cluster": {"tf": 1}}, "df": 11}}}}}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.AdaOpt.fit": {"tf": 1}, "mlsauce.AdaOpt.predict": {"tf": 1}, "mlsauce.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.StumpClassifier.fit": {"tf": 1}, "mlsauce.StumpClassifier.predict": {"tf": 1}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.LassoRegressor.fit": {"tf": 1}, "mlsauce.LassoRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.RidgeRegressor.fit": {"tf": 1}, "mlsauce.RidgeRegressor.predict": {"tf": 1}, "mlsauce.LazyBoostingClassifier.fit": {"tf": 1}, "mlsauce.LazyBoostingClassifier.train_model": {"tf": 1}, "mlsauce.LazyBoostingRegressor.fit": {"tf": 1}, "mlsauce.LazyBoostingRegressor.train_model": {"tf": 1}, "mlsauce.download": {"tf": 1}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.datasets.dowload.download": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.fit": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.train_model": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.fit": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.train_model": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1}}, "df": 44}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.__init__": {"tf": 1}}, "df": 5}}}}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.LassoRegressor.__init__": {"tf": 1}, "mlsauce.lasso.LassoRegressor.__init__": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.__init__": {"tf": 1}}, "df": 10}}}}}}}}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.__init__": {"tf": 1}, "mlsauce.utils.cluster": {"tf": 1}}, "df": 8}}}, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.LazyBoostingClassifier.__init__": {"tf": 1}, "mlsauce.LazyBoostingRegressor.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.__init__": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.__init__": {"tf": 1}, "mlsauce.utils.cluster": {"tf": 1}}, "df": 7}}, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.LazyBoostingClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingClassifier.provide_models": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingClassifier.train_model": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor.provide_models": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor.train_model": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier.train_model": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor.train_model": {"tf": 1.4142135623730951}}, "df": 12, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.utils.cluster": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.LazyBoostingClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingClassifier.provide_models": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingClassifier.train_model": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor.provide_models": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor.train_model": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier.train_model": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor.train_model": {"tf": 1.4142135623730951}}, "df": 12}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.utils.Progbar.__init__": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.__init__": {"tf": 1}}, "df": 10, "s": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.utils.cluster": {"tf": 1}}, "df": 11}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.__init__": {"tf": 1}}, "df": 10}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.utils.cluster": {"tf": 1}}, "df": 1}}}}}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}}, "df": 2}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.__init__": {"tf": 1}}, "df": 8}, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.config_context": {"tf": 1}}, "df": 1}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.nonconformist.IcpRegressor.__init__": {"tf": 1}}, "df": 1}}}}}}}}, "p": {"docs": {}, "df": 0, "u": {"docs": {"mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.ElasticNetRegressor.__init__": {"tf": 1}, "mlsauce.LassoRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.RidgeRegressor.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.__init__": {"tf": 1}, "mlsauce.lasso.LassoRegressor.__init__": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.__init__": {"tf": 1}}, "df": 14}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"mlsauce.LazyBoostingClassifier.__init__": {"tf": 1}, "mlsauce.LazyBoostingRegressor.__init__": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.__init__": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.__init__": {"tf": 1}}, "df": 4}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.utils.Progbar.update": {"tf": 1}}, "df": 1}}}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.set_config": {"tf": 1}}, "df": 1}}}}}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}}, "df": 2}}}, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.ElasticNetRegressor.__init__": {"tf": 1}, "mlsauce.LassoRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.RidgeRegressor.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.__init__": {"tf": 1}, "mlsauce.lasso.LassoRegressor.__init__": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.__init__": {"tf": 1}}, "df": 14}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.__init__": {"tf": 1}}, "df": 9}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.StumpClassifier.__init__": {"tf": 1}, "mlsauce.stump.StumpClassifier.__init__": {"tf": 1}}, "df": 2}}}, "y": {"docs": {"mlsauce.LazyBoostingClassifier.__init__": {"tf": 1}, "mlsauce.LazyBoostingRegressor.__init__": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.__init__": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.__init__": {"tf": 1}}, "df": 4}, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.download": {"tf": 1}, "mlsauce.datasets.dowload.download": {"tf": 1}}, "df": 2}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {"mlsauce.predictioninterval.PredictionInterval.__init__": {"tf": 1}}, "df": 1}}}}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"mlsauce.nonconformist.RegressorNc.__init__": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}}, "df": 2}}, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}}, "df": 4}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.LSBoostClassifier.__init__": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingClassifier.__init__": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor.__init__": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.fit": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingClassifier.__init__": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor.__init__": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1}, "mlsauce.utils.subsample": {"tf": 1}}, "df": 13}}}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.utils.cluster": {"tf": 1}}, "df": 11}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.utils.cluster": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.utils.cluster": {"tf": 1}}, "df": 11}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.LazyBoostingClassifier.__init__": {"tf": 1}, "mlsauce.LazyBoostingRegressor.__init__": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.__init__": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.__init__": {"tf": 1}}, "df": 4, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.utils.Progbar.__init__": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.__init__": {"tf": 1}, "mlsauce.utils.cluster": {"tf": 1}, "mlsauce.utils.subsample": {"tf": 1}}, "df": 13}}, "l": {"docs": {}, "df": 0, "f": {"docs": {"mlsauce.AdaOpt.fit": {"tf": 1}, "mlsauce.AdaOpt.predict": {"tf": 1}, "mlsauce.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier.update": {"tf": 1}, "mlsauce.StumpClassifier.fit": {"tf": 1}, "mlsauce.StumpClassifier.predict": {"tf": 1}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.LassoRegressor.fit": {"tf": 1}, "mlsauce.LassoRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor.update": {"tf": 1}, "mlsauce.RidgeRegressor.fit": {"tf": 1}, "mlsauce.RidgeRegressor.predict": {"tf": 1}, "mlsauce.LazyBoostingClassifier.fit": {"tf": 1}, "mlsauce.LazyBoostingClassifier.get_best_model": {"tf": 1}, "mlsauce.LazyBoostingClassifier.provide_models": {"tf": 1}, "mlsauce.LazyBoostingClassifier.train_model": {"tf": 1}, "mlsauce.LazyBoostingRegressor.fit": {"tf": 1}, "mlsauce.LazyBoostingRegressor.get_best_model": {"tf": 1}, "mlsauce.LazyBoostingRegressor.provide_models": {"tf": 1}, "mlsauce.LazyBoostingRegressor.train_model": {"tf": 1}, "mlsauce.MultiTaskRegressor.fit": {"tf": 1}, "mlsauce.MultiTaskRegressor.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.update": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.update": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.fit": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.get_best_model": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.train_model": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.fit": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.get_best_model": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.train_model": {"tf": 1}, "mlsauce.multitaskregressor.MultiTaskRegressor.fit": {"tf": 1}, "mlsauce.multitaskregressor.MultiTaskRegressor.predict": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.fit": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.score": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.utils.Progbar.update": {"tf": 1}, "mlsauce.utils.Progbar.add": {"tf": 1}}, "df": 70}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.__init__": {"tf": 1}}, "df": 8}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.LazyBoostingClassifier.__init__": {"tf": 1}, "mlsauce.LazyBoostingRegressor.__init__": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.__init__": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.__init__": {"tf": 1}}, "df": 4}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.download": {"tf": 1}, "mlsauce.datasets.dowload.download": {"tf": 1}}, "df": 2}}}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.predictioninterval.PredictionInterval.__init__": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}}, "df": 2, "r": {"docs": {"mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.__init__": {"tf": 1}}, "df": 8}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"mlsauce.set_config": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.__init__": {"tf": 1}}, "df": 8}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.__init__": {"tf": 1}}, "df": 8}}}}}}, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.__init__": {"tf": 1}}, "df": 8}}}}, "v": {"docs": {"mlsauce.download": {"tf": 1}, "mlsauce.datasets.dowload.download": {"tf": 1}}, "df": 2}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.download": {"tf": 1}, "mlsauce.datasets.dowload.download": {"tf": 1}}, "df": 2}}}}}}}, "f": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.__init__": {"tf": 1}}, "df": 8}}}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.LazyBoostingClassifier.__init__": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingClassifier.train_model": {"tf": 1}, "mlsauce.LazyBoostingRegressor.__init__": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor.train_model": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.__init__": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier.train_model": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.__init__": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor.train_model": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}}, "df": 9}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.set_config": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {"mlsauce.nonconformist.RegressorAdapter.__init__": {"tf": 1}}, "df": 1}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"mlsauce.nonconformist.RegressorNc.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.__init__": {"tf": 1}}, "df": 2, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.nonconformist.IcpRegressor.__init__": {"tf": 1}}, "df": 1}}}}}}}}, "j": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.LazyBoostingClassifier.__init__": {"tf": 1}, "mlsauce.LazyBoostingRegressor.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.__init__": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.__init__": {"tf": 1}}, "df": 6}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.LazyBoostingClassifier.__init__": {"tf": 1}, "mlsauce.LazyBoostingRegressor.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.__init__": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.__init__": {"tf": 1}, "mlsauce.utils.Progbar.__init__": {"tf": 1}}, "df": 15}}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.utils.Progbar.update": {"tf": 1}, "mlsauce.utils.Progbar.add": {"tf": 1}}, "df": 2}}}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.__init__": {"tf": 1}, "mlsauce.utils.cluster": {"tf": 1}}, "df": 14}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"mlsauce.LazyBoostingClassifier.__init__": {"tf": 1}, "mlsauce.LazyBoostingRegressor.__init__": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.__init__": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.__init__": {"tf": 1}}, "df": 4, "s": {"docs": {"mlsauce.utils.Progbar.__init__": {"tf": 1}}, "df": 1}}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"mlsauce.set_config": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.predictioninterval.PredictionInterval.__init__": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.LazyBoostingClassifier.train_model": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.train_model": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.__init__": {"tf": 1.4142135623730951}}, "df": 13}}}}, "a": {"docs": {}, "df": 0, "x": {"docs": {"mlsauce.LassoRegressor.__init__": {"tf": 1}, "mlsauce.lasso.LassoRegressor.__init__": {"tf": 1}}, "df": 2}, "s": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.download": {"tf": 1}, "mlsauce.datasets.dowload.download": {"tf": 1}}, "df": 2}}}, "l": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.nonconformist.RegressorNc.__init__": {"tf": 1}}, "df": 1}}}}}}}, "x": {"docs": {"mlsauce.AdaOpt.fit": {"tf": 1}, "mlsauce.AdaOpt.predict": {"tf": 1}, "mlsauce.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier.update": {"tf": 1}, "mlsauce.StumpClassifier.fit": {"tf": 1}, "mlsauce.StumpClassifier.predict": {"tf": 1}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.LassoRegressor.fit": {"tf": 1}, "mlsauce.LassoRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor.update": {"tf": 1}, "mlsauce.RidgeRegressor.fit": {"tf": 1}, "mlsauce.RidgeRegressor.predict": {"tf": 1}, "mlsauce.LazyBoostingClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingClassifier.provide_models": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingClassifier.train_model": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor.provide_models": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor.train_model": {"tf": 1.4142135623730951}, "mlsauce.MultiTaskRegressor.fit": {"tf": 1}, "mlsauce.MultiTaskRegressor.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.update": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.update": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier.train_model": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor.train_model": {"tf": 1.4142135623730951}, "mlsauce.multitaskregressor.MultiTaskRegressor.fit": {"tf": 1}, "mlsauce.multitaskregressor.MultiTaskRegressor.predict": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.fit": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.score": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.utils.cluster": {"tf": 1}, "mlsauce.utils.merge_two_dicts": {"tf": 1}, "mlsauce.utils.is_float": {"tf": 1}, "mlsauce.utils.get_beta": {"tf": 1}, "mlsauce.utils.get_beta.get_beta": {"tf": 1}}, "df": 65}, "y": {"docs": {"mlsauce.AdaOpt.fit": {"tf": 1}, "mlsauce.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.LSBoostClassifier.update": {"tf": 1}, "mlsauce.StumpClassifier.fit": {"tf": 1}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.LassoRegressor.fit": {"tf": 1}, "mlsauce.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.LSBoostRegressor.update": {"tf": 1}, "mlsauce.RidgeRegressor.fit": {"tf": 1}, "mlsauce.LazyBoostingClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingClassifier.provide_models": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingClassifier.train_model": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor.provide_models": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor.train_model": {"tf": 1.4142135623730951}, "mlsauce.MultiTaskRegressor.fit": {"tf": 1}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.update": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.update": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier.train_model": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor.train_model": {"tf": 1.4142135623730951}, "mlsauce.multitaskregressor.MultiTaskRegressor.fit": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.fit": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.score": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1}, "mlsauce.utils.subsample": {"tf": 1}, "mlsauce.utils.merge_two_dicts": {"tf": 1}, "mlsauce.utils.is_factor": {"tf": 1}, "mlsauce.utils.get_beta": {"tf": 1}, "mlsauce.utils.get_beta.get_beta": {"tf": 1}}, "df": 42}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.MultiTaskRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.multitaskregressor.MultiTaskRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 37}}}}}, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {"mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.__init__": {"tf": 1}}, "df": 8}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.download": {"tf": 1}, "mlsauce.datasets.dowload.download": {"tf": 1}}, "df": 2}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.LazyBoostingClassifier.train_model": {"tf": 1}, "mlsauce.LazyBoostingRegressor.train_model": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.train_model": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.train_model": {"tf": 1}}, "df": 4}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.__init__": {"tf": 1}}, "df": 8}}}}}, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, ":": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.download": {"tf": 1}, "mlsauce.datasets.dowload.download": {"tf": 1}}, "df": 2}}}}}}}}}}}}, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.StumpClassifier.fit": {"tf": 1}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1}}, "df": 2, "s": {"docs": {"mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.__init__": {"tf": 1}}, "df": 8}}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.LazyBoostingClassifier.__init__": {"tf": 1}, "mlsauce.LazyBoostingRegressor.__init__": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.__init__": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.__init__": {"tf": 1}}, "df": 4}}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.set_config": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"mlsauce.utils.Progbar.__init__": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "i": {"docs": {"mlsauce.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.__init__": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.__init__": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}}, "df": 6}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1}}, "df": 2, "s": {"docs": {"mlsauce.LazyBoostingClassifier.__init__": {"tf": 1}, "mlsauce.LazyBoostingRegressor.__init__": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.__init__": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.__init__": {"tf": 1}}, "df": 4}}}}}}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.LazyBoostingClassifier.__init__": {"tf": 1}, "mlsauce.LazyBoostingRegressor.__init__": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.__init__": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.__init__": {"tf": 1}}, "df": 4, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.LazyBoostingClassifier.train_model": {"tf": 1}, "mlsauce.LazyBoostingRegressor.train_model": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.train_model": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.train_model": {"tf": 1}}, "df": 4}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.LazyBoostingClassifier.train_model": {"tf": 1}, "mlsauce.LazyBoostingRegressor.train_model": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.train_model": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.train_model": {"tf": 1}}, "df": 4}}}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.set_config": {"tf": 1}}, "df": 1}}}}, "k": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.download": {"tf": 1}, "mlsauce.datasets.dowload.download": {"tf": 1}}, "df": 2}}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.nonconformist.RegressorAdapter.__init__": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.utils.check_and_install": {"tf": 1}}, "df": 1}}}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"mlsauce.set_config": {"tf": 1}}, "df": 1}}}, "b": {"docs": {}, "df": 0, "j": {"docs": {"mlsauce.predictioninterval.PredictionInterval.__init__": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.nonconformist.RegressorNc.__init__": {"tf": 1}}, "df": 1}}}}}}}}, "bases": {"root": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.MultiTaskRegressor": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}, "mlsauce.multitaskregressor.MultiTaskRegressor": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier": {"tf": 1.4142135623730951}}, "df": 21}}}}}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.MultiTaskRegressor": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}, "mlsauce.multitaskregressor.MultiTaskRegressor": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier": {"tf": 1.4142135623730951}}, "df": 23, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.StumpClassifier": {"tf": 1}, "mlsauce.ElasticNetRegressor": {"tf": 1}, "mlsauce.LassoRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.RidgeRegressor": {"tf": 1}, "mlsauce.MultiTaskRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1}, "mlsauce.lasso.LassoRegressor": {"tf": 1}, "mlsauce.multitaskregressor.MultiTaskRegressor": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}, "mlsauce.ridge.RidgeRegressor": {"tf": 1}, "mlsauce.stump.StumpClassifier": {"tf": 1}}, "df": 17}}}}}}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {}, "df": 0, "c": {"docs": {"mlsauce.nonconformist.RegressorNc": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "p": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1.4142135623730951}}, "df": 4}}}}}}}, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}}, "df": 2, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.StumpClassifier": {"tf": 1}, "mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.stump.StumpClassifier": {"tf": 1}}, "df": 8}}}}}}}}}}}}}}}, "m": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNc": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1.4142135623730951}}, "df": 10}}}}}}}, "l": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}}, "df": 2}}}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}}, "df": 2}}}}}}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}}, "df": 2, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.ElasticNetRegressor": {"tf": 1}, "mlsauce.LassoRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.RidgeRegressor": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.MultiTaskRegressor": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1}, "mlsauce.lasso.LassoRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}, "mlsauce.multitaskregressor.MultiTaskRegressor": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}, "mlsauce.ridge.RidgeRegressor": {"tf": 1}}, "df": 14}}}}}}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc": {"tf": 1}}, "df": 2}}}}}}}}}}}}}}}}}, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNc": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1.4142135623730951}}, "df": 6}}}}}}}}}}}}, "c": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc": {"tf": 1}, "mlsauce.nonconformist.RegressorNc": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 4}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "p": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 1}}, "df": 1}}}}}, "doc": {"root": {"0": {"1": {"docs": {"mlsauce.nonconformist.RegressorNc.predict": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1.4142135623730951}}, "df": 2}, "2": {"docs": {"mlsauce.nonconformist.RegressorNc.predict": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1.4142135623730951}}, "df": 2}, "3": {"6": {"2": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.MultiTaskRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.multitaskregressor.MultiTaskRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 37}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 2.6457513110645907}, "mlsauce.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor": {"tf": 1.7320508075688772}, "mlsauce.ElasticNetRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 2.8284271247461903}, "mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.set_config": {"tf": 3.3166247903554}, "mlsauce.config_context": {"tf": 2.23606797749979}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 2.6457513110645907}, "mlsauce.booster.LSBoostRegressor": {"tf": 2.8284271247461903}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1.7320508075688772}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 2.8284271247461903}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 2.8284271247461903}, "mlsauce.utils.Progbar": {"tf": 1}}, "df": 26}, "1": {"0": {"2": {"4": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 1}}, "df": 1}, "1": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 1}}, "df": 1}, "2": {"3": {"docs": {"mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "3": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}}, "df": 2}, "4": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 1}}, "df": 1}, "5": {"0": {"2": {"9": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}}, "df": 4}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 1}}, "df": 1}, "6": {"0": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.MultiTaskRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.multitaskregressor.MultiTaskRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}}, "df": 37}, "docs": {}, "df": 0}, "docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.update": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.update": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.MultiTaskRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.update": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.update": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.multitaskregressor.MultiTaskRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 2}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 2}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.utils.Progbar": {"tf": 1}}, "df": 65, "e": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 2}, "mlsauce.booster.LSBoostClassifier": {"tf": 2}}, "df": 2}}, "2": {"0": {"0": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 2}, "docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 1}}, "df": 1}, "7": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 1}}, "df": 1}, "9": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 1}}, "df": 1}, "docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 3.605551275463989}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.MultiTaskRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 3.605551275463989}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}, "mlsauce.multitaskregressor.MultiTaskRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 2.6457513110645907}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 2.6457513110645907}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 2}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.utils.Progbar": {"tf": 1}}, "df": 53}, "3": {"1": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 1}}, "df": 1}, "6": {"2": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.MultiTaskRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.multitaskregressor.MultiTaskRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 37}, "docs": {}, "df": 0}, "9": {"docs": {"mlsauce.LSBoostRegressor": {"tf": 2}, "mlsauce.config_context": {"tf": 2}, "mlsauce.booster.LSBoostRegressor": {"tf": 2}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1.4142135623730951}}, "df": 5}, "docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 2}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.MultiTaskRegressor.set_score_request": {"tf": 1}, "mlsauce.set_config": {"tf": 2.23606797749979}, "mlsauce.config_context": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 2}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}, "mlsauce.multitaskregressor.MultiTaskRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 2.449489742783178}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 2.449489742783178}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 2}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 48, "d": {"docs": {"mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}}, "df": 2}}, "4": {"2": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}}, "df": 4}, "docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 2}, "5": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}}, "df": 2}, "6": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 1.4142135623730951}}, "df": 1}, "7": {"3": {"4": {"5": {"6": {"3": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.4142135623730951}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"6": {"1": {"7": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.MultiTaskRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.multitaskregressor.MultiTaskRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}}, "df": 37}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "7": {"9": {"4": {"2": {"3": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.4142135623730951}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 1}}, "df": 1}, "9": {"0": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}}, "df": 2}, "5": {"docs": {"mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}}, "df": 3}, "9": {"docs": {"mlsauce.nonconformist.RegressorNc.predict": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1.7320508075688772}}, "df": 2}, "docs": {"mlsauce.LSBoostRegressor": {"tf": 2}, "mlsauce.booster.LSBoostRegressor": {"tf": 2}}, "df": 2}, "docs": {"mlsauce": {"tf": 1.7320508075688772}, "mlsauce.AdaOpt": {"tf": 3.1622776601683795}, "mlsauce.AdaOpt.__init__": {"tf": 1.7320508075688772}, "mlsauce.AdaOpt.n_iterations": {"tf": 1.7320508075688772}, "mlsauce.AdaOpt.learning_rate": {"tf": 1.7320508075688772}, "mlsauce.AdaOpt.reg_lambda": {"tf": 1.7320508075688772}, "mlsauce.AdaOpt.reg_alpha": {"tf": 1.7320508075688772}, "mlsauce.AdaOpt.eta": {"tf": 1.7320508075688772}, "mlsauce.AdaOpt.gamma": {"tf": 1.7320508075688772}, "mlsauce.AdaOpt.k": {"tf": 1.7320508075688772}, "mlsauce.AdaOpt.tolerance": {"tf": 1.7320508075688772}, "mlsauce.AdaOpt.n_clusters": {"tf": 1.7320508075688772}, "mlsauce.AdaOpt.batch_size": {"tf": 1.7320508075688772}, "mlsauce.AdaOpt.row_sample": {"tf": 1.7320508075688772}, "mlsauce.AdaOpt.type_dist": {"tf": 1.7320508075688772}, "mlsauce.AdaOpt.n_jobs": {"tf": 1.7320508075688772}, "mlsauce.AdaOpt.cache": {"tf": 1.7320508075688772}, "mlsauce.AdaOpt.verbose": {"tf": 1.7320508075688772}, "mlsauce.AdaOpt.n_clusters_input": {"tf": 1.7320508075688772}, "mlsauce.AdaOpt.clustering_method": {"tf": 1.7320508075688772}, "mlsauce.AdaOpt.cluster_scaling": {"tf": 1.7320508075688772}, "mlsauce.AdaOpt.seed": {"tf": 1.7320508075688772}, "mlsauce.AdaOpt.fit": {"tf": 4.123105625617661}, "mlsauce.AdaOpt.predict": {"tf": 4.123105625617661}, "mlsauce.AdaOpt.predict_proba": {"tf": 4.123105625617661}, "mlsauce.AdaOpt.set_score_request": {"tf": 9}, "mlsauce.LSBoostClassifier": {"tf": 9.746794344808963}, "mlsauce.LSBoostClassifier.__init__": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.base_model": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.n_estimators": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.learning_rate": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.n_hidden_features": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.reg_lambda": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.alpha": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.row_sample": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.col_sample": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.dropout": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.tolerance": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.direct_link": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.verbose": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.seed": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.backend": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.obj": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.solver": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.activation": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.n_clusters": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.clustering_method": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.cluster_scaling": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.degree": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.poly_": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.weights_distr": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.fit": {"tf": 4.123105625617661}, "mlsauce.LSBoostClassifier.predict": {"tf": 4.123105625617661}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 4.123105625617661}, "mlsauce.LSBoostClassifier.update": {"tf": 4.123105625617661}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 9}, "mlsauce.GenericBoostingClassifier": {"tf": 3.1622776601683795}, "mlsauce.GenericBoostingClassifier.__init__": {"tf": 1.7320508075688772}, "mlsauce.GenericBoostingClassifier.base_model": {"tf": 1.7320508075688772}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 9}, "mlsauce.GenericBoostingRegressor": {"tf": 3.3166247903554}, "mlsauce.GenericBoostingRegressor.__init__": {"tf": 1.7320508075688772}, "mlsauce.GenericBoostingRegressor.base_model": {"tf": 1.7320508075688772}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 9}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 9}, "mlsauce.StumpClassifier": {"tf": 3.1622776601683795}, "mlsauce.StumpClassifier.__init__": {"tf": 1.7320508075688772}, "mlsauce.StumpClassifier.bins": {"tf": 1.7320508075688772}, "mlsauce.StumpClassifier.obj": {"tf": 1.7320508075688772}, "mlsauce.StumpClassifier.fit": {"tf": 4.123105625617661}, "mlsauce.StumpClassifier.predict": {"tf": 4.123105625617661}, "mlsauce.StumpClassifier.predict_proba": {"tf": 4.123105625617661}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 9}, "mlsauce.StumpClassifier.set_score_request": {"tf": 9}, "mlsauce.ElasticNetRegressor": {"tf": 3.1622776601683795}, "mlsauce.ElasticNetRegressor.__init__": {"tf": 1.7320508075688772}, "mlsauce.ElasticNetRegressor.reg_lambda": {"tf": 1.7320508075688772}, "mlsauce.ElasticNetRegressor.alpha": {"tf": 1.7320508075688772}, "mlsauce.ElasticNetRegressor.backend": {"tf": 1.7320508075688772}, "mlsauce.ElasticNetRegressor.fit": {"tf": 4.123105625617661}, "mlsauce.ElasticNetRegressor.predict": {"tf": 4.123105625617661}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 9}, "mlsauce.LassoRegressor": {"tf": 3.1622776601683795}, "mlsauce.LassoRegressor.__init__": {"tf": 1.7320508075688772}, "mlsauce.LassoRegressor.reg_lambda": {"tf": 1.7320508075688772}, "mlsauce.LassoRegressor.max_iter": {"tf": 1.7320508075688772}, "mlsauce.LassoRegressor.tol": {"tf": 1.7320508075688772}, "mlsauce.LassoRegressor.backend": {"tf": 1.7320508075688772}, "mlsauce.LassoRegressor.fit": {"tf": 4.123105625617661}, "mlsauce.LassoRegressor.predict": {"tf": 4.123105625617661}, "mlsauce.LassoRegressor.set_score_request": {"tf": 9}, "mlsauce.LSBoostRegressor": {"tf": 25.826343140289914}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.base_model": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.n_estimators": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.learning_rate": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.n_hidden_features": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.reg_lambda": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.alpha": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.row_sample": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.col_sample": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.dropout": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.tolerance": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.direct_link": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.verbose": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.seed": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.backend": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.obj": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.solver": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.activation": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.type_pi": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.replications": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.kernel": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.n_clusters": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.clustering_method": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.cluster_scaling": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.degree": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.poly_": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.weights_distr": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.fit": {"tf": 4.123105625617661}, "mlsauce.LSBoostRegressor.predict": {"tf": 4.123105625617661}, "mlsauce.LSBoostRegressor.update": {"tf": 4.123105625617661}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 9}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 9}, "mlsauce.RidgeRegressor": {"tf": 3.1622776601683795}, "mlsauce.RidgeRegressor.__init__": {"tf": 1.7320508075688772}, "mlsauce.RidgeRegressor.reg_lambda": {"tf": 1.7320508075688772}, "mlsauce.RidgeRegressor.backend": {"tf": 1.7320508075688772}, "mlsauce.RidgeRegressor.fit": {"tf": 4.123105625617661}, "mlsauce.RidgeRegressor.predict": {"tf": 4.123105625617661}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 9}, "mlsauce.LazyBoostingClassifier": {"tf": 18.439088914585774}, "mlsauce.LazyBoostingClassifier.__init__": {"tf": 1.7320508075688772}, "mlsauce.LazyBoostingClassifier.verbose": {"tf": 1.7320508075688772}, "mlsauce.LazyBoostingClassifier.ignore_warnings": {"tf": 1.7320508075688772}, "mlsauce.LazyBoostingClassifier.custom_metric": {"tf": 1.7320508075688772}, "mlsauce.LazyBoostingClassifier.predictions": {"tf": 1.7320508075688772}, "mlsauce.LazyBoostingClassifier.sort_by": {"tf": 1.7320508075688772}, "mlsauce.LazyBoostingClassifier.models_": {"tf": 1.7320508075688772}, "mlsauce.LazyBoostingClassifier.best_model_": {"tf": 1.7320508075688772}, "mlsauce.LazyBoostingClassifier.random_state": {"tf": 1.7320508075688772}, "mlsauce.LazyBoostingClassifier.estimators": {"tf": 1.7320508075688772}, "mlsauce.LazyBoostingClassifier.preprocess": {"tf": 1.7320508075688772}, "mlsauce.LazyBoostingClassifier.n_jobs": {"tf": 1.7320508075688772}, "mlsauce.LazyBoostingClassifier.fit": {"tf": 4.123105625617661}, "mlsauce.LazyBoostingClassifier.get_best_model": {"tf": 3.1622776601683795}, "mlsauce.LazyBoostingClassifier.provide_models": {"tf": 4.898979485566356}, "mlsauce.LazyBoostingClassifier.train_model": {"tf": 1.7320508075688772}, "mlsauce.LazyBoostingRegressor": {"tf": 17.029386365926403}, "mlsauce.LazyBoostingRegressor.__init__": {"tf": 1.7320508075688772}, "mlsauce.LazyBoostingRegressor.verbose": {"tf": 1.7320508075688772}, "mlsauce.LazyBoostingRegressor.ignore_warnings": {"tf": 1.7320508075688772}, "mlsauce.LazyBoostingRegressor.custom_metric": {"tf": 1.7320508075688772}, "mlsauce.LazyBoostingRegressor.predictions": {"tf": 1.7320508075688772}, "mlsauce.LazyBoostingRegressor.sort_by": {"tf": 1.7320508075688772}, "mlsauce.LazyBoostingRegressor.models_": {"tf": 1.7320508075688772}, "mlsauce.LazyBoostingRegressor.best_model_": {"tf": 1.7320508075688772}, "mlsauce.LazyBoostingRegressor.random_state": {"tf": 1.7320508075688772}, "mlsauce.LazyBoostingRegressor.estimators": {"tf": 1.7320508075688772}, "mlsauce.LazyBoostingRegressor.preprocess": {"tf": 1.7320508075688772}, "mlsauce.LazyBoostingRegressor.n_jobs": {"tf": 1.7320508075688772}, "mlsauce.LazyBoostingRegressor.fit": {"tf": 4.795831523312719}, "mlsauce.LazyBoostingRegressor.get_best_model": {"tf": 3.1622776601683795}, "mlsauce.LazyBoostingRegressor.provide_models": {"tf": 4.58257569495584}, "mlsauce.LazyBoostingRegressor.train_model": {"tf": 1.7320508075688772}, "mlsauce.MultiTaskRegressor": {"tf": 3.1622776601683795}, "mlsauce.MultiTaskRegressor.__init__": {"tf": 1.7320508075688772}, "mlsauce.MultiTaskRegressor.regr": {"tf": 1.7320508075688772}, "mlsauce.MultiTaskRegressor.objs": {"tf": 1.7320508075688772}, "mlsauce.MultiTaskRegressor.fit": {"tf": 2.449489742783178}, "mlsauce.MultiTaskRegressor.predict": {"tf": 3.1622776601683795}, "mlsauce.MultiTaskRegressor.set_score_request": {"tf": 9}, "mlsauce.download": {"tf": 1.7320508075688772}, "mlsauce.get_config": {"tf": 4.242640687119285}, "mlsauce.set_config": {"tf": 7.615773105863909}, "mlsauce.config_context": {"tf": 14}, "mlsauce.adaopt": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt": {"tf": 3.1622776601683795}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.n_iterations": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.learning_rate": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.reg_lambda": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.reg_alpha": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.eta": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.gamma": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.k": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.tolerance": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.n_clusters": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.batch_size": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.row_sample": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.type_dist": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.n_jobs": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.cache": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.verbose": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.n_clusters_input": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.clustering_method": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.cluster_scaling": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.seed": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 4.123105625617661}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 4.123105625617661}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 4.123105625617661}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 9}, "mlsauce.booster": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier": {"tf": 9.746794344808963}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.base_model": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.n_estimators": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.learning_rate": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.n_hidden_features": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.reg_lambda": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.alpha": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.row_sample": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.col_sample": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.dropout": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.tolerance": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.direct_link": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.verbose": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.seed": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.backend": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.obj": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.solver": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.activation": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.n_clusters": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.clustering_method": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.cluster_scaling": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.degree": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.poly_": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.weights_distr": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 4.123105625617661}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 4.123105625617661}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 4.123105625617661}, "mlsauce.booster.LSBoostClassifier.update": {"tf": 4.123105625617661}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 9}, "mlsauce.booster.LSBoostRegressor": {"tf": 25.826343140289914}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.base_model": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.n_estimators": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.learning_rate": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.n_hidden_features": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.reg_lambda": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.alpha": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.row_sample": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.col_sample": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.dropout": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.tolerance": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.direct_link": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.verbose": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.seed": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.backend": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.obj": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.solver": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.activation": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.type_pi": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.replications": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.kernel": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.n_clusters": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.clustering_method": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.cluster_scaling": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.degree": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.poly_": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.weights_distr": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 4.123105625617661}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 4.123105625617661}, "mlsauce.booster.LSBoostRegressor.update": {"tf": 4.123105625617661}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 9}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 9}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 3.1622776601683795}, "mlsauce.booster.GenericBoostingClassifier.__init__": {"tf": 1.7320508075688772}, "mlsauce.booster.GenericBoostingClassifier.base_model": {"tf": 1.7320508075688772}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 9}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 3.3166247903554}, "mlsauce.booster.GenericBoostingRegressor.__init__": {"tf": 1.7320508075688772}, "mlsauce.booster.GenericBoostingRegressor.base_model": {"tf": 1.7320508075688772}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 9}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 9}, "mlsauce.datasets": {"tf": 1.7320508075688772}, "mlsauce.datasets.dowload": {"tf": 1.7320508075688772}, "mlsauce.datasets.dowload.download": {"tf": 1.7320508075688772}, "mlsauce.demo": {"tf": 1.7320508075688772}, "mlsauce.elasticnet": {"tf": 1.7320508075688772}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 3.1622776601683795}, "mlsauce.elasticnet.ElasticNetRegressor.__init__": {"tf": 1.7320508075688772}, "mlsauce.elasticnet.ElasticNetRegressor.reg_lambda": {"tf": 1.7320508075688772}, "mlsauce.elasticnet.ElasticNetRegressor.alpha": {"tf": 1.7320508075688772}, "mlsauce.elasticnet.ElasticNetRegressor.backend": {"tf": 1.7320508075688772}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 4.123105625617661}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 4.123105625617661}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 9}, "mlsauce.lasso": {"tf": 1.7320508075688772}, "mlsauce.lasso.LassoRegressor": {"tf": 3.1622776601683795}, "mlsauce.lasso.LassoRegressor.__init__": {"tf": 1.7320508075688772}, "mlsauce.lasso.LassoRegressor.reg_lambda": {"tf": 1.7320508075688772}, "mlsauce.lasso.LassoRegressor.max_iter": {"tf": 1.7320508075688772}, "mlsauce.lasso.LassoRegressor.tol": {"tf": 1.7320508075688772}, "mlsauce.lasso.LassoRegressor.backend": {"tf": 1.7320508075688772}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 4.123105625617661}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 4.123105625617661}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 9}, "mlsauce.lazybooster": {"tf": 1.7320508075688772}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 18.439088914585774}, "mlsauce.lazybooster.LazyBoostingClassifier.__init__": {"tf": 1.7320508075688772}, "mlsauce.lazybooster.LazyBoostingClassifier.verbose": {"tf": 1.7320508075688772}, "mlsauce.lazybooster.LazyBoostingClassifier.ignore_warnings": {"tf": 1.7320508075688772}, "mlsauce.lazybooster.LazyBoostingClassifier.custom_metric": {"tf": 1.7320508075688772}, "mlsauce.lazybooster.LazyBoostingClassifier.predictions": {"tf": 1.7320508075688772}, "mlsauce.lazybooster.LazyBoostingClassifier.sort_by": {"tf": 1.7320508075688772}, "mlsauce.lazybooster.LazyBoostingClassifier.models_": {"tf": 1.7320508075688772}, "mlsauce.lazybooster.LazyBoostingClassifier.best_model_": {"tf": 1.7320508075688772}, "mlsauce.lazybooster.LazyBoostingClassifier.random_state": {"tf": 1.7320508075688772}, "mlsauce.lazybooster.LazyBoostingClassifier.estimators": {"tf": 1.7320508075688772}, "mlsauce.lazybooster.LazyBoostingClassifier.preprocess": {"tf": 1.7320508075688772}, "mlsauce.lazybooster.LazyBoostingClassifier.n_jobs": {"tf": 1.7320508075688772}, "mlsauce.lazybooster.LazyBoostingClassifier.fit": {"tf": 4.123105625617661}, "mlsauce.lazybooster.LazyBoostingClassifier.get_best_model": {"tf": 3.1622776601683795}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 4.898979485566356}, "mlsauce.lazybooster.LazyBoostingClassifier.train_model": {"tf": 1.7320508075688772}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 17.029386365926403}, "mlsauce.lazybooster.LazyBoostingRegressor.__init__": {"tf": 1.7320508075688772}, "mlsauce.lazybooster.LazyBoostingRegressor.verbose": {"tf": 1.7320508075688772}, "mlsauce.lazybooster.LazyBoostingRegressor.ignore_warnings": {"tf": 1.7320508075688772}, "mlsauce.lazybooster.LazyBoostingRegressor.custom_metric": {"tf": 1.7320508075688772}, "mlsauce.lazybooster.LazyBoostingRegressor.predictions": {"tf": 1.7320508075688772}, "mlsauce.lazybooster.LazyBoostingRegressor.sort_by": {"tf": 1.7320508075688772}, "mlsauce.lazybooster.LazyBoostingRegressor.models_": {"tf": 1.7320508075688772}, "mlsauce.lazybooster.LazyBoostingRegressor.best_model_": {"tf": 1.7320508075688772}, "mlsauce.lazybooster.LazyBoostingRegressor.random_state": {"tf": 1.7320508075688772}, "mlsauce.lazybooster.LazyBoostingRegressor.estimators": {"tf": 1.7320508075688772}, "mlsauce.lazybooster.LazyBoostingRegressor.preprocess": {"tf": 1.7320508075688772}, "mlsauce.lazybooster.LazyBoostingRegressor.n_jobs": {"tf": 1.7320508075688772}, "mlsauce.lazybooster.LazyBoostingRegressor.fit": {"tf": 4.795831523312719}, "mlsauce.lazybooster.LazyBoostingRegressor.get_best_model": {"tf": 3.1622776601683795}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 4.58257569495584}, "mlsauce.lazybooster.LazyBoostingRegressor.train_model": {"tf": 1.7320508075688772}, "mlsauce.multitaskregressor": {"tf": 1.7320508075688772}, "mlsauce.multitaskregressor.MultiTaskRegressor": {"tf": 3.1622776601683795}, "mlsauce.multitaskregressor.MultiTaskRegressor.__init__": {"tf": 1.7320508075688772}, "mlsauce.multitaskregressor.MultiTaskRegressor.regr": {"tf": 1.7320508075688772}, "mlsauce.multitaskregressor.MultiTaskRegressor.objs": {"tf": 1.7320508075688772}, "mlsauce.multitaskregressor.MultiTaskRegressor.fit": {"tf": 2.449489742783178}, "mlsauce.multitaskregressor.MultiTaskRegressor.predict": {"tf": 3.1622776601683795}, "mlsauce.multitaskregressor.MultiTaskRegressor.set_score_request": {"tf": 9}, "mlsauce.nonconformist": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.AbsErrorErrFunc": {"tf": 3.3166247903554}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 4.358898943540674}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 4.358898943540674}, "mlsauce.nonconformist.QuantileRegErrFunc": {"tf": 3}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 4.358898943540674}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 4.358898943540674}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 21.61018278497431}, "mlsauce.nonconformist.RegressorAdapter.__init__": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 9}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 9}, "mlsauce.nonconformist.RegressorNc": {"tf": 5.916079783099616}, "mlsauce.nonconformist.RegressorNc.__init__": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 5.0990195135927845}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 9}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 9}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 9}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 21.61018278497431}, "mlsauce.nonconformist.RegressorNormalizer.__init__": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNormalizer.base_model": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNormalizer.normalizer_model": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNormalizer.err_func": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNormalizer.fit": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNormalizer.score": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 9}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 9}, "mlsauce.nonconformist.IcpRegressor": {"tf": 22.360679774997898}, "mlsauce.nonconformist.IcpRegressor.__init__": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 4.795831523312719}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 9}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 9}, "mlsauce.predictioninterval": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 3.3166247903554}, "mlsauce.predictioninterval.PredictionInterval.__init__": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval.obj": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval.method": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval.level": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval.type_pi": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval.replications": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval.kernel": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval.agg": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval.seed": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval.alpha_": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval.quantile_": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval.icp_": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval.calibrated_residuals_": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval.scaled_calibrated_residuals_": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval.calibrated_residuals_scaler_": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval.kde_": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 3.605551275463989}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 3.1622776601683795}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 9}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 9}, "mlsauce.ridge": {"tf": 1.7320508075688772}, "mlsauce.ridge.RidgeRegressor": {"tf": 3.1622776601683795}, "mlsauce.ridge.RidgeRegressor.__init__": {"tf": 1.7320508075688772}, "mlsauce.ridge.RidgeRegressor.reg_lambda": {"tf": 1.7320508075688772}, "mlsauce.ridge.RidgeRegressor.backend": {"tf": 1.7320508075688772}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 4.123105625617661}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 4.123105625617661}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 9}, "mlsauce.setup": {"tf": 1.7320508075688772}, "mlsauce.stump": {"tf": 1.7320508075688772}, "mlsauce.stump.StumpClassifier": {"tf": 3.1622776601683795}, "mlsauce.stump.StumpClassifier.__init__": {"tf": 1.7320508075688772}, "mlsauce.stump.StumpClassifier.bins": {"tf": 1.7320508075688772}, "mlsauce.stump.StumpClassifier.obj": {"tf": 1.7320508075688772}, "mlsauce.stump.StumpClassifier.fit": {"tf": 4.123105625617661}, "mlsauce.stump.StumpClassifier.predict": {"tf": 4.123105625617661}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 4.123105625617661}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 9}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 9}, "mlsauce.utils": {"tf": 1.7320508075688772}, "mlsauce.utils.cluster": {"tf": 1.7320508075688772}, "mlsauce.utils.subsample": {"tf": 1.7320508075688772}, "mlsauce.utils.merge_two_dicts": {"tf": 1.7320508075688772}, "mlsauce.utils.flatten": {"tf": 1.7320508075688772}, "mlsauce.utils.is_float": {"tf": 1.7320508075688772}, "mlsauce.utils.is_factor": {"tf": 1.7320508075688772}, "mlsauce.utils.Progbar": {"tf": 3.1622776601683795}, "mlsauce.utils.Progbar.__init__": {"tf": 1.7320508075688772}, "mlsauce.utils.Progbar.target": {"tf": 1.7320508075688772}, "mlsauce.utils.Progbar.width": {"tf": 1.7320508075688772}, "mlsauce.utils.Progbar.verbose": {"tf": 1.7320508075688772}, "mlsauce.utils.Progbar.interval": {"tf": 1.7320508075688772}, "mlsauce.utils.Progbar.update": {"tf": 3.4641016151377544}, "mlsauce.utils.Progbar.add": {"tf": 1.7320508075688772}, "mlsauce.utils.get_beta": {"tf": 1.7320508075688772}, "mlsauce.utils.check_and_install": {"tf": 1.7320508075688772}, "mlsauce.utils.is_multitask_estimator": {"tf": 1.7320508075688772}, "mlsauce.utils.get_beta.get_beta": {"tf": 1.7320508075688772}}, "df": 432, "a": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.AdaOpt.set_score_request": {"tf": 2.23606797749979}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostClassifier.update": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 2.23606797749979}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 2.23606797749979}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 2.23606797749979}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 2.23606797749979}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 2.23606797749979}, "mlsauce.StumpClassifier.set_score_request": {"tf": 2.23606797749979}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 2.23606797749979}, "mlsauce.LassoRegressor.set_score_request": {"tf": 2.23606797749979}, "mlsauce.LSBoostRegressor.update": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 2.23606797749979}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 2.23606797749979}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 2.23606797749979}, "mlsauce.LazyBoostingClassifier": {"tf": 1.7320508075688772}, "mlsauce.LazyBoostingClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingClassifier.provide_models": {"tf": 1}, "mlsauce.LazyBoostingClassifier.train_model": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1.7320508075688772}, "mlsauce.LazyBoostingRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor.provide_models": {"tf": 1}, "mlsauce.LazyBoostingRegressor.train_model": {"tf": 1}, "mlsauce.MultiTaskRegressor": {"tf": 1.7320508075688772}, "mlsauce.MultiTaskRegressor.set_score_request": {"tf": 2.23606797749979}, "mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 2.23606797749979}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.update": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 2.23606797749979}, "mlsauce.booster.LSBoostRegressor.update": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 2.23606797749979}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 2.23606797749979}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 2.23606797749979}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 2.23606797749979}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 2.23606797749979}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 2.23606797749979}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 2.23606797749979}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1.7320508075688772}, "mlsauce.lazybooster.LazyBoostingClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.train_model": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1.7320508075688772}, "mlsauce.lazybooster.LazyBoostingRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.train_model": {"tf": 1}, "mlsauce.multitaskregressor.MultiTaskRegressor": {"tf": 1.7320508075688772}, "mlsauce.multitaskregressor.MultiTaskRegressor.set_score_request": {"tf": 2.23606797749979}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 2.23606797749979}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 2.23606797749979}, "mlsauce.nonconformist.RegressorNc": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 2.23606797749979}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 2.23606797749979}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 2.23606797749979}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 2.23606797749979}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 2.23606797749979}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 2.23606797749979}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 2}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 2.23606797749979}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 2.23606797749979}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 2.23606797749979}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 2.23606797749979}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 2.23606797749979}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 2.23606797749979}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 2.23606797749979}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 2.23606797749979}, "mlsauce.utils.Progbar": {"tf": 1}, "mlsauce.utils.check_and_install": {"tf": 1}}, "df": 74, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.AdaOpt.fit": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1}}, "df": 4}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.AdaOpt.fit": {"tf": 1}, "mlsauce.AdaOpt.predict": {"tf": 1}, "mlsauce.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.StumpClassifier.predict": {"tf": 1}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.LassoRegressor.fit": {"tf": 1}, "mlsauce.LassoRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.RidgeRegressor.fit": {"tf": 1}, "mlsauce.RidgeRegressor.predict": {"tf": 1}, "mlsauce.LazyBoostingClassifier.fit": {"tf": 1}, "mlsauce.LazyBoostingRegressor.fit": {"tf": 1}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.fit": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.fit": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1}}, "df": 36}}}}}}}}, "j": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}}, "df": 2}}}}}}}, "t": {"docs": {"mlsauce.AdaOpt": {"tf": 3.1622776601683795}, "mlsauce.LSBoostClassifier": {"tf": 1.7320508075688772}, "mlsauce.GenericBoostingClassifier": {"tf": 1.7320508075688772}, "mlsauce.GenericBoostingRegressor": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt": {"tf": 3.1622776601683795}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.7320508075688772}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1.7320508075688772}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}}, "df": 14, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.StumpClassifier": {"tf": 1}, "mlsauce.ElasticNetRegressor": {"tf": 1}, "mlsauce.LassoRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.RidgeRegressor": {"tf": 1}, "mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.MultiTaskRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1}, "mlsauce.lasso.LassoRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}, "mlsauce.multitaskregressor.MultiTaskRegressor": {"tf": 1}, "mlsauce.nonconformist.RegressorNc": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}, "mlsauce.ridge.RidgeRegressor": {"tf": 1}, "mlsauce.stump.StumpClassifier": {"tf": 1}}, "df": 27}}}}}}}, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 2}}}}}}, "l": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.ElasticNetRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1}}, "df": 12}}}, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "m": {"docs": {"mlsauce.LassoRegressor": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor": {"tf": 1.4142135623730951}}, "df": 2, "s": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.LazyBoostingRegressor.fit": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.fit": {"tf": 1}}, "df": 6}}}}, "g": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}}, "df": 4}}}}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}}, "df": 4}}}}, "l": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 2.449489742783178}, "mlsauce.LazyBoostingClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingClassifier.provide_models": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 2.449489742783178}, "mlsauce.LazyBoostingRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor.provide_models": {"tf": 1}, "mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 2.23606797749979}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 2.449489742783178}, "mlsauce.lazybooster.LazyBoostingClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 2.449489742783178}, "mlsauce.lazybooster.LazyBoostingRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}, "mlsauce.utils.Progbar": {"tf": 1}}, "df": 19, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}}, "df": 2}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "y": {"docs": {"mlsauce.LazyBoostingRegressor.provide_models": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 1}}, "df": 2}}}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {"mlsauce.get_config": {"tf": 1}, "mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}, "mlsauce.nonconformist.RegressorNc": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1}}, "df": 5}}}, "s": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.LazyBoostingClassifier": {"tf": 2.23606797749979}, "mlsauce.LazyBoostingClassifier.provide_models": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 2.23606797749979}, "mlsauce.LazyBoostingRegressor.provide_models": {"tf": 1.4142135623730951}, "mlsauce.MultiTaskRegressor.set_score_request": {"tf": 1}, "mlsauce.set_config": {"tf": 1.4142135623730951}, "mlsauce.config_context": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 2.23606797749979}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 2.23606797749979}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 1.4142135623730951}, "mlsauce.multitaskregressor.MultiTaskRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.utils.Progbar": {"tf": 1}, "mlsauce.utils.Progbar.update": {"tf": 1}}, "df": 65, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 2}}, "df": 2}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.config_context": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.LazyBoostingClassifier": {"tf": 2.449489742783178}, "mlsauce.LazyBoostingRegressor": {"tf": 2.449489742783178}, "mlsauce.MultiTaskRegressor.set_score_request": {"tf": 1}, "mlsauce.get_config": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 2.449489742783178}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 2.449489742783178}, "mlsauce.multitaskregressor.MultiTaskRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 54}, "g": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.AdaOpt.fit": {"tf": 1}, "mlsauce.AdaOpt.predict": {"tf": 1}, "mlsauce.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier.update": {"tf": 1}, "mlsauce.StumpClassifier.fit": {"tf": 1}, "mlsauce.StumpClassifier.predict": {"tf": 1}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.LassoRegressor.fit": {"tf": 1}, "mlsauce.LassoRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor.update": {"tf": 1}, "mlsauce.RidgeRegressor.fit": {"tf": 1}, "mlsauce.RidgeRegressor.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.update": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.update": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1}}, "df": 42}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.LazyBoostingClassifier.fit": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.fit": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.utils.Progbar": {"tf": 1}, "mlsauce.utils.Progbar.update": {"tf": 1}}, "df": 6}}}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"mlsauce.AdaOpt.fit": {"tf": 1.4142135623730951}, "mlsauce.AdaOpt.predict": {"tf": 1.4142135623730951}, "mlsauce.AdaOpt.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.update": {"tf": 1}, "mlsauce.StumpClassifier.fit": {"tf": 1.7320508075688772}, "mlsauce.StumpClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.update": {"tf": 1}, "mlsauce.RidgeRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingClassifier.fit": {"tf": 2}, "mlsauce.LazyBoostingClassifier.provide_models": {"tf": 2}, "mlsauce.LazyBoostingRegressor.fit": {"tf": 2}, "mlsauce.LazyBoostingRegressor.provide_models": {"tf": 2}, "mlsauce.MultiTaskRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.MultiTaskRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.update": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.update": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier.fit": {"tf": 2}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 2}, "mlsauce.lazybooster.LazyBoostingRegressor.fit": {"tf": 2}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 2}, "mlsauce.multitaskregressor.MultiTaskRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.multitaskregressor.MultiTaskRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 2}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 2}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1.7320508075688772}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1.4142135623730951}}, "df": 61, "s": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 2}}}}}, "n": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}, "mlsauce.nonconformist.RegressorNc": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1.7320508075688772}, "mlsauce.utils.Progbar.update": {"tf": 1}}, "df": 5, "d": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.AdaOpt.fit": {"tf": 1}, "mlsauce.AdaOpt.predict": {"tf": 1}, "mlsauce.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 2}, "mlsauce.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier.update": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1.7320508075688772}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 2}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.fit": {"tf": 1}, "mlsauce.StumpClassifier.predict": {"tf": 1}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor": {"tf": 1}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.fit": {"tf": 1}, "mlsauce.LassoRegressor.predict": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 2.23606797749979}, "mlsauce.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor.update": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.fit": {"tf": 1}, "mlsauce.RidgeRegressor.predict": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingClassifier.fit": {"tf": 2.449489742783178}, "mlsauce.LazyBoostingClassifier.provide_models": {"tf": 2.23606797749979}, "mlsauce.LazyBoostingClassifier.train_model": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1.7320508075688772}, "mlsauce.LazyBoostingRegressor.fit": {"tf": 2.449489742783178}, "mlsauce.LazyBoostingRegressor.provide_models": {"tf": 2.23606797749979}, "mlsauce.LazyBoostingRegressor.train_model": {"tf": 1}, "mlsauce.MultiTaskRegressor.set_score_request": {"tf": 1}, "mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 2}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.update": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 2.23606797749979}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.update": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1.7320508075688772}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 2}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier.fit": {"tf": 2.449489742783178}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 2.23606797749979}, "mlsauce.lazybooster.LazyBoostingClassifier.train_model": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1.7320508075688772}, "mlsauce.lazybooster.LazyBoostingRegressor.fit": {"tf": 2.449489742783178}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 2.23606797749979}, "mlsauce.lazybooster.LazyBoostingRegressor.train_model": {"tf": 1}, "mlsauce.multitaskregressor.MultiTaskRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 2}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 2.449489742783178}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 2}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 2.23606797749979}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 115}, "y": {"docs": {"mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}}, "df": 6}}, "c": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.MultiTaskRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.multitaskregressor.MultiTaskRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 37}}, "s": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.MultiTaskRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.multitaskregressor.MultiTaskRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 37}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "y": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1.7320508075688772}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1.7320508075688772}}, "df": 2}}}}}}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.MultiTaskRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.multitaskregressor.MultiTaskRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 37}}}, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1.4142135623730951}}, "df": 8}}}}}}}}}, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.LSBoostClassifier.update": {"tf": 1}, "mlsauce.LSBoostRegressor.update": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.update": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.update": {"tf": 1}}, "df": 4}, "s": {"docs": {"mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}}, "df": 1}}}, "y": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}}, "df": 4}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.nonconformist.RegressorNc": {"tf": 1}}, "df": 1}}}}}}}}}, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}}, "df": 4}}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}}, "df": 4}}}}}}}, "o": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 2}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.utils.Progbar.update": {"tf": 1}}, "df": 1, "d": {"docs": {"mlsauce.utils.Progbar": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "u": {"docs": {}, "df": 0, "c": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}}, "df": 2}}}, "c": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 2, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.MultiTaskRegressor": {"tf": 1}, "mlsauce.MultiTaskRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.multitaskregressor.MultiTaskRegressor": {"tf": 1}, "mlsauce.multitaskregressor.MultiTaskRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 2}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 2}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 44, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier": {"tf": 1}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.LassoRegressor.fit": {"tf": 1}, "mlsauce.RidgeRegressor.fit": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1}, "mlsauce.stump.StumpClassifier": {"tf": 1}}, "df": 16, "s": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingClassifier.fit": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.fit": {"tf": 1}}, "df": 4}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}}, "df": 4}}}}}}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1}}, "df": 2}}}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}}, "df": 10, "s": {"docs": {"mlsauce.AdaOpt": {"tf": 2}, "mlsauce.LSBoostClassifier": {"tf": 2.449489742783178}, "mlsauce.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt": {"tf": 2}, "mlsauce.booster.LSBoostClassifier": {"tf": 2.449489742783178}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.7320508075688772}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1.4142135623730951}}, "df": 10}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.AdaOpt": {"tf": 2.23606797749979}, "mlsauce.LSBoostClassifier": {"tf": 2.23606797749979}, "mlsauce.GenericBoostingClassifier": {"tf": 2.23606797749979}, "mlsauce.GenericBoostingRegressor": {"tf": 2.23606797749979}, "mlsauce.LSBoostRegressor": {"tf": 2.23606797749979}, "mlsauce.adaopt.AdaOpt": {"tf": 2.23606797749979}, "mlsauce.booster.LSBoostClassifier": {"tf": 2.23606797749979}, "mlsauce.booster.LSBoostRegressor": {"tf": 2.23606797749979}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 2.23606797749979}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 2.23606797749979}}, "df": 10}}}}}}}}, "f": {"2": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 2.449489742783178}, "mlsauce.booster.LSBoostClassifier": {"tf": 2.449489742783178}}, "df": 2}, "docs": {"mlsauce.LSBoostClassifier": {"tf": 2.449489742783178}, "mlsauce.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 2.449489742783178}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1.4142135623730951}}, "df": 4}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.AdaOpt": {"tf": 2}, "mlsauce.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt": {"tf": 2}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1.4142135623730951}}, "df": 10}}}}, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.MultiTaskRegressor": {"tf": 1}, "mlsauce.multitaskregressor.MultiTaskRegressor": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}}, "df": 4}}}, "s": {"docs": {"mlsauce.config_context": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1.4142135623730951}}, "df": 3}}}}, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.get_config": {"tf": 1.4142135623730951}, "mlsauce.set_config": {"tf": 1.7320508075688772}, "mlsauce.config_context": {"tf": 2.449489742783178}}, "df": 3}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}}, "df": 9}}}, "s": {"docs": {"mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}}, "df": 1}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.LassoRegressor": {"tf": 1}, "mlsauce.lasso.LassoRegressor": {"tf": 1}}, "df": 2}}}}}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}}, "df": 3}}}}}, "g": {"docs": {"mlsauce.get_config": {"tf": 2.23606797749979}, "mlsauce.set_config": {"tf": 1.4142135623730951}, "mlsauce.config_context": {"tf": 2.23606797749979}}, "df": 3, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.get_config": {"tf": 1.7320508075688772}, "mlsauce.set_config": {"tf": 1.7320508075688772}, "mlsauce.config_context": {"tf": 1.7320508075688772}}, "df": 3}}}}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}}, "df": 4, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.nonconformist.QuantileRegErrFunc": {"tf": 1}}, "df": 1}}}}}}}}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt": {"tf": 1.4142135623730951}}, "df": 2}}}}, "o": {"docs": {}, "df": 0, "k": {"docs": {"mlsauce.AdaOpt.fit": {"tf": 1}, "mlsauce.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.LassoRegressor.fit": {"tf": 1}, "mlsauce.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.RidgeRegressor.fit": {"tf": 1}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1}}, "df": 20}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.MultiTaskRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.multitaskregressor.MultiTaskRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 37}}}}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc": {"tf": 1}}, "df": 2}}}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.ElasticNetRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1}}, "df": 10}}}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 2}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}}, "df": 1}}}}}}}}}}, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}}, "df": 4}}}}}}}}}, "l": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.7320508075688772}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}}, "df": 8, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.LazyBoostingClassifier.fit": {"tf": 2}, "mlsauce.LazyBoostingClassifier.provide_models": {"tf": 2}, "mlsauce.LazyBoostingRegressor.fit": {"tf": 2}, "mlsauce.LazyBoostingRegressor.provide_models": {"tf": 2}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.fit": {"tf": 2}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 2}, "mlsauce.lazybooster.LazyBoostingRegressor.fit": {"tf": 2}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 2}}, "df": 16}}}}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}}, "df": 12}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.MultiTaskRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.multitaskregressor.MultiTaskRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.utils.check_and_install": {"tf": 1}}, "df": 40}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}}, "df": 4}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 2}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.set_config": {"tf": 1.4142135623730951}, "mlsauce.config_context": {"tf": 1.4142135623730951}}, "df": 2}}}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.get_config": {"tf": 1}, "mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}, "mlsauce.utils.Progbar.update": {"tf": 1.4142135623730951}}, "df": 4, "l": {"docs": {}, "df": 0, "y": {"docs": {"mlsauce.AdaOpt": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier": {"tf": 2.449489742783178}, "mlsauce.GenericBoostingClassifier": {"tf": 2.449489742783178}, "mlsauce.GenericBoostingRegressor": {"tf": 2.449489742783178}, "mlsauce.LSBoostRegressor": {"tf": 2.449489742783178}, "mlsauce.adaopt.AdaOpt": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier": {"tf": 2.449489742783178}, "mlsauce.booster.LSBoostRegressor": {"tf": 2.449489742783178}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 2.449489742783178}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 2.449489742783178}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1.4142135623730951}}, "df": 11}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 2.23606797749979}, "mlsauce.LazyBoostingRegressor": {"tf": 2.449489742783178}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 2.23606797749979}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 2.449489742783178}}, "df": 4, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}}, "df": 2, "s": {"docs": {"mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}}, "df": 2}}}}}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 2.6457513110645907}}, "df": 1, "c": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.RegressorNc": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1.4142135623730951}}, "df": 4, "d": {"docs": {"mlsauce.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt": {"tf": 1.4142135623730951}}, "df": 2}, "s": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.nonconformist.RegressorNc": {"tf": 1}}, "df": 1}}}}}}}}, "l": {"docs": {"mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.LazyBoostingRegressor.provide_models": {"tf": 1}, "mlsauce.config_context": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 1}}, "df": 5, "s": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}}, "df": 2}, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingClassifier.provide_models": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor.provide_models": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 1}}, "df": 8}}}, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}}, "df": 4}}}, "e": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 1}}, "df": 1}}}}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}}, "df": 4, "d": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}}, "df": 2}}}}, "n": {"docs": {"mlsauce.get_config": {"tf": 1}, "mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 5, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 2.449489742783178}, "mlsauce.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 2.449489742783178}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1.4142135623730951}}, "df": 4}}}}}, "p": {"docs": {}, "df": 0, "u": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.ElasticNetRegressor": {"tf": 1}, "mlsauce.LassoRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.RidgeRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1}, "mlsauce.lasso.LassoRegressor": {"tf": 1}, "mlsauce.ridge.RidgeRegressor": {"tf": 1}}, "df": 14, "s": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}}, "df": 2}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.MultiTaskRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.multitaskregressor.MultiTaskRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 37, "d": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.MultiTaskRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.multitaskregressor.MultiTaskRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}}, "df": 37}}}}}, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}}, "df": 4}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 2}}}}}}}, "n": {"docs": {"mlsauce.AdaOpt": {"tf": 2}, "mlsauce.AdaOpt.fit": {"tf": 2.23606797749979}, "mlsauce.AdaOpt.predict": {"tf": 2}, "mlsauce.AdaOpt.predict_proba": {"tf": 2}, "mlsauce.LSBoostClassifier": {"tf": 2.6457513110645907}, "mlsauce.LSBoostClassifier.fit": {"tf": 2.23606797749979}, "mlsauce.LSBoostClassifier.predict": {"tf": 2}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 2}, "mlsauce.LSBoostClassifier.update": {"tf": 2.23606797749979}, "mlsauce.GenericBoostingClassifier": {"tf": 1.7320508075688772}, "mlsauce.GenericBoostingRegressor": {"tf": 1.7320508075688772}, "mlsauce.StumpClassifier.fit": {"tf": 2.449489742783178}, "mlsauce.StumpClassifier.predict": {"tf": 2}, "mlsauce.StumpClassifier.predict_proba": {"tf": 2}, "mlsauce.ElasticNetRegressor.fit": {"tf": 2.23606797749979}, "mlsauce.ElasticNetRegressor.predict": {"tf": 2}, "mlsauce.LassoRegressor.fit": {"tf": 2.23606797749979}, "mlsauce.LassoRegressor.predict": {"tf": 2}, "mlsauce.LSBoostRegressor": {"tf": 2}, "mlsauce.LSBoostRegressor.fit": {"tf": 2.23606797749979}, "mlsauce.LSBoostRegressor.predict": {"tf": 2}, "mlsauce.LSBoostRegressor.update": {"tf": 2.23606797749979}, "mlsauce.RidgeRegressor.fit": {"tf": 2.23606797749979}, "mlsauce.RidgeRegressor.predict": {"tf": 2}, "mlsauce.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt": {"tf": 2}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 2.23606797749979}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 2}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 2}, "mlsauce.booster.LSBoostClassifier": {"tf": 2.6457513110645907}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 2.23606797749979}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 2}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 2}, "mlsauce.booster.LSBoostClassifier.update": {"tf": 2.23606797749979}, "mlsauce.booster.LSBoostRegressor": {"tf": 2}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 2.23606797749979}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 2}, "mlsauce.booster.LSBoostRegressor.update": {"tf": 2.23606797749979}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1.7320508075688772}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1.7320508075688772}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 2.23606797749979}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 2}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 2.23606797749979}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 2}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 2}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 2}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 2}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 2}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 2.23606797749979}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 2}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 2.23606797749979}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 2}, "mlsauce.stump.StumpClassifier.fit": {"tf": 2.449489742783178}, "mlsauce.stump.StumpClassifier.predict": {"tf": 2}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 2}}, "df": 61, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.AdaOpt": {"tf": 2.23606797749979}, "mlsauce.AdaOpt.fit": {"tf": 1.4142135623730951}, "mlsauce.AdaOpt.predict": {"tf": 1.4142135623730951}, "mlsauce.AdaOpt.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.update": {"tf": 1.7320508075688772}, "mlsauce.GenericBoostingClassifier": {"tf": 1.7320508075688772}, "mlsauce.GenericBoostingRegressor": {"tf": 2}, "mlsauce.StumpClassifier": {"tf": 1}, "mlsauce.StumpClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor": {"tf": 1}, "mlsauce.LassoRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 2}, "mlsauce.LSBoostRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.update": {"tf": 1.7320508075688772}, "mlsauce.RidgeRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingClassifier.fit": {"tf": 2.8284271247461903}, "mlsauce.LazyBoostingClassifier.provide_models": {"tf": 2.8284271247461903}, "mlsauce.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor.fit": {"tf": 2.8284271247461903}, "mlsauce.LazyBoostingRegressor.provide_models": {"tf": 2.8284271247461903}, "mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 2.23606797749979}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.update": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor": {"tf": 2}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.update": {"tf": 1.7320508075688772}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1.7320508075688772}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 2}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor": {"tf": 1}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier.fit": {"tf": 2.8284271247461903}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 2.8284271247461903}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor.fit": {"tf": 2.8284271247461903}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 2.8284271247461903}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier": {"tf": 1}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.utils.Progbar": {"tf": 1}}, "df": 70}}}, "p": {"docs": {}, "df": 0, "y": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.StumpClassifier": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier": {"tf": 1}}, "df": 15}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt": {"tf": 1.7320508075688772}}, "df": 2}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.AdaOpt": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt": {"tf": 1.7320508075688772}}, "df": 2}}}}}}}, "w": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.update": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.update": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.MultiTaskRegressor.set_score_request": {"tf": 1}, "mlsauce.set_config": {"tf": 2.23606797749979}, "mlsauce.config_context": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.update": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.update": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.multitaskregressor.MultiTaskRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 43}, "t": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}}, "df": 4}, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}}, "df": 4}}}}}, "o": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 12, "n": {"docs": {"mlsauce.set_config": {"tf": 1.4142135623730951}, "mlsauce.config_context": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc": {"tf": 1}}, "df": 3, "e": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}, "mlsauce.utils.Progbar": {"tf": 1}}, "df": 18}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.QuantileRegErrFunc": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc": {"tf": 2}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 2}}, "df": 9}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 1.7320508075688772}}, "df": 1}}}}}}}}}}}, "t": {"docs": {"mlsauce.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.LazyBoostingRegressor.provide_models": {"tf": 1}, "mlsauce.config_context": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}, "mlsauce.utils.Progbar": {"tf": 1}, "mlsauce.utils.check_and_install": {"tf": 1}}, "df": 20, "e": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.MultiTaskRegressor.set_score_request": {"tf": 1}, "mlsauce.config_context": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.multitaskregressor.MultiTaskRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 40}, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "k": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 2}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1.7320508075688772}, "mlsauce.GenericBoostingClassifier": {"tf": 1.7320508075688772}, "mlsauce.GenericBoostingRegressor": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.7320508075688772}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1.7320508075688772}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1.7320508075688772}}, "df": 10}}}, "w": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}}, "df": 4}, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.nonconformist.RegressorNc": {"tf": 1}}, "df": 1}, "d": {"docs": {"mlsauce.nonconformist.RegressorNc": {"tf": 1.4142135623730951}}, "df": 1, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"mlsauce.nonconformist.RegressorNc": {"tf": 1}}, "df": 1}}}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.nonconformist.RegressorNc": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingClassifier.provide_models": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor.provide_models": {"tf": 1}, "mlsauce.MultiTaskRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 1}, "mlsauce.multitaskregressor.MultiTaskRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.utils.Progbar.update": {"tf": 1.4142135623730951}}, "df": 46, "s": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.get_config": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.utils.Progbar": {"tf": 1}}, "df": 8}}}, "n": {"docs": {"mlsauce.config_context": {"tf": 1.7320508075688772}}, "df": 1}}, "p": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 2.449489742783178}, "mlsauce.LSBoostRegressor": {"tf": 2.8284271247461903}, "mlsauce.booster.LSBoostClassifier": {"tf": 2.449489742783178}, "mlsauce.booster.LSBoostRegressor": {"tf": 2.8284271247461903}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 2}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 2}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1.4142135623730951}}, "df": 7}, "c": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 2.6457513110645907}}, "df": 5}}, "i": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}}, "df": 3, "t": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingClassifier.provide_models": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.MultiTaskRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}, "mlsauce.multitaskregressor.MultiTaskRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.utils.check_and_install": {"tf": 1}}, "df": 44, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.LassoRegressor": {"tf": 1}, "mlsauce.lasso.LassoRegressor": {"tf": 1}}, "df": 2, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.LassoRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}, "mlsauce.lasso.LassoRegressor": {"tf": 1}}, "df": 12}}}}}, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.utils.Progbar": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingClassifier.train_model": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.LazyBoostingRegressor.train_model": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.train_model": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.train_model": {"tf": 1}}, "df": 8}}, "n": {"docs": {"mlsauce.AdaOpt": {"tf": 2.449489742783178}, "mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 2.8284271247461903}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 2.8284271247461903}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 3.4641016151377544}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 3.4641016151377544}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.LazyBoostingRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor.provide_models": {"tf": 1}, "mlsauce.MultiTaskRegressor.set_score_request": {"tf": 1}, "mlsauce.set_config": {"tf": 2.6457513110645907}, "mlsauce.config_context": {"tf": 2}, "mlsauce.adaopt.AdaOpt": {"tf": 2.449489742783178}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 2.8284271247461903}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 3.4641016151377544}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 2.8284271247461903}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 3.4641016151377544}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 1}, "mlsauce.multitaskregressor.MultiTaskRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 2}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 2}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.utils.Progbar": {"tf": 1.4142135623730951}, "mlsauce.utils.Progbar.update": {"tf": 1}}, "df": 75, "t": {"docs": {"mlsauce.AdaOpt": {"tf": 2.8284271247461903}, "mlsauce.LSBoostClassifier": {"tf": 2.449489742783178}, "mlsauce.GenericBoostingClassifier": {"tf": 2.449489742783178}, "mlsauce.GenericBoostingRegressor": {"tf": 2.6457513110645907}, "mlsauce.StumpClassifier": {"tf": 1}, "mlsauce.LassoRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 2.6457513110645907}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.LazyBoostingClassifier": {"tf": 2}, "mlsauce.LazyBoostingRegressor": {"tf": 2}, "mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 2.8284271247461903}, "mlsauce.booster.LSBoostClassifier": {"tf": 2.449489742783178}, "mlsauce.booster.LSBoostRegressor": {"tf": 2.6457513110645907}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 2.449489742783178}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 2.6457513110645907}, "mlsauce.lasso.LassoRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 2}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 2}, "mlsauce.nonconformist.IcpRegressor": {"tf": 2}, "mlsauce.stump.StumpClassifier": {"tf": 1}}, "df": 23, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}}, "df": 8}}}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}, "mlsauce.utils.Progbar": {"tf": 1.4142135623730951}}, "df": 11, "s": {"docs": {"mlsauce.nonconformist.RegressorNc.predict": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}}, "df": 4}}}}}, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.predictioninterval.PredictionInterval": {"tf": 1.4142135623730951}}, "df": 1}}}}, "o": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}}, "df": 4}}, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.MultiTaskRegressor.fit": {"tf": 1}, "mlsauce.MultiTaskRegressor.predict": {"tf": 1}, "mlsauce.config_context": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.multitaskregressor.MultiTaskRegressor.fit": {"tf": 1}, "mlsauce.multitaskregressor.MultiTaskRegressor.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}}, "df": 8, "s": {"docs": {"mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}}, "df": 3}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}}, "df": 8}}}}}, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}}, "df": 4}}}}}}}, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "x": {"docs": {"mlsauce.utils.Progbar.update": {"tf": 1}}, "df": 1}}}, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}}, "df": 8, "d": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}}, "df": 8}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.nonconformist.RegressorNc": {"tf": 1}}, "df": 1}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.LSBoostClassifier.update": {"tf": 1}, "mlsauce.LSBoostRegressor.update": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.update": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.update": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}}, "df": 7}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.utils.check_and_install": {"tf": 1}}, "df": 3, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.utils.check_and_install": {"tf": 1}}, "df": 1}}}}}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 2}}}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1.4142135623730951}}, "df": 2}}}, "f": {"docs": {"mlsauce.AdaOpt": {"tf": 1.7320508075688772}, "mlsauce.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingClassifier.provide_models": {"tf": 1}, "mlsauce.LazyBoostingRegressor.provide_models": {"tf": 1}, "mlsauce.MultiTaskRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.set_config": {"tf": 2.449489742783178}, "mlsauce.config_context": {"tf": 2.449489742783178}, "mlsauce.adaopt.AdaOpt": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 1}, "mlsauce.multitaskregressor.MultiTaskRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.utils.Progbar": {"tf": 1}, "mlsauce.utils.Progbar.update": {"tf": 1}, "mlsauce.utils.check_and_install": {"tf": 1.4142135623730951}}, "df": 57}, "s": {"docs": {"mlsauce.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.AdaOpt.fit": {"tf": 1.4142135623730951}, "mlsauce.AdaOpt.predict": {"tf": 1.4142135623730951}, "mlsauce.AdaOpt.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.update": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1.7320508075688772}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.update": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingClassifier.fit": {"tf": 2.8284271247461903}, "mlsauce.LazyBoostingClassifier.provide_models": {"tf": 2.8284271247461903}, "mlsauce.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor.fit": {"tf": 2.8284271247461903}, "mlsauce.LazyBoostingRegressor.provide_models": {"tf": 3}, "mlsauce.MultiTaskRegressor.set_score_request": {"tf": 1}, "mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 2}, "mlsauce.adaopt.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.update": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.update": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1.7320508075688772}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier.fit": {"tf": 2.8284271247461903}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 2.8284271247461903}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor.fit": {"tf": 2.8284271247461903}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 3}, "mlsauce.multitaskregressor.MultiTaskRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 2.23606797749979}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.utils.Progbar": {"tf": 1}, "mlsauce.utils.Progbar.update": {"tf": 1.4142135623730951}, "mlsauce.utils.check_and_install": {"tf": 1}}, "df": 111}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 3.1622776601683795}, "mlsauce.LSBoostRegressor": {"tf": 3.4641016151377544}, "mlsauce.LazyBoostingClassifier": {"tf": 2.23606797749979}, "mlsauce.LazyBoostingRegressor": {"tf": 2}, "mlsauce.config_context": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 3.1622776601683795}, "mlsauce.booster.LSBoostRegressor": {"tf": 3.4641016151377544}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 2.23606797749979}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 2}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor": {"tf": 2.449489742783178}}, "df": 12}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 2}}}}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 3.3166247903554}, "mlsauce.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 3.3166247903554}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1.4142135623730951}}, "df": 4}}}, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1.4142135623730951}}, "df": 4, "d": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}}, "df": 4}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}}, "df": 4}}}}}}}, "s": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 2}}, "x": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 2.8284271247461903}}, "df": 1}}, "c": {"docs": {}, "df": 0, "p": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 2.23606797749979}}, "df": 1, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 1}}, "df": 1}}}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}}}, "o": {"docs": {}, "df": 0, "f": {"docs": {"mlsauce.AdaOpt": {"tf": 3}, "mlsauce.AdaOpt.fit": {"tf": 1.4142135623730951}, "mlsauce.AdaOpt.predict": {"tf": 1.4142135623730951}, "mlsauce.AdaOpt.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.AdaOpt.set_score_request": {"tf": 2.23606797749979}, "mlsauce.LSBoostClassifier": {"tf": 3.3166247903554}, "mlsauce.LSBoostClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.update": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 2.23606797749979}, "mlsauce.GenericBoostingClassifier": {"tf": 3.3166247903554}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 2.23606797749979}, "mlsauce.GenericBoostingRegressor": {"tf": 3.4641016151377544}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 2.23606797749979}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 2.23606797749979}, "mlsauce.StumpClassifier": {"tf": 1}, "mlsauce.StumpClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 2.23606797749979}, "mlsauce.StumpClassifier.set_score_request": {"tf": 2.23606797749979}, "mlsauce.ElasticNetRegressor": {"tf": 1}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 2.23606797749979}, "mlsauce.LassoRegressor": {"tf": 2}, "mlsauce.LassoRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.set_score_request": {"tf": 2.23606797749979}, "mlsauce.LSBoostRegressor": {"tf": 3.4641016151377544}, "mlsauce.LSBoostRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.predict": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.update": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 2.23606797749979}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 2.23606797749979}, "mlsauce.RidgeRegressor": {"tf": 1}, "mlsauce.RidgeRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 2.23606797749979}, "mlsauce.LazyBoostingClassifier": {"tf": 2.23606797749979}, "mlsauce.LazyBoostingClassifier.fit": {"tf": 3.1622776601683795}, "mlsauce.LazyBoostingClassifier.provide_models": {"tf": 3}, "mlsauce.LazyBoostingRegressor": {"tf": 2.23606797749979}, "mlsauce.LazyBoostingRegressor.fit": {"tf": 3.1622776601683795}, "mlsauce.LazyBoostingRegressor.provide_models": {"tf": 3}, "mlsauce.MultiTaskRegressor.set_score_request": {"tf": 2.23606797749979}, "mlsauce.set_config": {"tf": 2}, "mlsauce.config_context": {"tf": 2}, "mlsauce.adaopt.AdaOpt": {"tf": 3}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 2.23606797749979}, "mlsauce.booster.LSBoostClassifier": {"tf": 3.3166247903554}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.update": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 2.23606797749979}, "mlsauce.booster.LSBoostRegressor": {"tf": 3.4641016151377544}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.update": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 2.23606797749979}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 2.23606797749979}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 3.3166247903554}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 2.23606797749979}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 3.4641016151377544}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 2.23606797749979}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 2.23606797749979}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 2.23606797749979}, "mlsauce.lasso.LassoRegressor": {"tf": 2}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 2.23606797749979}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 2.23606797749979}, "mlsauce.lazybooster.LazyBoostingClassifier.fit": {"tf": 3.1622776601683795}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 3}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 2.23606797749979}, "mlsauce.lazybooster.LazyBoostingRegressor.fit": {"tf": 3.1622776601683795}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 3}, "mlsauce.multitaskregressor.MultiTaskRegressor.set_score_request": {"tf": 2.23606797749979}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 2.23606797749979}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 2.23606797749979}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 2.23606797749979}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 2.23606797749979}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 2.6457513110645907}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 2.23606797749979}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 2.23606797749979}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 2.23606797749979}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 2.23606797749979}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 2.23606797749979}, "mlsauce.nonconformist.IcpRegressor": {"tf": 2.23606797749979}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 2.449489742783178}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 2.23606797749979}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 2.23606797749979}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 2}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 2.23606797749979}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 2.23606797749979}, "mlsauce.ridge.RidgeRegressor": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 2.23606797749979}, "mlsauce.stump.StumpClassifier": {"tf": 1}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 2.23606797749979}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 2.23606797749979}, "mlsauce.utils.Progbar": {"tf": 1.7320508075688772}, "mlsauce.utils.Progbar.update": {"tf": 1.7320508075688772}}, "df": 121, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 2}}}}, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.AdaOpt": {"tf": 2}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 2}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}}, "df": 10}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 2.8284271247461903}, "mlsauce.LazyBoostingRegressor": {"tf": 2.8284271247461903}, "mlsauce.set_config": {"tf": 2}, "mlsauce.config_context": {"tf": 2}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 2.8284271247461903}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 2.8284271247461903}}, "df": 6}}, "s": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}}, "df": 4}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 2}}}}}}}}}, "r": {"docs": {"mlsauce.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor": {"tf": 2}, "mlsauce.LSBoostRegressor": {"tf": 2}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 2}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 2}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}}, "df": 22, "g": {"docs": {}, "df": 0, "/": {"3": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.MultiTaskRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.multitaskregressor.MultiTaskRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 37}}}}}}}}}}}}}}}}}}, "docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.MultiTaskRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.multitaskregressor.MultiTaskRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 37}}}}}}}}}}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}}, "df": 8}}}}}}}, "b": {"docs": {}, "df": 0, "j": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 7.745966692414834}, "mlsauce.LSBoostRegressor": {"tf": 3.4641016151377544}, "mlsauce.booster.LSBoostClassifier": {"tf": 7.745966692414834}, "mlsauce.booster.LSBoostRegressor": {"tf": 3.4641016151377544}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}}, "df": 5, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt.fit": {"tf": 1}, "mlsauce.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.LSBoostClassifier.update": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.StumpClassifier.fit": {"tf": 1}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.LassoRegressor.fit": {"tf": 1}, "mlsauce.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.LSBoostRegressor.update": {"tf": 1}, "mlsauce.RidgeRegressor.fit": {"tf": 1}, "mlsauce.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingClassifier.get_best_model": {"tf": 1}, "mlsauce.LazyBoostingClassifier.provide_models": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor.get_best_model": {"tf": 1}, "mlsauce.LazyBoostingRegressor.provide_models": {"tf": 1}, "mlsauce.MultiTaskRegressor": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.update": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.update": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier.get_best_model": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor.get_best_model": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 1}, "mlsauce.multitaskregressor.MultiTaskRegressor": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1}}, "df": 39, "s": {"docs": {"mlsauce.LazyBoostingClassifier.provide_models": {"tf": 1}, "mlsauce.LazyBoostingRegressor.provide_models": {"tf": 1}, "mlsauce.MultiTaskRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 1}, "mlsauce.multitaskregressor.MultiTaskRegressor": {"tf": 1}}, "df": 6}}}}, "s": {"docs": {"mlsauce.MultiTaskRegressor": {"tf": 1}, "mlsauce.multitaskregressor.MultiTaskRegressor": {"tf": 1}}, "df": 2}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.LSBoostClassifier.update": {"tf": 1}, "mlsauce.StumpClassifier.fit": {"tf": 1}, "mlsauce.LSBoostRegressor.update": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.update": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.update": {"tf": 1}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1}}, "df": 6}}}}}}}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.predictioninterval.PredictionInterval": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}}, "df": 2}}}}}}}, "s": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}}, "df": 8}, "n": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingClassifier.fit": {"tf": 1}, "mlsauce.LazyBoostingClassifier.get_best_model": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor.fit": {"tf": 1}, "mlsauce.LazyBoostingRegressor.get_best_model": {"tf": 1.4142135623730951}, "mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.fit": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.get_best_model": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor.fit": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.get_best_model": {"tf": 1.4142135623730951}, "mlsauce.utils.Progbar": {"tf": 1}}, "df": 15, "l": {"docs": {}, "df": 0, "y": {"docs": {"mlsauce.GenericBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.set_config": {"tf": 1.7320508075688772}, "mlsauce.config_context": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}}, "df": 10}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}}, "df": 5, "s": {"docs": {"mlsauce.utils.Progbar": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1.7320508075688772}}, "df": 6, "s": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 1}}, "df": 1}}}}}}, "w": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 2}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.utils.Progbar": {"tf": 1}, "mlsauce.utils.Progbar.update": {"tf": 1}}, "df": 2}}}}, "t": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 2.8284271247461903}, "mlsauce.LazyBoostingClassifier.provide_models": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 2.8284271247461903}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 1}}, "df": 4, "h": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt": {"tf": 3.3166247903554}, "mlsauce.AdaOpt.fit": {"tf": 1.4142135623730951}, "mlsauce.AdaOpt.predict": {"tf": 1.4142135623730951}, "mlsauce.AdaOpt.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.AdaOpt.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.LSBoostClassifier": {"tf": 3}, "mlsauce.LSBoostClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.update": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.GenericBoostingClassifier": {"tf": 3}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.GenericBoostingRegressor": {"tf": 3}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 3.1622776601683795}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.StumpClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 3.1622776601683795}, "mlsauce.StumpClassifier.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.LassoRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.LSBoostRegressor": {"tf": 3}, "mlsauce.LSBoostRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.update": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 3.1622776601683795}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.RidgeRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.LazyBoostingClassifier": {"tf": 2.8284271247461903}, "mlsauce.LazyBoostingClassifier.fit": {"tf": 3.3166247903554}, "mlsauce.LazyBoostingClassifier.get_best_model": {"tf": 2}, "mlsauce.LazyBoostingClassifier.provide_models": {"tf": 3.3166247903554}, "mlsauce.LazyBoostingRegressor": {"tf": 3}, "mlsauce.LazyBoostingRegressor.fit": {"tf": 3.3166247903554}, "mlsauce.LazyBoostingRegressor.get_best_model": {"tf": 2}, "mlsauce.LazyBoostingRegressor.provide_models": {"tf": 3.1622776601683795}, "mlsauce.MultiTaskRegressor": {"tf": 1}, "mlsauce.MultiTaskRegressor.fit": {"tf": 1.7320508075688772}, "mlsauce.MultiTaskRegressor.predict": {"tf": 1.7320508075688772}, "mlsauce.MultiTaskRegressor.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.set_config": {"tf": 2.23606797749979}, "mlsauce.config_context": {"tf": 2.23606797749979}, "mlsauce.adaopt.AdaOpt": {"tf": 3.3166247903554}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.booster.LSBoostClassifier": {"tf": 3}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.update": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.booster.LSBoostRegressor": {"tf": 3}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.update": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 3.1622776601683795}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 3}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 3}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 3.1622776601683795}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 2.8284271247461903}, "mlsauce.lazybooster.LazyBoostingClassifier.fit": {"tf": 3.3166247903554}, "mlsauce.lazybooster.LazyBoostingClassifier.get_best_model": {"tf": 2}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 3.3166247903554}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 3}, "mlsauce.lazybooster.LazyBoostingRegressor.fit": {"tf": 3.3166247903554}, "mlsauce.lazybooster.LazyBoostingRegressor.get_best_model": {"tf": 2}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 3.1622776601683795}, "mlsauce.multitaskregressor.MultiTaskRegressor": {"tf": 1}, "mlsauce.multitaskregressor.MultiTaskRegressor.fit": {"tf": 1.7320508075688772}, "mlsauce.multitaskregressor.MultiTaskRegressor.predict": {"tf": 1.7320508075688772}, "mlsauce.multitaskregressor.MultiTaskRegressor.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 3.1622776601683795}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 3.1622776601683795}, "mlsauce.nonconformist.RegressorNc": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 2.6457513110645907}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 3.1622776601683795}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 3.1622776601683795}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 3.1622776601683795}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 2.23606797749979}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 3.1622776601683795}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 3.1622776601683795}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 2}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 3.1622776601683795}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 3.1622776601683795}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.utils.Progbar": {"tf": 1}, "mlsauce.utils.Progbar.update": {"tf": 1.4142135623730951}}, "df": 123, "i": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.config_context": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 7}}, "n": {"docs": {"mlsauce.LazyBoostingClassifier.provide_models": {"tf": 1}, "mlsauce.LazyBoostingRegressor.provide_models": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1.7320508075688772}}, "df": 6}, "r": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.predictioninterval.PredictionInterval": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.LazyBoostingClassifier.get_best_model": {"tf": 1}, "mlsauce.LazyBoostingRegressor.get_best_model": {"tf": 1}, "mlsauce.LazyBoostingRegressor.provide_models": {"tf": 1}, "mlsauce.MultiTaskRegressor.set_score_request": {"tf": 1}, "mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.get_best_model": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.get_best_model": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 1}, "mlsauce.multitaskregressor.MultiTaskRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.utils.Progbar": {"tf": 1}}, "df": 48}}, "a": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.get_config": {"tf": 1}, "mlsauce.set_config": {"tf": 1.4142135623730951}, "mlsauce.config_context": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.utils.Progbar": {"tf": 1}}, "df": 10}}, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.config_context": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.config_context": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 6}, "mlsauce.LSBoostRegressor": {"tf": 2.8284271247461903}, "mlsauce.LazyBoostingClassifier": {"tf": 2.449489742783178}, "mlsauce.LazyBoostingClassifier.fit": {"tf": 2}, "mlsauce.LazyBoostingClassifier.provide_models": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingClassifier.train_model": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 2.8284271247461903}, "mlsauce.LazyBoostingRegressor.fit": {"tf": 2}, "mlsauce.LazyBoostingRegressor.provide_models": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor.train_model": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 6}, "mlsauce.booster.LSBoostRegressor": {"tf": 2.8284271247461903}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 2.449489742783178}, "mlsauce.lazybooster.LazyBoostingClassifier.fit": {"tf": 2}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier.train_model": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 2.8284271247461903}, "mlsauce.lazybooster.LazyBoostingRegressor.fit": {"tf": 2}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor.train_model": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1.7320508075688772}}, "df": 21, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.AdaOpt": {"tf": 2.8284271247461903}, "mlsauce.AdaOpt.fit": {"tf": 1.7320508075688772}, "mlsauce.AdaOpt.predict": {"tf": 1}, "mlsauce.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 2.6457513110645907}, "mlsauce.LSBoostClassifier.fit": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier.update": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 2.449489742783178}, "mlsauce.GenericBoostingRegressor": {"tf": 2.449489742783178}, "mlsauce.StumpClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.predict": {"tf": 1}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1.7320508075688772}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.LassoRegressor.fit": {"tf": 1.7320508075688772}, "mlsauce.LassoRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 2.6457513110645907}, "mlsauce.LSBoostRegressor.fit": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor.update": {"tf": 1}, "mlsauce.RidgeRegressor.fit": {"tf": 1.7320508075688772}, "mlsauce.RidgeRegressor.predict": {"tf": 1}, "mlsauce.LazyBoostingClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingClassifier.provide_models": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor.provide_models": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt": {"tf": 2.8284271247461903}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 2.6457513110645907}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.update": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 2.6457513110645907}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.update": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 2.449489742783178}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 2.449489742783178}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1.7320508075688772}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1.7320508075688772}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1.7320508075688772}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1}}, "df": 57}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.LazyBoostingClassifier.provide_models": {"tf": 1}, "mlsauce.LazyBoostingRegressor.provide_models": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 1}}, "df": 4}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"mlsauce.config_context": {"tf": 1}}, "df": 1}}}}}}}, "u": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.LazyBoostingClassifier": {"tf": 2}, "mlsauce.LazyBoostingRegressor": {"tf": 2.449489742783178}, "mlsauce.MultiTaskRegressor.set_score_request": {"tf": 1}, "mlsauce.set_config": {"tf": 1.7320508075688772}, "mlsauce.config_context": {"tf": 2.449489742783178}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 2}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 2.449489742783178}, "mlsauce.multitaskregressor.MultiTaskRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 58}}, "e": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1}}, "df": 5}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt": {"tf": 3.1622776601683795}, "mlsauce.LSBoostClassifier": {"tf": 6.708203932499369}, "mlsauce.GenericBoostingClassifier": {"tf": 1.7320508075688772}, "mlsauce.GenericBoostingRegressor": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor": {"tf": 3.605551275463989}, "mlsauce.LazyBoostingClassifier": {"tf": 2}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.set_config": {"tf": 1.4142135623730951}, "mlsauce.config_context": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt": {"tf": 3.1622776601683795}, "mlsauce.booster.LSBoostClassifier": {"tf": 6.708203932499369}, "mlsauce.booster.LSBoostRegressor": {"tf": 3.605551275463989}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1.7320508075688772}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1.7320508075688772}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 2}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}, "mlsauce.utils.Progbar": {"tf": 1}, "mlsauce.utils.Progbar.update": {"tf": 1}}, "df": 18}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt": {"tf": 1.7320508075688772}, "mlsauce.AdaOpt.predict": {"tf": 1}, "mlsauce.AdaOpt.predict_proba": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier": {"tf": 6.557438524302}, "mlsauce.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1.7320508075688772}, "mlsauce.StumpClassifier.predict": {"tf": 1}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1.7320508075688772}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.LassoRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 3.3166247903554}, "mlsauce.LSBoostRegressor.predict": {"tf": 1.7320508075688772}, "mlsauce.RidgeRegressor.predict": {"tf": 1}, "mlsauce.LazyBoostingClassifier": {"tf": 2.6457513110645907}, "mlsauce.LazyBoostingClassifier.fit": {"tf": 2}, "mlsauce.LazyBoostingClassifier.provide_models": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor": {"tf": 3}, "mlsauce.LazyBoostingRegressor.fit": {"tf": 2}, "mlsauce.LazyBoostingRegressor.provide_models": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier": {"tf": 6.557438524302}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor": {"tf": 3.3166247903554}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1.7320508075688772}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 2.6457513110645907}, "mlsauce.lazybooster.LazyBoostingClassifier.fit": {"tf": 2}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 3}, "mlsauce.lazybooster.LazyBoostingRegressor.fit": {"tf": 2}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 2.23606797749979}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1.7320508075688772}}, "df": 41, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.LazyBoostingClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingClassifier.provide_models": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor.provide_models": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}}, "df": 9}}}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 2}}}}}}}, "x": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.set_config": {"tf": 2.23606797749979}, "mlsauce.config_context": {"tf": 2.23606797749979}}, "df": 2, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 2}}}}}, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 2}}}}}}}}, "o": {"docs": {"mlsauce.AdaOpt.fit": {"tf": 1.7320508075688772}, "mlsauce.AdaOpt.predict": {"tf": 1.4142135623730951}, "mlsauce.AdaOpt.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostClassifier.fit": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.update": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.fit": {"tf": 1}, "mlsauce.StumpClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1.7320508075688772}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.fit": {"tf": 1.7320508075688772}, "mlsauce.LassoRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor.fit": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.update": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.fit": {"tf": 1.7320508075688772}, "mlsauce.RidgeRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingClassifier": {"tf": 2.449489742783178}, "mlsauce.LazyBoostingClassifier.fit": {"tf": 1.7320508075688772}, "mlsauce.LazyBoostingClassifier.provide_models": {"tf": 1}, "mlsauce.LazyBoostingClassifier.train_model": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 2.449489742783178}, "mlsauce.LazyBoostingRegressor.fit": {"tf": 1.7320508075688772}, "mlsauce.LazyBoostingRegressor.train_model": {"tf": 1}, "mlsauce.MultiTaskRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.get_config": {"tf": 1}, "mlsauce.set_config": {"tf": 2.23606797749979}, "mlsauce.config_context": {"tf": 2.23606797749979}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.update": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.update": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1.7320508075688772}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1.7320508075688772}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 2.449489742783178}, "mlsauce.lazybooster.LazyBoostingClassifier.fit": {"tf": 1.7320508075688772}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.train_model": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 2.449489742783178}, "mlsauce.lazybooster.LazyBoostingRegressor.fit": {"tf": 1.7320508075688772}, "mlsauce.lazybooster.LazyBoostingRegressor.train_model": {"tf": 1}, "mlsauce.multitaskregressor.MultiTaskRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1.7320508075688772}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}}, "df": 106, "l": {"docs": {"mlsauce.LassoRegressor": {"tf": 1}, "mlsauce.lasso.LassoRegressor": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 2.23606797749979}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.LassoRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 2.23606797749979}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}, "mlsauce.lasso.LassoRegressor": {"tf": 1}}, "df": 12}}}}}}}, "p": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.GenericBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1.4142135623730951}}, "df": 4}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.utils.Progbar": {"tf": 1}}, "df": 1}}}}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor": {"tf": 2.23606797749979}, "mlsauce.ElasticNetRegressor": {"tf": 1}, "mlsauce.LassoRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 2.23606797749979}, "mlsauce.RidgeRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 2.23606797749979}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 2.23606797749979}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1}, "mlsauce.lasso.LassoRegressor": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor": {"tf": 1}}, "df": 17}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt.fit": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 2.23606797749979}, "mlsauce.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.LSBoostClassifier.update": {"tf": 1}, "mlsauce.StumpClassifier.fit": {"tf": 1}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.LassoRegressor.fit": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.LSBoostRegressor.update": {"tf": 1}, "mlsauce.RidgeRegressor.fit": {"tf": 1}, "mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.MultiTaskRegressor.fit": {"tf": 1}, "mlsauce.MultiTaskRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 2.23606797749979}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.update": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.update": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}, "mlsauce.multitaskregressor.MultiTaskRegressor.fit": {"tf": 1}, "mlsauce.multitaskregressor.MultiTaskRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1}, "mlsauce.utils.Progbar": {"tf": 1}}, "df": 33}}}}, "n": {"docs": {}, "df": 0, "h": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}}, "df": 8}}, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}}, "df": 2}}}, "s": {"docs": {}, "df": 0, "k": {"docs": {"mlsauce.MultiTaskRegressor": {"tf": 1}, "mlsauce.multitaskregressor.MultiTaskRegressor": {"tf": 1}}, "df": 2}}}, "p": {"docs": {}, "df": 0, "u": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.ElasticNetRegressor": {"tf": 1}, "mlsauce.LassoRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.RidgeRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1}, "mlsauce.lasso.LassoRegressor": {"tf": 1}, "mlsauce.ridge.RidgeRegressor": {"tf": 1}}, "df": 14}}, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}}, "df": 1, "s": {"docs": {"mlsauce.utils.Progbar.update": {"tf": 1}}, "df": 1}}}}}}, "l": {"1": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.ElasticNetRegressor": {"tf": 1}, "mlsauce.LassoRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1}, "mlsauce.lasso.LassoRegressor": {"tf": 1}}, "df": 14}, "2": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1}}, "df": 12}, "docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.update": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.update": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.update": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.update": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1.4142135623730951}}, "df": 14}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1.7320508075688772}, "mlsauce.GenericBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1.7320508075688772}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1.4142135623730951}}, "df": 8}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 2}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.LSBoostRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1.4142135623730951}}, "df": 9, "s": {"docs": {"mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}}, "df": 2}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.ElasticNetRegressor": {"tf": 1}, "mlsauce.LassoRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.RidgeRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1}, "mlsauce.lasso.LassoRegressor": {"tf": 1}, "mlsauce.ridge.RidgeRegressor": {"tf": 1}}, "df": 16}}}}, "y": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}}, "df": 8, "s": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1.4142135623730951}}, "df": 12}}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.LassoRegressor": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}, "mlsauce.lasso.LassoRegressor": {"tf": 1.7320508075688772}}, "df": 10}}, "t": {"docs": {"mlsauce.config_context": {"tf": 1}, "mlsauce.utils.Progbar.update": {"tf": 1.4142135623730951}}, "df": 2}}, "z": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}}, "df": 2}}}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}}, "df": 2}}}}}}}}}}}}}}}}}}}, "b": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1}}, "df": 2}}}}}, "i": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.fit": {"tf": 1.4142135623730951}, "mlsauce.AdaOpt.predict": {"tf": 1.4142135623730951}, "mlsauce.AdaOpt.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.update": {"tf": 1}, "mlsauce.StumpClassifier.fit": {"tf": 1.7320508075688772}, "mlsauce.StumpClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.update": {"tf": 1}, "mlsauce.RidgeRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingClassifier.fit": {"tf": 2}, "mlsauce.LazyBoostingClassifier.provide_models": {"tf": 2}, "mlsauce.LazyBoostingRegressor.fit": {"tf": 2}, "mlsauce.LazyBoostingRegressor.provide_models": {"tf": 2}, "mlsauce.MultiTaskRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.MultiTaskRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.update": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.update": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier.fit": {"tf": 2}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 2}, "mlsauce.lazybooster.LazyBoostingRegressor.fit": {"tf": 2}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 2}, "mlsauce.multitaskregressor.MultiTaskRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.multitaskregressor.MultiTaskRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1.7320508075688772}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1.4142135623730951}}, "df": 52}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.MultiTaskRegressor": {"tf": 1.4142135623730951}, "mlsauce.MultiTaskRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.multitaskregressor.MultiTaskRegressor": {"tf": 1.4142135623730951}, "mlsauce.multitaskregressor.MultiTaskRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.utils.Progbar": {"tf": 1}, "mlsauce.utils.Progbar.update": {"tf": 1}}, "df": 45}}, "n": {"docs": {}, "df": 0, "k": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}}, "df": 8}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 2}}}}, "s": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}}, "df": 6}}}}}}, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 3}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingClassifier": {"tf": 3}, "mlsauce.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 3}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 3}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1.4142135623730951}}, "df": 9}}, "s": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 3.1622776601683795}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 3.1622776601683795}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}}, "df": 4}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}}, "df": 3}}}}}}}}}}}}, "w": {"docs": {"mlsauce.nonconformist.QuantileRegErrFunc": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 2}}, "r": {"docs": {"mlsauce.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1.4142135623730951}}, "df": 2, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostClassifier.update": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor.update": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.update": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.update": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}}, "df": 16}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 2.23606797749979}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 2.23606797749979}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}}, "df": 10}}}}}, "e": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.ElasticNetRegressor": {"tf": 1}, "mlsauce.LassoRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.RidgeRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1}, "mlsauce.lasso.LassoRegressor": {"tf": 1}, "mlsauce.ridge.RidgeRegressor": {"tf": 1}}, "df": 16, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor": {"tf": 1}, "mlsauce.ridge.RidgeRegressor": {"tf": 1}}, "df": 16}}}}}}}}}}}, "r": {"docs": {"mlsauce.LSBoostRegressor": {"tf": 1.7320508075688772}, "mlsauce.LazyBoostingRegressor": {"tf": 1.7320508075688772}, "mlsauce.MultiTaskRegressor": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.7320508075688772}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1.7320508075688772}, "mlsauce.multitaskregressor.MultiTaskRegressor": {"tf": 1}}, "df": 6, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.MultiTaskRegressor": {"tf": 1.4142135623730951}, "mlsauce.MultiTaskRegressor.fit": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}, "mlsauce.multitaskregressor.MultiTaskRegressor": {"tf": 1.4142135623730951}, "mlsauce.multitaskregressor.MultiTaskRegressor.fit": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1}}, "df": 11, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.nonconformist.RegressorNc": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}, "n": {"docs": {}, "df": 0, "c": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 1.4142135623730951}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.LazyBoostingRegressor.fit": {"tf": 1}, "mlsauce.LazyBoostingRegressor.train_model": {"tf": 1}, "mlsauce.MultiTaskRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.fit": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.train_model": {"tf": 1}, "mlsauce.multitaskregressor.MultiTaskRegressor": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc": {"tf": 1}, "mlsauce.nonconformist.RegressorNc": {"tf": 1.4142135623730951}}, "df": 11, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"mlsauce.nonconformist.RegressorNc": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}}, "df": 2}}, "e": {"docs": {"mlsauce.get_config": {"tf": 1}, "mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 3}}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.LazyBoostingClassifier.provide_models": {"tf": 1}, "mlsauce.LazyBoostingClassifier.train_model": {"tf": 1}, "mlsauce.LazyBoostingRegressor.provide_models": {"tf": 1}, "mlsauce.LazyBoostingRegressor.train_model": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.train_model": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.train_model": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}}, "df": 13, "s": {"docs": {"mlsauce.AdaOpt.fit": {"tf": 1}, "mlsauce.AdaOpt.predict": {"tf": 1}, "mlsauce.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier.update": {"tf": 1}, "mlsauce.StumpClassifier.fit": {"tf": 1}, "mlsauce.StumpClassifier.predict": {"tf": 1}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.LassoRegressor.fit": {"tf": 1}, "mlsauce.LassoRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor.update": {"tf": 1}, "mlsauce.RidgeRegressor.fit": {"tf": 1}, "mlsauce.RidgeRegressor.predict": {"tf": 1}, "mlsauce.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingClassifier.fit": {"tf": 1.7320508075688772}, "mlsauce.LazyBoostingClassifier.get_best_model": {"tf": 1.7320508075688772}, "mlsauce.LazyBoostingClassifier.provide_models": {"tf": 1.7320508075688772}, "mlsauce.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor.fit": {"tf": 1.7320508075688772}, "mlsauce.LazyBoostingRegressor.get_best_model": {"tf": 1.7320508075688772}, "mlsauce.LazyBoostingRegressor.provide_models": {"tf": 1.7320508075688772}, "mlsauce.MultiTaskRegressor.predict": {"tf": 1}, "mlsauce.get_config": {"tf": 1}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.update": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.update": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier.fit": {"tf": 1.7320508075688772}, "mlsauce.lazybooster.LazyBoostingClassifier.get_best_model": {"tf": 1.7320508075688772}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 1.7320508075688772}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor.fit": {"tf": 1.7320508075688772}, "mlsauce.lazybooster.LazyBoostingRegressor.get_best_model": {"tf": 1.7320508075688772}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 1.7320508075688772}, "mlsauce.multitaskregressor.MultiTaskRegressor.predict": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1}}, "df": 63}, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.MultiTaskRegressor.set_score_request": {"tf": 1}, "mlsauce.config_context": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}, "mlsauce.multitaskregressor.MultiTaskRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 43}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}}, "df": 4}}}}}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}}, "df": 11}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}}, "df": 4}}}}}}}}}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 2}}}}}}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.GenericBoostingRegressor": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.7320508075688772}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1.4142135623730951}}, "df": 5}}}}}}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1.7320508075688772}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1.7320508075688772}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.MultiTaskRegressor.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1.7320508075688772}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.multitaskregressor.MultiTaskRegressor.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1.7320508075688772}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1.7320508075688772}}, "df": 37, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.MultiTaskRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.multitaskregressor.MultiTaskRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 37}}}}}}}, "f": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.MultiTaskRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.multitaskregressor.MultiTaskRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 38}}}}}}}}, "l": {"docs": {}, "df": 0, "u": {"6": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}}, "df": 8}, "docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}}, "df": 8}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}}, "df": 4}}}}}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.LazyBoostingClassifier.train_model": {"tf": 1}, "mlsauce.LazyBoostingRegressor.train_model": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.train_model": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.train_model": {"tf": 1}}, "df": 4}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}}, "df": 1}}}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.config_context": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 2}}}, "o": {"docs": {}, "df": 0, "w": {"docs": {"mlsauce.AdaOpt": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.7320508075688772}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}}, "df": 10, "s": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.LazyBoostingClassifier.fit": {"tf": 2}, "mlsauce.LazyBoostingClassifier.provide_models": {"tf": 2}, "mlsauce.LazyBoostingRegressor.fit": {"tf": 2}, "mlsauce.LazyBoostingRegressor.provide_models": {"tf": 2}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.fit": {"tf": 2}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 2}, "mlsauce.lazybooster.LazyBoostingRegressor.fit": {"tf": 2}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 2}}, "df": 18}}, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}}, "df": 10}}}}, "c": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}}, "df": 2}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 2}}}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1.7320508075688772}, "mlsauce.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.RidgeRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}, "mlsauce.ridge.RidgeRegressor": {"tf": 1}}, "df": 10}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1.4142135623730951}}, "df": 4}}, "m": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1.4142135623730951}}, "df": 2}}}}, "f": {"1": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}}, "df": 2}, "docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}}, "df": 4, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt": {"tf": 2.6457513110645907}, "mlsauce.LSBoostClassifier": {"tf": 2.6457513110645907}, "mlsauce.LSBoostClassifier.update": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingClassifier": {"tf": 2.6457513110645907}, "mlsauce.GenericBoostingRegressor": {"tf": 2.6457513110645907}, "mlsauce.ElasticNetRegressor": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 2.6457513110645907}, "mlsauce.LSBoostRegressor.update": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor": {"tf": 1}, "mlsauce.config_context": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt": {"tf": 2.6457513110645907}, "mlsauce.booster.LSBoostClassifier": {"tf": 2.6457513110645907}, "mlsauce.booster.LSBoostClassifier.update": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 2.6457513110645907}, "mlsauce.booster.LSBoostRegressor.update": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 2.6457513110645907}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 2.6457513110645907}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.RegressorNc": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}, "mlsauce.ridge.RidgeRegressor": {"tf": 1}}, "df": 27}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.AdaOpt": {"tf": 3.605551275463989}, "mlsauce.AdaOpt.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier": {"tf": 2.449489742783178}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingClassifier": {"tf": 2.449489742783178}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor": {"tf": 3}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 3}, "mlsauce.LSBoostRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingClassifier": {"tf": 2}, "mlsauce.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.MultiTaskRegressor": {"tf": 1}, "mlsauce.MultiTaskRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.get_config": {"tf": 1.4142135623730951}, "mlsauce.set_config": {"tf": 2}, "mlsauce.config_context": {"tf": 2}, "mlsauce.adaopt.AdaOpt": {"tf": 3.605551275463989}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 2.449489742783178}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 3}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 2.449489742783178}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 3}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 2}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.multitaskregressor.MultiTaskRegressor": {"tf": 1}, "mlsauce.multitaskregressor.MultiTaskRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.AbsErrorErrFunc": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.QuantileRegErrFunc": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 2.449489742783178}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 2.23606797749979}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.utils.Progbar.update": {"tf": 1.4142135623730951}}, "df": 82}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.AdaOpt": {"tf": 2}, "mlsauce.adaopt.AdaOpt": {"tf": 2}}, "df": 2}}}}, "l": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.LazyBoostingClassifier": {"tf": 1.7320508075688772}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.set_config": {"tf": 1.4142135623730951}, "mlsauce.config_context": {"tf": 2}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1.7320508075688772}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}}, "df": 15}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 3.1622776601683795}, "mlsauce.GenericBoostingClassifier": {"tf": 1.7320508075688772}, "mlsauce.GenericBoostingRegressor": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor": {"tf": 3}, "mlsauce.LazyBoostingClassifier": {"tf": 1.7320508075688772}, "mlsauce.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.config_context": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 3.1622776601683795}, "mlsauce.booster.LSBoostRegressor": {"tf": 3}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1.7320508075688772}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1.7320508075688772}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1.7320508075688772}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor": {"tf": 2.23606797749979}}, "df": 18}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}}, "df": 2}}}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 2}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}}, "df": 2}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 2.6457513110645907}}, "df": 2, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.set_config": {"tf": 1.4142135623730951}, "mlsauce.config_context": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}}, "t": {"docs": {"mlsauce.AdaOpt.fit": {"tf": 1}, "mlsauce.AdaOpt.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier": {"tf": 3.1622776601683795}, "mlsauce.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1.7320508075688772}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.StumpClassifier.fit": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1.7320508075688772}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.LassoRegressor.fit": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.RidgeRegressor.fit": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingClassifier.provide_models": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.LazyBoostingRegressor.fit": {"tf": 1}, "mlsauce.LazyBoostingRegressor.provide_models": {"tf": 1.7320508075688772}, "mlsauce.MultiTaskRegressor.fit": {"tf": 1}, "mlsauce.MultiTaskRegressor.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier": {"tf": 3.1622776601683795}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1.7320508075688772}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.fit": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 1.7320508075688772}, "mlsauce.multitaskregressor.MultiTaskRegressor.fit": {"tf": 1}, "mlsauce.multitaskregressor.MultiTaskRegressor.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1.7320508075688772}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1.7320508075688772}}, "df": 74, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}}, "df": 13}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.MultiTaskRegressor": {"tf": 1}, "mlsauce.multitaskregressor.MultiTaskRegressor": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}}, "df": 5}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 2}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 2, "s": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.AdaOpt.fit": {"tf": 1.7320508075688772}, "mlsauce.AdaOpt.predict": {"tf": 1.7320508075688772}, "mlsauce.AdaOpt.predict_proba": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier": {"tf": 2}, "mlsauce.LSBoostClassifier.fit": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.predict": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.update": {"tf": 1.7320508075688772}, "mlsauce.GenericBoostingClassifier": {"tf": 2}, "mlsauce.GenericBoostingRegressor": {"tf": 2}, "mlsauce.StumpClassifier.fit": {"tf": 1.7320508075688772}, "mlsauce.StumpClassifier.predict": {"tf": 1.7320508075688772}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1.7320508075688772}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1.7320508075688772}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1.7320508075688772}, "mlsauce.LassoRegressor.fit": {"tf": 1.7320508075688772}, "mlsauce.LassoRegressor.predict": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor": {"tf": 2}, "mlsauce.LSBoostRegressor.fit": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.predict": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.update": {"tf": 1.7320508075688772}, "mlsauce.RidgeRegressor.fit": {"tf": 1.7320508075688772}, "mlsauce.RidgeRegressor.predict": {"tf": 1.7320508075688772}, "mlsauce.LazyBoostingClassifier.fit": {"tf": 2}, "mlsauce.LazyBoostingClassifier.provide_models": {"tf": 2}, "mlsauce.LazyBoostingRegressor.fit": {"tf": 2}, "mlsauce.LazyBoostingRegressor.provide_models": {"tf": 2}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier": {"tf": 2}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.update": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor": {"tf": 2}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.update": {"tf": 1.7320508075688772}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 2}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 2}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1.7320508075688772}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1.7320508075688772}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1.7320508075688772}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1.7320508075688772}, "mlsauce.lazybooster.LazyBoostingClassifier.fit": {"tf": 2}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 2}, "mlsauce.lazybooster.LazyBoostingRegressor.fit": {"tf": 2}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 2}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1.7320508075688772}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1.7320508075688772}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1.7320508075688772}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1.7320508075688772}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1.7320508075688772}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1.7320508075688772}}, "df": 61}}}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"mlsauce.nonconformist.RegressorNc": {"tf": 1.4142135623730951}}, "df": 1, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 2}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 2}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 2}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 2}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 2}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 2}, "mlsauce.StumpClassifier.set_score_request": {"tf": 2}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 2}, "mlsauce.LassoRegressor.set_score_request": {"tf": 2}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 2}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 2}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 2}, "mlsauce.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingClassifier.get_best_model": {"tf": 1}, "mlsauce.LazyBoostingClassifier.train_model": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor.get_best_model": {"tf": 1}, "mlsauce.LazyBoostingRegressor.provide_models": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor.train_model": {"tf": 1}, "mlsauce.MultiTaskRegressor.set_score_request": {"tf": 2}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 2}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 2}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 2}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 2}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 2}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 2}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 2}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 2}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 2}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier.get_best_model": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.train_model": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor.get_best_model": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor.train_model": {"tf": 1}, "mlsauce.multitaskregressor.MultiTaskRegressor.set_score_request": {"tf": 2}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 2}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 2}, "mlsauce.nonconformist.RegressorNc": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 2}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 2}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 2}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 2}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 2}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 2}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 2}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 2}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 2}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 2}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 2}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 2}}, "df": 66}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 2}}}}, "s": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingClassifier.provide_models": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}}, "df": 15, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}}, "df": 10}}, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "y": {"docs": {"mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 4}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 2.6457513110645907}, "mlsauce.LSBoostRegressor": {"tf": 1.7320508075688772}, "mlsauce.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 2.6457513110645907}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.7320508075688772}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}}, "df": 9, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}}, "df": 3}}}}}}}}}}}}}, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1.4142135623730951}}, "df": 10}}}}}}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}}, "df": 2}}}}}}}, "e": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}}, "df": 2}}}}}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}}, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}}, "df": 4}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}}, "df": 2}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.utils.Progbar.update": {"tf": 1.7320508075688772}}, "df": 3, "s": {"docs": {"mlsauce.utils.Progbar": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}}, "df": 10}}}}}}, "r": {"docs": {"mlsauce.AdaOpt": {"tf": 1.7320508075688772}, "mlsauce.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier": {"tf": 2.449489742783178}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingClassifier": {"tf": 2.449489742783178}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor": {"tf": 2.6457513110645907}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 2.6457513110645907}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.MultiTaskRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 2.449489742783178}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 2.6457513110645907}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 2.449489742783178}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 2.6457513110645907}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.multitaskregressor.MultiTaskRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}}, "df": 55, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}}, "df": 2}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1.4142135623730951}, "mlsauce.utils.Progbar": {"tf": 1}}, "df": 6, "s": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.MultiTaskRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.multitaskregressor.MultiTaskRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 37}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}}, "df": 10}}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 6.324555320336759}, "mlsauce.LSBoostRegressor": {"tf": 2.8284271247461903}, "mlsauce.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 6.324555320336759}, "mlsauce.booster.LSBoostRegressor": {"tf": 2.8284271247461903}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1.4142135623730951}}, "df": 6}}, "t": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1.4142135623730951}}, "df": 4, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.utils.Progbar": {"tf": 1}, "mlsauce.utils.Progbar.update": {"tf": 1}}, "df": 2}}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {"mlsauce.StumpClassifier": {"tf": 1}, "mlsauce.StumpClassifier.fit": {"tf": 1}, "mlsauce.stump.StumpClassifier": {"tf": 1}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1}}, "df": 4}}}}, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier": {"tf": 2.23606797749979}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.set_config": {"tf": 1.4142135623730951}, "mlsauce.config_context": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier": {"tf": 2.23606797749979}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 2.23606797749979}}, "df": 13}}, "m": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}}, "df": 10, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}}, "df": 4}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.predictioninterval.PredictionInterval": {"tf": 1}}, "df": 1}}}}}}}, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.MultiTaskRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.multitaskregressor.MultiTaskRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 37}}}}}, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 2.6457513110645907}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 2.6457513110645907}}, "df": 5}}}}}}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}}, "df": 8}}}}}, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.LazyBoostingClassifier.train_model": {"tf": 1}, "mlsauce.LazyBoostingRegressor.train_model": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.train_model": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.train_model": {"tf": 1}}, "df": 4}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.utils.Progbar": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}}, "df": 8}}}}}}, "f": {"docs": {"mlsauce.AdaOpt.fit": {"tf": 1.4142135623730951}, "mlsauce.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier.update": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 2.449489742783178}, "mlsauce.StumpClassifier.fit": {"tf": 1}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 2.449489742783178}, "mlsauce.LSBoostRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor.update": {"tf": 1}, "mlsauce.RidgeRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.update": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 2.449489742783178}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.update": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 2.449489742783178}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 2.6457513110645907}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 2.6457513110645907}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1}}, "df": 32}}, "t": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.AdaOpt.fit": {"tf": 1}, "mlsauce.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier": {"tf": 2}, "mlsauce.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingClassifier": {"tf": 1.7320508075688772}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor": {"tf": 1.7320508075688772}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.fit": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 2}, "mlsauce.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.fit": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingClassifier": {"tf": 1.7320508075688772}, "mlsauce.LazyBoostingRegressor": {"tf": 1.7320508075688772}, "mlsauce.MultiTaskRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.get_config": {"tf": 2.23606797749979}, "mlsauce.set_config": {"tf": 1.7320508075688772}, "mlsauce.config_context": {"tf": 2}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 2}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 2}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1.7320508075688772}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1.7320508075688772}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1.7320508075688772}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1.7320508075688772}, "mlsauce.multitaskregressor.MultiTaskRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}}, "df": 81, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 2, "s": {"docs": {"mlsauce.config_context": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {"mlsauce.get_config": {"tf": 1}, "mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}, "mlsauce.nonconformist.RegressorNc": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1}}, "df": 5, "d": {"docs": {"mlsauce.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier": {"tf": 2.6457513110645907}, "mlsauce.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 1.7320508075688772}, "mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 2.6457513110645907}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.7320508075688772}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}}, "df": 15}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.utils.Progbar": {"tf": 1}}, "df": 3}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 2}}}}}}}}}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {"mlsauce.utils.Progbar": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.fit": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 2.449489742783178}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.MultiTaskRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 2.449489742783178}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.multitaskregressor.MultiTaskRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 51, "s": {"docs": {"mlsauce.AdaOpt.fit": {"tf": 2}, "mlsauce.AdaOpt.predict": {"tf": 1.7320508075688772}, "mlsauce.AdaOpt.predict_proba": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.fit": {"tf": 2}, "mlsauce.LSBoostClassifier.predict": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.update": {"tf": 2}, "mlsauce.StumpClassifier.fit": {"tf": 2.23606797749979}, "mlsauce.StumpClassifier.predict": {"tf": 1.7320508075688772}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1.7320508075688772}, "mlsauce.ElasticNetRegressor.fit": {"tf": 2}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1.7320508075688772}, "mlsauce.LassoRegressor.fit": {"tf": 2}, "mlsauce.LassoRegressor.predict": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.fit": {"tf": 2}, "mlsauce.LSBoostRegressor.predict": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.update": {"tf": 2}, "mlsauce.RidgeRegressor.fit": {"tf": 2}, "mlsauce.RidgeRegressor.predict": {"tf": 1.7320508075688772}, "mlsauce.LazyBoostingClassifier.fit": {"tf": 2}, "mlsauce.LazyBoostingClassifier.provide_models": {"tf": 2}, "mlsauce.LazyBoostingRegressor.fit": {"tf": 2}, "mlsauce.LazyBoostingRegressor.provide_models": {"tf": 2}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 2}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 2}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.update": {"tf": 2}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 2}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.update": {"tf": 2}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 2}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1.7320508075688772}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 2}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1.7320508075688772}, "mlsauce.lazybooster.LazyBoostingClassifier.fit": {"tf": 2}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 2}, "mlsauce.lazybooster.LazyBoostingRegressor.fit": {"tf": 2}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 2}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 2}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 2}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 2}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1.7320508075688772}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 2}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1.7320508075688772}, "mlsauce.stump.StumpClassifier.fit": {"tf": 2.23606797749979}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1.7320508075688772}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1.7320508075688772}}, "df": 54}}}}, "e": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}}, "df": 4}}, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.set_config": {"tf": 1.4142135623730951}, "mlsauce.config_context": {"tf": 1.4142135623730951}}, "df": 2}}}}, "f": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.config_context": {"tf": 1}}, "df": 1}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1.4142135623730951}}, "df": 10}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 3.3166247903554}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingClassifier.fit": {"tf": 1}, "mlsauce.LazyBoostingRegressor.fit": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 3.3166247903554}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.fit": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.fit": {"tf": 1}}, "df": 10, "s": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingClassifier.fit": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.LazyBoostingRegressor.fit": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.fit": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.fit": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.RegressorNc": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1.4142135623730951}}, "df": 14}, "r": {"docs": {"mlsauce.nonconformist.RegressorNc": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1.4142135623730951}}, "df": 2}}}}, "i": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 2}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.utils.Progbar": {"tf": 1}}, "df": 1}}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.fit": {"tf": 1.4142135623730951}, "mlsauce.AdaOpt.predict": {"tf": 1}, "mlsauce.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier.update": {"tf": 1}, "mlsauce.StumpClassifier.fit": {"tf": 1.7320508075688772}, "mlsauce.StumpClassifier.predict": {"tf": 1}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.LassoRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor.update": {"tf": 1}, "mlsauce.RidgeRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.update": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.update": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1.7320508075688772}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1}}, "df": 49}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.MultiTaskRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.multitaskregressor.MultiTaskRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.utils.Progbar": {"tf": 1}}, "df": 43}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.LassoRegressor": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1}}, "df": 10}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingClassifier.get_best_model": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor": {"tf": 1.7320508075688772}, "mlsauce.LazyBoostingRegressor.get_best_model": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier.get_best_model": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1.7320508075688772}, "mlsauce.lazybooster.LazyBoostingRegressor.get_best_model": {"tf": 1.4142135623730951}}, "df": 8}}}, "k": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 2.23606797749979}, "mlsauce.LSBoostRegressor": {"tf": 2}, "mlsauce.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 2.23606797749979}, "mlsauce.booster.LSBoostRegressor": {"tf": 2}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1.4142135623730951}}, "df": 11}}}}}, "i": {"docs": {}, "df": 0, "p": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 1}}, "df": 1, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 2}}}}}}, "y": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}}, "df": 2}}, "q": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}}, "df": 2}}, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}}, "df": 2, "d": {"docs": {"mlsauce.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1.4142135623730951}}, "df": 2}}}}}}, "v": {"docs": {}, "df": 0, "c": {"docs": {"mlsauce.set_config": {"tf": 1.7320508075688772}, "mlsauce.config_context": {"tf": 1.7320508075688772}}, "df": 2}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.nonconformist.RegressorNc": {"tf": 1}}, "df": 1}}}}}}}}}, "p": {"docs": {"mlsauce.nonconformist.RegressorNc.predict": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1.7320508075688772}}, "df": 2, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 2.6457513110645907}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 2.6457513110645907}}, "df": 2, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.ElasticNetRegressor": {"tf": 1}, "mlsauce.LassoRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.RidgeRegressor": {"tf": 1}, "mlsauce.get_config": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1}, "mlsauce.lasso.LassoRegressor": {"tf": 1}, "mlsauce.nonconformist.RegressorNc": {"tf": 1}, "mlsauce.ridge.RidgeRegressor": {"tf": 1}}, "df": 18, "s": {"docs": {"mlsauce.AdaOpt.fit": {"tf": 1}, "mlsauce.AdaOpt.predict": {"tf": 1}, "mlsauce.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.AdaOpt.set_score_request": {"tf": 2}, "mlsauce.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 2}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 2}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 2}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 2}, "mlsauce.StumpClassifier.predict": {"tf": 1}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 2}, "mlsauce.StumpClassifier.set_score_request": {"tf": 2}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 2}, "mlsauce.LassoRegressor.fit": {"tf": 1}, "mlsauce.LassoRegressor.predict": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 2}, "mlsauce.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 2}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 2}, "mlsauce.RidgeRegressor.fit": {"tf": 1}, "mlsauce.RidgeRegressor.predict": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 2}, "mlsauce.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingClassifier.fit": {"tf": 1}, "mlsauce.LazyBoostingClassifier.provide_models": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor.provide_models": {"tf": 1}, "mlsauce.MultiTaskRegressor": {"tf": 1}, "mlsauce.MultiTaskRegressor.fit": {"tf": 1}, "mlsauce.MultiTaskRegressor.predict": {"tf": 1}, "mlsauce.MultiTaskRegressor.set_score_request": {"tf": 2}, "mlsauce.set_config": {"tf": 1.7320508075688772}, "mlsauce.config_context": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 2}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 2}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 2}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 2}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 2}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 2}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 2}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 2}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 2}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier.fit": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 1}, "mlsauce.multitaskregressor.MultiTaskRegressor": {"tf": 1}, "mlsauce.multitaskregressor.MultiTaskRegressor.fit": {"tf": 1}, "mlsauce.multitaskregressor.MultiTaskRegressor.predict": {"tf": 1}, "mlsauce.multitaskregressor.MultiTaskRegressor.set_score_request": {"tf": 2}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 2}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 2}, "mlsauce.nonconformist.RegressorNc": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 2}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 2}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 2}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 2}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 2}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 2}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 2}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 2}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 2}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 2}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 2}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 2}}, "df": 99}}}}}, "s": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 3.1622776601683795}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 3.1622776601683795}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1.4142135623730951}}, "df": 6}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}}, "df": 6, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 2}}}}}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.AdaOpt.fit": {"tf": 1}, "mlsauce.AdaOpt.predict": {"tf": 1}, "mlsauce.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.StumpClassifier.predict": {"tf": 1}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.LassoRegressor.fit": {"tf": 1}, "mlsauce.LassoRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.RidgeRegressor.fit": {"tf": 1}, "mlsauce.RidgeRegressor.predict": {"tf": 1}, "mlsauce.LazyBoostingClassifier.fit": {"tf": 1}, "mlsauce.LazyBoostingRegressor.fit": {"tf": 1}, "mlsauce.get_config": {"tf": 1}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.fit": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.fit": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1}}, "df": 37}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.LazyBoostingClassifier.fit": {"tf": 2}, "mlsauce.LazyBoostingRegressor.fit": {"tf": 2}, "mlsauce.lazybooster.LazyBoostingClassifier.fit": {"tf": 2}, "mlsauce.lazybooster.LazyBoostingRegressor.fit": {"tf": 2}}, "df": 4}}}}, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.nonconformist.RegressorNc.predict": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}}, "df": 2, "s": {"docs": {"mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1.4142135623730951}}, "df": 3}}, "s": {"docs": {"mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}}, "df": 2}}}}}, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.utils.check_and_install": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.MultiTaskRegressor.predict": {"tf": 1}, "mlsauce.multitaskregressor.MultiTaskRegressor.predict": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt.predict": {"tf": 1.4142135623730951}, "mlsauce.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 2}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.RidgeRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingClassifier.fit": {"tf": 1}, "mlsauce.LazyBoostingRegressor.fit": {"tf": 1}, "mlsauce.MultiTaskRegressor.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 2}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier.fit": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.fit": {"tf": 1}, "mlsauce.multitaskregressor.MultiTaskRegressor.predict": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1}}, "df": 36, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.AdaOpt": {"tf": 1.7320508075688772}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 2}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 2}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1.4142135623730951}}, "df": 16, "s": {"docs": {"mlsauce.AdaOpt.predict": {"tf": 1}, "mlsauce.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.StumpClassifier.predict": {"tf": 1}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.LassoRegressor.predict": {"tf": 1}, "mlsauce.RidgeRegressor.predict": {"tf": 1}, "mlsauce.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1}}, "df": 23}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.predictioninterval.PredictionInterval": {"tf": 1}}, "df": 1}}}}}}}}}, "m": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}}, "df": 4}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}}, "df": 4}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.MultiTaskRegressor.predict": {"tf": 1}, "mlsauce.multitaskregressor.MultiTaskRegressor.predict": {"tf": 1}}, "df": 2}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}}, "df": 2}}, "s": {"docs": {"mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1.4142135623730951}}, "df": 4, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}}, "df": 4}}}}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"mlsauce.config_context": {"tf": 1}}, "df": 1}}}}}}, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.config_context": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}, "mlsauce.utils.Progbar": {"tf": 1.7320508075688772}, "mlsauce.utils.Progbar.update": {"tf": 1}}, "df": 12}}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.utils.Progbar": {"tf": 1}}, "df": 1}}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {"mlsauce.AdaOpt.predict": {"tf": 1}, "mlsauce.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.StumpClassifier.predict": {"tf": 1}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.LassoRegressor.predict": {"tf": 1}, "mlsauce.RidgeRegressor.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1}}, "df": 12, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1}}, "df": 8}}}, "y": {"docs": {"mlsauce.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1}}, "df": 10}}}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"mlsauce.nonconformist.RegressorNc": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}}, "df": 2, "d": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1.7320508075688772}, "mlsauce.LazyBoostingRegressor": {"tf": 1.7320508075688772}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1.7320508075688772}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1.7320508075688772}}, "df": 4}, "s": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 2}}}}}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}}, "df": 2}}}, "n": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 8.12403840463596}, "mlsauce.LSBoostRegressor": {"tf": 3.1622776601683795}, "mlsauce.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.set_config": {"tf": 2}, "mlsauce.config_context": {"tf": 2}, "mlsauce.booster.LSBoostClassifier": {"tf": 8.12403840463596}, "mlsauce.booster.LSBoostRegressor": {"tf": 3.1622776601683795}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}}, "df": 10, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 2}}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 2, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1.7320508075688772}, "mlsauce.GenericBoostingClassifier": {"tf": 1.7320508075688772}, "mlsauce.GenericBoostingRegressor": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.7320508075688772}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1.7320508075688772}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1.7320508075688772}}, "df": 10}}}}}}}, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.set_config": {"tf": 1.4142135623730951}, "mlsauce.config_context": {"tf": 1.4142135623730951}}, "df": 2}}}}}}, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 1}}, "df": 1}}}}}}}}}, "p": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.MultiTaskRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.multitaskregressor.MultiTaskRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 37}}, "y": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.MultiTaskRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.multitaskregressor.MultiTaskRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}}, "df": 39}}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}}, "df": 2}}}}}, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.LSBoostClassifier.update": {"tf": 1}, "mlsauce.LSBoostRegressor.update": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.update": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.update": {"tf": 1}}, "df": 4}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}}, "df": 4}}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}}, "df": 4}}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 2}}}}}}}}, "i": {"docs": {"mlsauce.GenericBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}}, "df": 8, "p": {"docs": {"mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingClassifier.get_best_model": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingClassifier.provide_models": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor.get_best_model": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor.provide_models": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier.get_best_model": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor.get_best_model": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 1}}, "df": 12}}}}}}}, "l": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}}, "df": 2}}}, "e": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.MultiTaskRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.multitaskregressor.MultiTaskRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}}, "df": 39, "r": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.nonconformist.RegressorNc": {"tf": 1.4142135623730951}}, "df": 1, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc": {"tf": 1}, "mlsauce.nonconformist.RegressorNc": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}}, "df": 8, "s": {"docs": {"mlsauce.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}}, "df": 10}}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier.update": {"tf": 1}, "mlsauce.LSBoostRegressor.update": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.update": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.update": {"tf": 1}}, "df": 6}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}}, "df": 10}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingClassifier.provide_models": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.LazyBoostingRegressor.provide_models": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 2.23606797749979}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1.4142135623730951}}, "df": 16}}}, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.AdaOpt": {"tf": 2}, "mlsauce.adaopt.AdaOpt": {"tf": 2}}, "df": 2}}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1}}, "df": 10}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 2.449489742783178}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 2.449489742783178}}, "df": 4, "s": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.set_config": {"tf": 1.4142135623730951}, "mlsauce.config_context": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}}, "df": 17}}}}}}}}}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1.7320508075688772}, "mlsauce.GenericBoostingClassifier": {"tf": 1.7320508075688772}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.ElasticNetRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1.7320508075688772}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1}}, "df": 10}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}}, "df": 4, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.ElasticNetRegressor": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1}}, "df": 2}}}}}}}, "p": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}}, "df": 2}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.utils.Progbar.update": {"tf": 1}}, "df": 1}}}, "x": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 2, "s": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.config_context": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 2}}, "df": 13}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}}, "df": 4}}}}}}}}}}}}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}}, "df": 2}}}}}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 2}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.utils.Progbar": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 2}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.config_context": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}}, "df": 4}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}}, "df": 4}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}}, "df": 4}}}}}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.nonconformist.RegressorNc": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}}, "df": 2}}}}}}}}}}, "g": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.MultiTaskRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.multitaskregressor.MultiTaskRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}}, "df": 37, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}}, "df": 10}}}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "v": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 6}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}}, "df": 2}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.7320508075688772}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1.7320508075688772}}, "df": 8}}}}}}}, "m": {"docs": {}, "df": 0, "m": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}}, "df": 10}}, "p": {"docs": {}, "df": 0, "u": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.ElasticNetRegressor": {"tf": 1}, "mlsauce.LassoRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.RidgeRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1}, "mlsauce.lasso.LassoRegressor": {"tf": 1}, "mlsauce.ridge.RidgeRegressor": {"tf": 1}}, "df": 14}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}}, "df": 2, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.4142135623730951}}, "df": 2, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 3.1622776601683795}, "mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingClassifier.fit": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 3.1622776601683795}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.fit": {"tf": 1}}, "df": 6, "s": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}}, "df": 2}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor.fit": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor.fit": {"tf": 1}}, "df": 4}}}}}}}}}}}}}}}}}}}}}}, "t": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 3.1622776601683795}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 3.1622776601683795}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 8, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 2}}}}}}, "t": {"docs": {"mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.config_context": {"tf": 3.4641016151377544}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 5.291502622129181}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 5.291502622129181}, "mlsauce.nonconformist.IcpRegressor": {"tf": 7.14142842854285}}, "df": 10}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.get_config": {"tf": 1.4142135623730951}, "mlsauce.set_config": {"tf": 2.23606797749979}, "mlsauce.config_context": {"tf": 2.23606797749979}}, "df": 3}}}}}, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 2}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}}, "df": 10}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.MultiTaskRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.multitaskregressor.MultiTaskRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}}, "df": 37}}}}}}}}, "f": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1.7320508075688772}}, "df": 2, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 2}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.LazyBoostingClassifier": {"tf": 3}, "mlsauce.LazyBoostingRegressor": {"tf": 3}, "mlsauce.MultiTaskRegressor.set_score_request": {"tf": 1}, "mlsauce.set_config": {"tf": 2.23606797749979}, "mlsauce.config_context": {"tf": 2.23606797749979}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 2}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 3}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 3}, "mlsauce.multitaskregressor.MultiTaskRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 2}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 57}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.LSBoostClassifier.update": {"tf": 1}, "mlsauce.LSBoostRegressor.update": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.update": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.update": {"tf": 1}}, "df": 4}, "d": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc": {"tf": 1}}, "df": 2}}}}}, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1.4142135623730951}}, "df": 8}}}}, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}}, "df": 2, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1.4142135623730951}}, "df": 5}}}}}}}}}}}}}}}}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}}, "df": 2, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt": {"tf": 1.4142135623730951}}, "df": 2, "s": {"docs": {"mlsauce.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "r": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}}, "df": 8, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}}, "df": 8}}}}}}}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}, "mlsauce.utils.Progbar": {"tf": 1}}, "df": 3, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.set_config": {"tf": 1.4142135623730951}, "mlsauce.config_context": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.utils.Progbar": {"tf": 1}, "mlsauce.utils.Progbar.update": {"tf": 1.4142135623730951}}, "df": 6}}, "s": {"docs": {"mlsauce.utils.Progbar": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}}, "df": 8}}}}, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}}, "df": 4}}}}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.LSBoostRegressor": {"tf": 2.23606797749979}, "mlsauce.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 2.23606797749979}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1.4142135623730951}}, "df": 4}}}}}, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {"mlsauce.set_config": {"tf": 1.4142135623730951}, "mlsauce.config_context": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingClassifier.fit": {"tf": 1}, "mlsauce.LazyBoostingClassifier.provide_models": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.LazyBoostingRegressor.fit": {"tf": 1}, "mlsauce.LazyBoostingRegressor.provide_models": {"tf": 1}, "mlsauce.get_config": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.fit": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.fit": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 1}}, "df": 13, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingClassifier.provide_models": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor.provide_models": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 1}}, "df": 8}}}}}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1.4142135623730951}}, "df": 10}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}}, "df": 8}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"mlsauce.AdaOpt.fit": {"tf": 1}, "mlsauce.AdaOpt.predict": {"tf": 1}, "mlsauce.AdaOpt.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier": {"tf": 4}, "mlsauce.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.update": {"tf": 1}, "mlsauce.StumpClassifier.fit": {"tf": 1}, "mlsauce.StumpClassifier.predict": {"tf": 1}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.LassoRegressor.fit": {"tf": 1}, "mlsauce.LassoRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.LSBoostRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.update": {"tf": 1}, "mlsauce.RidgeRegressor.fit": {"tf": 1}, "mlsauce.RidgeRegressor.predict": {"tf": 1}, "mlsauce.LazyBoostingClassifier": {"tf": 2.23606797749979}, "mlsauce.LazyBoostingRegressor": {"tf": 2}, "mlsauce.MultiTaskRegressor.fit": {"tf": 1}, "mlsauce.MultiTaskRegressor.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 4}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.update": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.update": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 2.23606797749979}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 2}, "mlsauce.multitaskregressor.MultiTaskRegressor.fit": {"tf": 1}, "mlsauce.multitaskregressor.MultiTaskRegressor.predict": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1.4142135623730951}}, "df": 55, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1}}, "df": 9}}}}, "f": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.LazyBoostingClassifier.fit": {"tf": 2}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.LazyBoostingRegressor.fit": {"tf": 2}, "mlsauce.lazybooster.LazyBoostingClassifier.fit": {"tf": 2}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.fit": {"tf": 2}}, "df": 6}}}}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}}, "df": 4}}, "c": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.nonconformist": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 1}}, "df": 1}}}}}}}, "k": {"docs": {"mlsauce.AdaOpt": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt": {"tf": 1.7320508075688772}}, "df": 2, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}}, "df": 10}}}}}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.AdaOpt.fit": {"tf": 1}, "mlsauce.AdaOpt.predict": {"tf": 1}, "mlsauce.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.StumpClassifier.predict": {"tf": 1}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.LassoRegressor.fit": {"tf": 1}, "mlsauce.LassoRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.RidgeRegressor.fit": {"tf": 1}, "mlsauce.RidgeRegressor.predict": {"tf": 1}, "mlsauce.LazyBoostingClassifier.fit": {"tf": 1}, "mlsauce.LazyBoostingRegressor.fit": {"tf": 1}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.fit": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.fit": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1}}, "df": 38}}}}}, "e": {"docs": {}, "df": 0, "y": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingClassifier.provide_models": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.LazyBoostingRegressor.provide_models": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 1}}, "df": 8, "s": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.MultiTaskRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.get_config": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.multitaskregressor.MultiTaskRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}}, "df": 38}, "w": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 2}}}}}, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1.4142135623730951}}, "df": 6, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}}, "df": 2}}, "d": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.GenericBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}}, "df": 5}}}, "m": {"docs": {"mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"mlsauce.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.utils.Progbar": {"tf": 1}}, "df": 5}}}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "x": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}}, "df": 10}}}}, "b": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 2}, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.predictioninterval.PredictionInterval": {"tf": 1}}, "df": 1}}}}}}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}}, "df": 2, "s": {"docs": {"mlsauce.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt": {"tf": 1.4142135623730951}}, "df": 2}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.AdaOpt": {"tf": 1.7320508075688772}, "mlsauce.AdaOpt.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.GenericBoostingClassifier": {"tf": 1.7320508075688772}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.GenericBoostingRegressor": {"tf": 1.7320508075688772}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1.7320508075688772}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1.7320508075688772}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.MultiTaskRegressor.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1.7320508075688772}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1.7320508075688772}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1.7320508075688772}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.multitaskregressor.MultiTaskRegressor.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1.7320508075688772}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1.7320508075688772}}, "df": 51, "s": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.MultiTaskRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.multitaskregressor.MultiTaskRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 38}}}}, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.MultiTaskRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.multitaskregressor.MultiTaskRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 37}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 2.449489742783178}, "mlsauce.LazyBoostingClassifier.get_best_model": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor": {"tf": 2.8284271247461903}, "mlsauce.LazyBoostingRegressor.get_best_model": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 2.449489742783178}, "mlsauce.lazybooster.LazyBoostingClassifier.get_best_model": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 2.8284271247461903}, "mlsauce.lazybooster.LazyBoostingRegressor.get_best_model": {"tf": 1.4142135623730951}, "mlsauce.utils.Progbar.update": {"tf": 1}}, "df": 9, "s": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.LazyBoostingClassifier.fit": {"tf": 1}, "mlsauce.LazyBoostingRegressor.fit": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.fit": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.fit": {"tf": 1}, "mlsauce.utils.Progbar": {"tf": 1.7320508075688772}, "mlsauce.utils.Progbar.update": {"tf": 1}}, "df": 10}}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"mlsauce.set_config": {"tf": 1.4142135623730951}, "mlsauce.config_context": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.utils.Progbar": {"tf": 1}}, "df": 1, "l": {"docs": {"mlsauce.AdaOpt.predict": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 2}, "mlsauce.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.LSBoostClassifier.update": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 2}, "mlsauce.GenericBoostingRegressor": {"tf": 2}, "mlsauce.StumpClassifier.predict": {"tf": 1}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.LassoRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 2}, "mlsauce.LSBoostRegressor.update": {"tf": 1}, "mlsauce.RidgeRegressor.predict": {"tf": 1}, "mlsauce.LazyBoostingClassifier": {"tf": 2.449489742783178}, "mlsauce.LazyBoostingClassifier.get_best_model": {"tf": 1.7320508075688772}, "mlsauce.LazyBoostingClassifier.provide_models": {"tf": 1.7320508075688772}, "mlsauce.LazyBoostingClassifier.train_model": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 2.23606797749979}, "mlsauce.LazyBoostingRegressor.get_best_model": {"tf": 1.7320508075688772}, "mlsauce.LazyBoostingRegressor.provide_models": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor.train_model": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 2}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.update": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 2}, "mlsauce.booster.LSBoostRegressor.update": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 2}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 2}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 2.449489742783178}, "mlsauce.lazybooster.LazyBoostingClassifier.get_best_model": {"tf": 1.7320508075688772}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 1.7320508075688772}, "mlsauce.lazybooster.LazyBoostingClassifier.train_model": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 2.23606797749979}, "mlsauce.lazybooster.LazyBoostingRegressor.get_best_model": {"tf": 1.7320508075688772}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor.train_model": {"tf": 1}, "mlsauce.nonconformist.RegressorNc": {"tf": 2.449489742783178}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1}}, "df": 43, "s": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 3.3166247903554}, "mlsauce.LazyBoostingClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingClassifier.provide_models": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor": {"tf": 3.1622776601683795}, "mlsauce.LazyBoostingRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor.provide_models": {"tf": 1.7320508075688772}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 3.3166247903554}, "mlsauce.lazybooster.LazyBoostingClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 3.1622776601683795}, "mlsauce.lazybooster.LazyBoostingRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 1.7320508075688772}}, "df": 12}}}, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.config_context": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.config_context": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 2}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor": {"tf": 1}, "mlsauce.ridge.RidgeRegressor": {"tf": 1}}, "df": 14}}, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {"mlsauce.MultiTaskRegressor": {"tf": 1}, "mlsauce.multitaskregressor.MultiTaskRegressor": {"tf": 1}}, "df": 2}}}}, "l": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.get_config": {"tf": 1.4142135623730951}, "mlsauce.set_config": {"tf": 1.7320508075688772}, "mlsauce.config_context": {"tf": 2.8284271247461903}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}}, "df": 11}}}}}}, "s": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 3.3166247903554}, "mlsauce.LSBoostRegressor": {"tf": 1.7320508075688772}, "mlsauce.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 3.3166247903554}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.7320508075688772}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1.4142135623730951}}, "df": 8}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}}, "df": 2, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.LassoRegressor.fit": {"tf": 1}, "mlsauce.RidgeRegressor.fit": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1}}, "df": 6}}}}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {"mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}}, "x": {"docs": {"mlsauce.LassoRegressor": {"tf": 1}, "mlsauce.lasso.LassoRegressor": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1.7320508075688772}}, "df": 4}}}}, "{": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "q": {"docs": {"mlsauce.nonconformist.QuantileRegErrFunc": {"tf": 1}}, "df": 1}}}}}}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.get_config": {"tf": 1}, "mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1.4142135623730951}}, "df": 3}}}}}}, "y": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}}}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.AdaOpt": {"tf": 1.7320508075688772}, "mlsauce.GenericBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNc": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1.4142135623730951}}, "df": 14}, "s": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.MultiTaskRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.multitaskregressor.MultiTaskRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 37}, "r": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.nonconformist.RegressorNc": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}}, "df": 4}}}}, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1.4142135623730951}}, "df": 10}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.nonconformist.RegressorNc": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}}, "df": 2}}}}}}}}, "k": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.utils.Progbar": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.LSBoostClassifier.update": {"tf": 1}, "mlsauce.LSBoostRegressor.update": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.update": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.update": {"tf": 1}, "mlsauce.utils.Progbar": {"tf": 1}}, "df": 5, "s": {"docs": {"mlsauce.utils.Progbar.update": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.config_context": {"tf": 1}}, "df": 1}}}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"mlsauce.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt": {"tf": 1.4142135623730951}}, "df": 2}}}, "r": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}, "mlsauce.utils.Progbar": {"tf": 1.4142135623730951}, "mlsauce.utils.Progbar.update": {"tf": 1}}, "df": 12}, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor": {"tf": 1.4142135623730951}}, "df": 14}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.GenericBoostingClassifier": {"tf": 1.7320508075688772}, "mlsauce.GenericBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1.7320508075688772}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1}}, "df": 7, "d": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingClassifier.get_best_model": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor.get_best_model": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.get_best_model": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor.get_best_model": {"tf": 1.4142135623730951}}, "df": 8}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}}}, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.nonconformist.RegressorNc": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}}, "df": 2}}}}}}}, "y": {"docs": {"mlsauce.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.LazyBoostingClassifier": {"tf": 2.23606797749979}, "mlsauce.LazyBoostingClassifier.get_best_model": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor": {"tf": 2.449489742783178}, "mlsauce.LazyBoostingRegressor.get_best_model": {"tf": 1.4142135623730951}, "mlsauce.MultiTaskRegressor.set_score_request": {"tf": 1}, "mlsauce.get_config": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 2.23606797749979}, "mlsauce.lazybooster.LazyBoostingClassifier.get_best_model": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 2.449489742783178}, "mlsauce.lazybooster.LazyBoostingRegressor.get_best_model": {"tf": 1.4142135623730951}, "mlsauce.multitaskregressor.MultiTaskRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.utils.Progbar": {"tf": 1}}, "df": 51}, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.LazyBoostingClassifier": {"tf": 1.7320508075688772}, "mlsauce.LazyBoostingRegressor": {"tf": 1.7320508075688772}, "mlsauce.MultiTaskRegressor.set_score_request": {"tf": 1}, "mlsauce.set_config": {"tf": 1.4142135623730951}, "mlsauce.config_context": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1.7320508075688772}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1.7320508075688772}, "mlsauce.multitaskregressor.MultiTaskRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 51, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}}, "df": 3}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}}, "df": 8}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1}}, "df": 4}, "d": {"docs": {"mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}}, "df": 4}}}}, "t": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {"mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}}, "df": 5}}}}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 2}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1.4142135623730951}}, "df": 4}}}}}, "s": {"docs": {"mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 3}}, "df": 1}}}}}, "e": {"docs": {"mlsauce.AdaOpt.fit": {"tf": 1}, "mlsauce.AdaOpt.predict": {"tf": 1}, "mlsauce.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1.7320508075688772}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1.7320508075688772}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.predict": {"tf": 1}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor": {"tf": 1}, "mlsauce.LassoRegressor.fit": {"tf": 1}, "mlsauce.LassoRegressor.predict": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor": {"tf": 1}, "mlsauce.RidgeRegressor.fit": {"tf": 1}, "mlsauce.RidgeRegressor.predict": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingClassifier.fit": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.LazyBoostingRegressor.fit": {"tf": 1}, "mlsauce.MultiTaskRegressor.set_score_request": {"tf": 1}, "mlsauce.get_config": {"tf": 1}, "mlsauce.set_config": {"tf": 2.6457513110645907}, "mlsauce.config_context": {"tf": 2.6457513110645907}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1.7320508075688772}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1.7320508075688772}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor": {"tf": 1}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.fit": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.fit": {"tf": 1}, "mlsauce.multitaskregressor.MultiTaskRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.utils.Progbar": {"tf": 1.7320508075688772}, "mlsauce.utils.Progbar.update": {"tf": 1.4142135623730951}}, "df": 100, "t": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.ElasticNetRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}}, "df": 13}}}}, "a": {"docs": {"mlsauce.nonconformist.RegressorNc": {"tf": 1.4142135623730951}}, "df": 1}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingClassifier.get_best_model": {"tf": 1.7320508075688772}, "mlsauce.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor.get_best_model": {"tf": 1.7320508075688772}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier.get_best_model": {"tf": 1.7320508075688772}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor.get_best_model": {"tf": 1.7320508075688772}}, "df": 8}}, "e": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.LazyBoostingClassifier.provide_models": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 1}}, "df": 2}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.set_config": {"tf": 1}}, "df": 1}}}}}}}, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.utils.Progbar": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 2.449489742783178}, "mlsauce.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 2.449489742783178}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1.4142135623730951}}, "df": 4}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.StumpClassifier": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier": {"tf": 1.4142135623730951}}, "df": 2}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1.4142135623730951}}, "df": 2}}}, "w": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}}, "df": 2}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.fit": {"tf": 1}, "mlsauce.AdaOpt.predict": {"tf": 1}, "mlsauce.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier.update": {"tf": 1}, "mlsauce.StumpClassifier.fit": {"tf": 1}, "mlsauce.StumpClassifier.predict": {"tf": 1}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.LassoRegressor.fit": {"tf": 1}, "mlsauce.LassoRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor.update": {"tf": 1}, "mlsauce.RidgeRegressor.fit": {"tf": 1}, "mlsauce.RidgeRegressor.predict": {"tf": 1}, "mlsauce.LazyBoostingClassifier.fit": {"tf": 2}, "mlsauce.LazyBoostingClassifier.provide_models": {"tf": 2}, "mlsauce.LazyBoostingRegressor.fit": {"tf": 2}, "mlsauce.LazyBoostingRegressor.provide_models": {"tf": 2}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.update": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.update": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.fit": {"tf": 2}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 2}, "mlsauce.lazybooster.LazyBoostingRegressor.fit": {"tf": 2}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 2}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1}}, "df": 48}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.MultiTaskRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.multitaskregressor.MultiTaskRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 46}}}}, "n": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 2.23606797749979}, "mlsauce.LazyBoostingRegressor": {"tf": 2.23606797749979}, "mlsauce.set_config": {"tf": 1.4142135623730951}, "mlsauce.config_context": {"tf": 2}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 2.23606797749979}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 2.23606797749979}}, "df": 6}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.MultiTaskRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.multitaskregressor.MultiTaskRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}}, "df": 39}}, "l": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.set_config": {"tf": 1.4142135623730951}, "mlsauce.config_context": {"tf": 1}}, "df": 2}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.MultiTaskRegressor.set_score_request": {"tf": 1}, "mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.multitaskregressor.MultiTaskRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 39}}}, "r": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 2}}}}}}, "e": {"docs": {"mlsauce.LazyBoostingRegressor.provide_models": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.fit": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.MultiTaskRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.multitaskregressor.MultiTaskRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 39, "s": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.GenericBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.fit": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1}}, "df": 10}}}}}, "a": {"docs": {}, "df": 0, "k": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}}, "df": 8}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 2}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 3.3166247903554}, "mlsauce.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 3.3166247903554}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1.4142135623730951}}, "df": 4}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"mlsauce.LSBoostClassifier.update": {"tf": 1}, "mlsauce.LSBoostRegressor.update": {"tf": 1}, "mlsauce.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingClassifier.provide_models": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor.provide_models": {"tf": 1.4142135623730951}, "mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 2}, "mlsauce.booster.LSBoostClassifier.update": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.update": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}}, "df": 15}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.set_config": {"tf": 2.6457513110645907}, "mlsauce.config_context": {"tf": 2.8284271247461903}, "mlsauce.utils.Progbar": {"tf": 1.4142135623730951}, "mlsauce.utils.Progbar.update": {"tf": 1.4142135623730951}}, "df": 4}}, "d": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"mlsauce.utils.Progbar": {"tf": 1.4142135623730951}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}}, "df": 4, "s": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1.4142135623730951}}, "df": 4}}}}}}}}, "j": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 2, "s": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}}, "df": 6}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.config_context": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}}, "df": 5}}, "p": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 2}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1.4142135623730951}, "mlsauce.utils.Progbar": {"tf": 1.7320508075688772}}, "df": 15}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}, "mlsauce.utils.Progbar": {"tf": 1}}, "df": 5}}}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.MultiTaskRegressor.set_score_request": {"tf": 1}, "mlsauce.set_config": {"tf": 2.23606797749979}, "mlsauce.config_context": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.multitaskregressor.MultiTaskRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 39}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.AdaOpt.fit": {"tf": 1}, "mlsauce.AdaOpt.predict": {"tf": 1}, "mlsauce.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier.update": {"tf": 1}, "mlsauce.StumpClassifier.fit": {"tf": 1}, "mlsauce.StumpClassifier.predict": {"tf": 1}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.LassoRegressor.fit": {"tf": 1}, "mlsauce.LassoRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor.update": {"tf": 1}, "mlsauce.RidgeRegressor.fit": {"tf": 1}, "mlsauce.RidgeRegressor.predict": {"tf": 1}, "mlsauce.LazyBoostingClassifier.fit": {"tf": 2}, "mlsauce.LazyBoostingClassifier.provide_models": {"tf": 2}, "mlsauce.LazyBoostingRegressor.fit": {"tf": 2}, "mlsauce.LazyBoostingRegressor.provide_models": {"tf": 2}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.update": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.update": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.fit": {"tf": 2}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 2}, "mlsauce.lazybooster.LazyBoostingRegressor.fit": {"tf": 2}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 2}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1}}, "df": 48}}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}}, "df": 4, "u": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.LSBoostClassifier.update": {"tf": 1}, "mlsauce.LSBoostRegressor.update": {"tf": 1}, "mlsauce.LazyBoostingClassifier": {"tf": 1}, "mlsauce.LazyBoostingClassifier.provide_models": {"tf": 1}, "mlsauce.LazyBoostingRegressor": {"tf": 1}, "mlsauce.LazyBoostingRegressor.provide_models": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.update": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.update": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNc": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.utils.Progbar.update": {"tf": 1.4142135623730951}}, "df": 16, "s": {"docs": {"mlsauce.AdaOpt.fit": {"tf": 1}, "mlsauce.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.StumpClassifier.fit": {"tf": 1}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.LassoRegressor.fit": {"tf": 1}, "mlsauce.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.RidgeRegressor.fit": {"tf": 1}, "mlsauce.MultiTaskRegressor.fit": {"tf": 1}, "mlsauce.MultiTaskRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.get_config": {"tf": 1}, "mlsauce.set_config": {"tf": 1.4142135623730951}, "mlsauce.config_context": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1}, "mlsauce.multitaskregressor.MultiTaskRegressor.fit": {"tf": 1}, "mlsauce.multitaskregressor.MultiTaskRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1}, "mlsauce.utils.Progbar.update": {"tf": 1}}, "df": 25}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.config_context": {"tf": 1}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.MultiTaskRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.multitaskregressor.MultiTaskRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 37}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.set_config": {"tf": 1.4142135623730951}, "mlsauce.config_context": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1.7320508075688772}}, "df": 4}}}}}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.utils.Progbar": {"tf": 1}}, "df": 1}}}}}}, "y": {"docs": {"mlsauce.AdaOpt.fit": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier": {"tf": 5.656854249492381}, "mlsauce.LSBoostClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.update": {"tf": 1}, "mlsauce.StumpClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 2.8284271247461903}, "mlsauce.LSBoostRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.update": {"tf": 1}, "mlsauce.RidgeRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingClassifier": {"tf": 2.449489742783178}, "mlsauce.LazyBoostingClassifier.fit": {"tf": 2}, "mlsauce.LazyBoostingClassifier.provide_models": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor": {"tf": 2.8284271247461903}, "mlsauce.LazyBoostingRegressor.fit": {"tf": 2}, "mlsauce.LazyBoostingRegressor.provide_models": {"tf": 1.4142135623730951}, "mlsauce.MultiTaskRegressor.fit": {"tf": 1}, "mlsauce.MultiTaskRegressor.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 5.656854249492381}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.update": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 2.8284271247461903}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.update": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 2.449489742783178}, "mlsauce.lazybooster.LazyBoostingClassifier.fit": {"tf": 2}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 2.8284271247461903}, "mlsauce.lazybooster.LazyBoostingRegressor.fit": {"tf": 2}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 1.4142135623730951}, "mlsauce.multitaskregressor.MultiTaskRegressor.fit": {"tf": 1}, "mlsauce.multitaskregressor.MultiTaskRegressor.predict": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 2}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 2}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1.4142135623730951}}, "df": 46, "e": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.GenericBoostingClassifier": {"tf": 1}, "mlsauce.GenericBoostingRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1}}, "df": 10}, "t": {"docs": {"mlsauce.LazyBoostingClassifier.provide_models": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 1}}, "df": 2}}, "o": {"docs": {}, "df": 0, "u": {"docs": {"mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}}, "df": 2, "r": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 2}}}}, "x": {"docs": {"mlsauce.AdaOpt.fit": {"tf": 1.4142135623730951}, "mlsauce.AdaOpt.predict": {"tf": 1.4142135623730951}, "mlsauce.AdaOpt.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier": {"tf": 5.656854249492381}, "mlsauce.LSBoostClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.update": {"tf": 1}, "mlsauce.StumpClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 2.8284271247461903}, "mlsauce.LSBoostRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.update": {"tf": 1}, "mlsauce.RidgeRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingClassifier": {"tf": 2.449489742783178}, "mlsauce.LazyBoostingClassifier.fit": {"tf": 2}, "mlsauce.LazyBoostingClassifier.provide_models": {"tf": 1.4142135623730951}, "mlsauce.LazyBoostingRegressor": {"tf": 2.8284271247461903}, "mlsauce.LazyBoostingRegressor.fit": {"tf": 2}, "mlsauce.LazyBoostingRegressor.provide_models": {"tf": 1.4142135623730951}, "mlsauce.MultiTaskRegressor.fit": {"tf": 1}, "mlsauce.MultiTaskRegressor.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 5.656854249492381}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.update": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 2.8284271247461903}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.update": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 2.449489742783178}, "mlsauce.lazybooster.LazyBoostingClassifier.fit": {"tf": 2}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 1.4142135623730951}, "mlsauce.lazybooster.LazyBoostingRegressor": {"tf": 2.8284271247461903}, "mlsauce.lazybooster.LazyBoostingRegressor.fit": {"tf": 2}, "mlsauce.lazybooster.LazyBoostingRegressor.provide_models": {"tf": 1.4142135623730951}, "mlsauce.multitaskregressor.MultiTaskRegressor.fit": {"tf": 1}, "mlsauce.multitaskregressor.MultiTaskRegressor.predict": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 2.8284271247461903}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 2.8284271247461903}, "mlsauce.nonconformist.IcpRegressor": {"tf": 2}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1.4142135623730951}}, "df": 65}, "h": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, ":": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.MultiTaskRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.multitaskregressor.MultiTaskRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 37}}}}, "w": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "w": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.MultiTaskRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.multitaskregressor.MultiTaskRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 37}}}}}}}}}, "m": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.MultiTaskRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.GenericBoostingRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.multitaskregressor.MultiTaskRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 39}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1.7320508075688772}, "mlsauce.GenericBoostingClassifier": {"tf": 1.7320508075688772}, "mlsauce.GenericBoostingRegressor": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.7320508075688772}, "mlsauce.booster.GenericBoostingClassifier": {"tf": 1.7320508075688772}, "mlsauce.booster.GenericBoostingRegressor": {"tf": 1.7320508075688772}}, "df": 8}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {"mlsauce.StumpClassifier": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}, "g": {"docs": {}, "df": 0, "h": {"docs": {"mlsauce.nonconformist.QuantileRegErrFunc": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.LazyBoostingClassifier.provide_models": {"tf": 1}, "mlsauce.lazybooster.LazyBoostingClassifier.provide_models": {"tf": 1}}, "df": 2}}, "t": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "y": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc": {"tf": 1}}, "df": 1}, "q": {"docs": {"mlsauce.nonconformist.QuantileRegErrFunc": {"tf": 1}}, "df": 1}}}}}, "z": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 2.8284271247461903}, "mlsauce.booster.LSBoostClassifier": {"tf": 2.8284271247461903}}, "df": 2}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.LSBoostRegressor": {"tf": 2.8284271247461903}, "mlsauce.LazyBoostingClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 2.8284271247461903}, "mlsauce.lazybooster.LazyBoostingClassifier": {"tf": 1.4142135623730951}}, "df": 4}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.nonconformist.QuantileRegErrFunc": {"tf": 1}}, "df": 1}}}}}}}}}}}, "pipeline": ["trimmer"], "_isPrebuiltIndex": true}; // mirrored in build-search-index.js (part 1) // Also split on html tags. this is a cheap heuristic, but good enough. diff --git a/mlsauce/booster/_booster_classifier.py b/mlsauce/booster/_booster_classifier.py index 9c69de6..0d395a8 100644 --- a/mlsauce/booster/_booster_classifier.py +++ b/mlsauce/booster/_booster_classifier.py @@ -511,9 +511,9 @@ def update(self, X, y, eta=0.9): y: float = [n_samples=1] Target value. - + eta: float - Inverse power applied to number of observations + Inverse power applied to number of observations (defines a learning rate). Returns: @@ -540,10 +540,10 @@ def update(self, X, y, eta=0.9): seed=self.seed, ), ) - ) - + ) + self.obj = boosterc.update_booster( - self.obj, np.asarray(X, order="C"), np.asarray(y, order="C"), eta + self.obj, np.asarray(X, order="C"), np.asarray(y, order="C"), eta ) return self diff --git a/mlsauce/booster/_booster_regressor.py b/mlsauce/booster/_booster_regressor.py index 71f8b71..09a2ec5 100644 --- a/mlsauce/booster/_booster_regressor.py +++ b/mlsauce/booster/_booster_regressor.py @@ -373,13 +373,13 @@ def predict(self, X, level=95, method=None, **kwargs): self.y_ = None preds = self.pi.predict(X, return_pi=True) return preds - #print(f"\n in predict self: {self} \n") - #print(f"\n in predict self.obj: {self.obj} \n") - #try: + # print(f"\n in predict self: {self} \n") + # print(f"\n in predict self.obj: {self.obj} \n") + # try: return boosterc.predict_booster_regressor( self.obj, np.asarray(X, order="C") ) - #except ValueError: + # except ValueError: # pass def update(self, X, y, eta=0.9): @@ -393,9 +393,9 @@ def update(self, X, y, eta=0.9): y: float = [n_samples=1] Target value. - + eta: float - Inverse power applied to number of observations + Inverse power applied to number of observations (defines a learning rate). Returns: @@ -422,9 +422,8 @@ def update(self, X, y, eta=0.9): seed=self.seed, ), ) - ) + ) - self.obj = boosterc.update_booster( self.obj, np.asarray(X, order="C"), np.asarray(y, order="C"), eta ) diff --git a/mlsauce/lazybooster/config.py b/mlsauce/lazybooster/config.py index f297f97..5102a10 100644 --- a/mlsauce/lazybooster/config.py +++ b/mlsauce/lazybooster/config.py @@ -18,12 +18,12 @@ "IsotonicRegression", "MLPRegressor", "KernelRidge", - #"MultiOutputRegressor", - #"MultiTaskElasticNet", + # "MultiOutputRegressor", + # "MultiTaskElasticNet", "MultiTaskElasticNetCV", - #"MultiTaskLasso", + # "MultiTaskLasso", "MultiTaskLassoCV", - "NuSVR", + "NuSVR", "OrthogonalMatchingPursuit", "OrthogonalMatchingPursuitCV", "PLSCanonical", @@ -49,7 +49,7 @@ MTASKREGRESSORS = [ ( - "GenericBooster(MultiTask(" + est[0] + "))", + "GenericBooster(MultiTask(" + est[0] + "))", partial(MultiTaskRegressor, regr=est[1]()), ) for est in all_estimators() diff --git a/mlsauce/lazybooster/lazyboosterclassif.py b/mlsauce/lazybooster/lazyboosterclassif.py index a82cde3..b76ceab 100644 --- a/mlsauce/lazybooster/lazyboosterclassif.py +++ b/mlsauce/lazybooster/lazyboosterclassif.py @@ -343,7 +343,10 @@ def fit(self, X_train, X_test, y_train, y_test, **kwargs): and (est[0] in self.estimators) ) ] + [ - ("GBoostClassifier(MultiTask(" + est[0] + "))", partial(MultiTaskRegressor, regr=est[1]())) + ( + "GBoostClassifier(MultiTask(" + est[0] + "))", + partial(MultiTaskRegressor, regr=est[1]()), + ) for est in all_estimators() if ( issubclass(est[1], RegressorMixin) @@ -352,7 +355,7 @@ def fit(self, X_train, X_test, y_train, y_test, **kwargs): ] if self.preprocess is True: - + if self.n_jobs is None: for name, model in tqdm(self.classifiers): # do parallel exec @@ -376,7 +379,9 @@ def fit(self, X_train, X_test, y_train, y_test, **kwargs): fitted_clf = GenericBoostingClassifier( {**other_args, **kwargs}, verbose=self.verbose, - base_model=model(random_state=self.random_state), + base_model=model( + random_state=self.random_state + ), ) else: @@ -401,7 +406,9 @@ def fit(self, X_train, X_test, y_train, y_test, **kwargs): pipe.fit(X_train, y_train) self.models_[name] = pipe y_pred = pipe.predict(X_test) - accuracy = accuracy_score(y_test, y_pred, normalize=True) + accuracy = accuracy_score( + y_test, y_pred, normalize=True + ) b_accuracy = balanced_accuracy_score(y_test, y_pred) f1 = f1_score(y_test, y_pred, average="weighted") try: @@ -409,7 +416,9 @@ def fit(self, X_train, X_test, y_train, y_test, **kwargs): except Exception as exception: roc_auc = None if self.ignore_warnings is False: - print("ROC AUC couldn't be calculated for " + name) + print( + "ROC AUC couldn't be calculated for " + name + ) print(exception) names.append(name) Accuracy.append(accuracy) @@ -452,15 +461,24 @@ def fit(self, X_train, X_test, y_train, y_test, **kwargs): print(exception) else: - - # train_model(self, name, model, X_train, y_train, X_test, y_test, - #use_preprocessing=False, preprocessor=None, + + # train_model(self, name, model, X_train, y_train, X_test, y_test, + # use_preprocessing=False, preprocessor=None, # **kwargs): - results = Parallel(n_jobs=self.n_jobs)(delayed(self.train_model)( - name, model, X_train, y_train, X_test, y_test, - use_preprocessing=True, preprocessor=preprocessor, **kwargs - ) for name, model in tqdm(self.classifiers) - ) + results = Parallel(n_jobs=self.n_jobs)( + delayed(self.train_model)( + name, + model, + X_train, + y_train, + X_test, + y_test, + use_preprocessing=True, + preprocessor=preprocessor, + **kwargs + ) + for name, model in tqdm(self.classifiers) + ) Accuracy = [res["accuracy"] for res in results] B_Accuracy = [res["balanced_accuracy"] for res in results] ROC_AUC = [res["roc_auc"] for res in results] @@ -470,11 +488,12 @@ def fit(self, X_train, X_test, y_train, y_test, **kwargs): if self.custom_metric is not None: CUSTOM_METRIC = [res["custom_metric"] for res in results] if self.predictions: - predictions = {res["name"]: res["predictions"] for res in results} - + predictions = { + res["name"]: res["predictions"] for res in results + } else: # no preprocessing - + if self.n_jobs is None: for name, model in tqdm(self.classifiers): # do parallel exec @@ -482,21 +501,27 @@ def fit(self, X_train, X_test, y_train, y_test, **kwargs): try: if "random_state" in model().get_params().keys(): fitted_clf = GenericBoostingClassifier( - base_model=model(random_state=self.random_state), + base_model=model( + random_state=self.random_state + ), verbose=self.verbose, **kwargs ) else: fitted_clf = GenericBoostingClassifier( - base_model=model(), verbose=self.verbose, **kwargs + base_model=model(), + verbose=self.verbose, + **kwargs ) fitted_clf.fit(X_train, y_train) self.models_[name] = fitted_clf y_pred = fitted_clf.predict(X_test) - accuracy = accuracy_score(y_test, y_pred, normalize=True) + accuracy = accuracy_score( + y_test, y_pred, normalize=True + ) b_accuracy = balanced_accuracy_score(y_test, y_pred) f1 = f1_score(y_test, y_pred, average="weighted") try: @@ -504,7 +529,9 @@ def fit(self, X_train, X_test, y_train, y_test, **kwargs): except Exception as exception: roc_auc = None if self.ignore_warnings is False: - print("ROC AUC couldn't be calculated for " + name) + print( + "ROC AUC couldn't be calculated for " + name + ) print(exception) names.append(name) Accuracy.append(accuracy) @@ -546,13 +573,21 @@ def fit(self, X_train, X_test, y_train, y_test, **kwargs): print(name + " model failed to execute") print(exception) - else: + else: - results = Parallel(n_jobs=self.n_jobs)(delayed(self.train_model)( - name, model, X_train, y_train, X_test, y_test, - use_preprocessing=False, **kwargs - ) for name, model in tqdm(self.classifiers) - ) + results = Parallel(n_jobs=self.n_jobs)( + delayed(self.train_model)( + name, + model, + X_train, + y_train, + X_test, + y_test, + use_preprocessing=False, + **kwargs + ) + for name, model in tqdm(self.classifiers) + ) Accuracy = [res["accuracy"] for res in results] B_Accuracy = [res["balanced_accuracy"] for res in results] ROC_AUC = [res["roc_auc"] for res in results] @@ -562,8 +597,9 @@ def fit(self, X_train, X_test, y_train, y_test, **kwargs): if self.custom_metric is not None: CUSTOM_METRIC = [res["custom_metric"] for res in results] if self.predictions: - predictions = {res["name"]: res["predictions"] for res in results} - + predictions = { + res["name"]: res["predictions"] for res in results + } if self.custom_metric is None: scores = pd.DataFrame( @@ -643,10 +679,18 @@ def provide_models(self, X_train, X_test, y_train, y_test): return self.models_ - - def train_model(self, name, model, X_train, y_train, X_test, y_test, - use_preprocessing=False, preprocessor=None, - **kwargs): + def train_model( + self, + name, + model, + X_train, + y_train, + X_test, + y_test, + use_preprocessing=False, + preprocessor=None, + **kwargs + ): """ Function to train a single model and return its results. """ @@ -654,7 +698,10 @@ def train_model(self, name, model, X_train, y_train, X_test, y_test, # Handle n_jobs parameter try: - if "n_jobs" in model().get_params().keys() and "LogisticRegression" not in name: + if ( + "n_jobs" in model().get_params().keys() + and "LogisticRegression" not in name + ): other_args["n_jobs"] = self.n_jobs except Exception: pass @@ -688,13 +735,21 @@ def train_model(self, name, model, X_train, y_train, X_test, y_test, ] ) if self.verbose > 0: - print("\n Fitting pipeline with preprocessing for " + name + " model...") + print( + "\n Fitting pipeline with preprocessing for " + + name + + " model..." + ) pipe.fit(X_train, y_train) y_pred = pipe.predict(X_test) else: # Case with no preprocessing if self.verbose > 0: - print("\n Fitting model without preprocessing for " + name + " model...") + print( + "\n Fitting model without preprocessing for " + + name + + " model..." + ) y_pred = fitted_clf.predict(X_test) accuracy = accuracy_score(y_test, y_pred, normalize=True) @@ -728,4 +783,4 @@ def train_model(self, name, model, X_train, y_train, X_test, y_test, if self.ignore_warnings is False: print(name + " model failed to execute") print(exception) - return None \ No newline at end of file + return None diff --git a/mlsauce/lazybooster/lazyboosterregression.py b/mlsauce/lazybooster/lazyboosterregression.py index a75f6c5..2957383 100644 --- a/mlsauce/lazybooster/lazyboosterregression.py +++ b/mlsauce/lazybooster/lazyboosterregression.py @@ -19,8 +19,7 @@ from sklearn.compose import ColumnTransformer from sklearn.base import RegressorMixin from sklearn.metrics import ( - r2_score, - root_mean_squared_error, + r2_score ) from .config import REGRESSORS from ..booster import GenericBoostingRegressor @@ -74,7 +73,7 @@ ) -# Helper function +# Helper functions def get_card_split(df, cols, n=11): @@ -87,6 +86,9 @@ def get_card_split(df, cols, n=11): def adjusted_rsquared(r2, n, p): return 1 - (1 - r2) * ((n - 1) / (n - p - 1)) +def root_mean_squared_error(y_true, y_pred): + return np.sqrt(np.mean((y_true - y_pred) ** 2)) + class LazyBoostingRegressor(RegressorMixin): """ @@ -334,7 +336,7 @@ def fit(self, X_train, X_test, y_train, y_test, **kwargs): ] if self.preprocess is True: - + if self.n_jobs is None: for name, regr in tqdm(self.regressors): # do parallel exec @@ -398,30 +400,55 @@ def fit(self, X_train, X_test, y_train, y_test, **kwargs): if self.ignore_warnings is False: print(name + " model failed to execute") print(exception) - - else: - results = Parallel(n_jobs=self.n_jobs)(delayed(self.train_model)( - name, model, X_train, y_train, X_test, y_test, - use_preprocessing=True, preprocessor=preprocessor, **kwargs - ) for name, model in tqdm(self.regressors) - ) - R2 = [result["r_squared"] for result in results if result is not None] - ADJR2 = [result["adj_rsquared"] for result in results if result is not None] - RMSE = [result["rmse"] for result in results if result is not None] - TIME = [result["time"] for result in results if result is not None] - names = [result["name"] for result in results if result is not None] + else: + + results = Parallel(n_jobs=self.n_jobs)( + delayed(self.train_model)( + name, + model, + X_train, + y_train, + X_test, + y_test, + use_preprocessing=True, + preprocessor=preprocessor, + **kwargs + ) + for name, model in tqdm(self.regressors) + ) + R2 = [ + result["r_squared"] + for result in results + if result is not None + ] + ADJR2 = [ + result["adj_rsquared"] + for result in results + if result is not None + ] + RMSE = [ + result["rmse"] for result in results if result is not None + ] + TIME = [ + result["time"] for result in results if result is not None + ] + names = [ + result["name"] for result in results if result is not None + ] if self.custom_metric: CUSTOM_METRIC = [ - result["custom_metric"] for result in results if result is not None + result["custom_metric"] + for result in results + if result is not None ] if self.predictions: predictions = { - result["name"]: result["predictions"] for result in results if result is not None + result["name"]: result["predictions"] + for result in results + if result is not None } - - else: # self.preprocess is False; no preprocessing if self.n_jobs is None: @@ -476,29 +503,54 @@ def fit(self, X_train, X_test, y_train, y_test, **kwargs): if self.ignore_warnings is False: print(name + " model failed to execute") print(exception) - - else: - - results = Parallel(n_jobs=self.n_jobs)(delayed(self.train_model)( - name, model, X_train, y_train, X_test, y_test, - use_preprocessing=False, **kwargs - ) for name, model in tqdm(self.regressors) - ) - R2 = [result["r_squared"] for result in results if result is not None] - ADJR2 = [result["adj_rsquared"] for result in results if result is not None] - RMSE = [result["rmse"] for result in results if result is not None] - TIME = [result["time"] for result in results if result is not None] - names = [result["name"] for result in results if result is not None] + + else: + + results = Parallel(n_jobs=self.n_jobs)( + delayed(self.train_model)( + name, + model, + X_train, + y_train, + X_test, + y_test, + use_preprocessing=False, + **kwargs + ) + for name, model in tqdm(self.regressors) + ) + R2 = [ + result["r_squared"] + for result in results + if result is not None + ] + ADJR2 = [ + result["adj_rsquared"] + for result in results + if result is not None + ] + RMSE = [ + result["rmse"] for result in results if result is not None + ] + TIME = [ + result["time"] for result in results if result is not None + ] + names = [ + result["name"] for result in results if result is not None + ] if self.custom_metric: CUSTOM_METRIC = [ - result["custom_metric"] for result in results if result is not None + result["custom_metric"] + for result in results + if result is not None ] if self.predictions: predictions = { - result["name"]: result["predictions"] for result in results if result is not None + result["name"]: result["predictions"] + for result in results + if result is not None } - scores = { "Model": names, "Adjusted R-Squared": ADJR2, @@ -568,15 +620,27 @@ def provide_models(self, X_train, X_test, y_train, y_test): return self.models_ - def train_model(self, name, regr, X_train, y_train, X_test, y_test, - use_preprocessing=False, preprocessor=None, **kwargs): + def train_model( + self, + name, + regr, + X_train, + y_train, + X_test, + y_test, + use_preprocessing=False, + preprocessor=None, + **kwargs + ): """ Function to train a single regression model and return its results. """ start = time.time() try: - model = GenericBoostingRegressor(base_model=regr(), verbose=self.verbose, **kwargs) + model = GenericBoostingRegressor( + base_model=regr(), verbose=self.verbose, **kwargs + ) if use_preprocessing and preprocessor is not None: pipe = Pipeline( @@ -586,20 +650,30 @@ def train_model(self, name, regr, X_train, y_train, X_test, y_test, ] ) if self.verbose > 0: - print("\n Fitting boosted " + name + " model with preprocessing...") + print( + "\n Fitting boosted " + + name + + " model with preprocessing..." + ) pipe.fit(X_train, y_train) y_pred = pipe.predict(X_test) fitted_model = pipe else: # Case with no preprocessing if self.verbose > 0: - print("\n Fitting boosted " + name + " model without preprocessing...") + print( + "\n Fitting boosted " + + name + + " model without preprocessing..." + ) model.fit(X_train, y_train) y_pred = model.predict(X_test) fitted_model = model r_squared = r2_score(y_test, y_pred) - adj_rsquared = adjusted_rsquared(r_squared, X_test.shape[0], X_test.shape[1]) + adj_rsquared = adjusted_rsquared( + r_squared, X_test.shape[0], X_test.shape[1] + ) rmse = root_mean_squared_error(y_test, y_pred) custom_metric = None @@ -622,4 +696,3 @@ def train_model(self, name, regr, X_train, y_train, X_test, y_test, print(name + " model failed to execute") print(exception) return None - diff --git a/mlsauce/multitaskregressor/__init__.py b/mlsauce/multitaskregressor/__init__.py index 55dc1a6..032172d 100644 --- a/mlsauce/multitaskregressor/__init__.py +++ b/mlsauce/multitaskregressor/__init__.py @@ -1,3 +1,3 @@ from .mtaskregr import MultiTaskRegressor -__all__ = ['MultiTaskRegressor'] \ No newline at end of file +__all__ = ["MultiTaskRegressor"] diff --git a/mlsauce/multitaskregressor/mtaskregr.py b/mlsauce/multitaskregressor/mtaskregr.py index 7bd41d3..a4d5384 100644 --- a/mlsauce/multitaskregressor/mtaskregr.py +++ b/mlsauce/multitaskregressor/mtaskregr.py @@ -4,6 +4,7 @@ from sklearn.base import BaseEstimator, RegressorMixin from ..utils import is_multitask_estimator + class MultiTaskRegressor(BaseEstimator, RegressorMixin): """ A class for multi-task regression @@ -19,8 +20,11 @@ class MultiTaskRegressor(BaseEstimator, RegressorMixin): A list containing the fitted regressor objects """ + def __init__(self, regr): - assert is_multitask_estimator(regr) == False, "The regressor is already a multi-task regressor" + assert ( + is_multitask_estimator(regr) == False + ), "The regressor is already a multi-task regressor" self.regr = regr self.objs = [] @@ -36,12 +40,12 @@ def fit(self, X, y): The target values """ - n_tasks = y.shape[1] + n_tasks = y.shape[1] assert n_tasks > 1, "The number of columns in y must be greater than 1" - self.n_outputs_ = n_tasks - try: + self.n_outputs_ = n_tasks + try: for i in range(n_tasks): - self.regr.fit(X, y.iloc[:, i].values) + self.regr.fit(X, y.iloc[:, i].values) self.objs.append(deepcopy(self.regr)) except Exception: for i in range(n_tasks): @@ -68,4 +72,4 @@ def predict(self, X): y_pred = np.zeros((X.shape[0], self.n_outputs_)) for i in range(self.n_outputs_): y_pred[:, i] = self.objs[i].predict(X) - return y_pred \ No newline at end of file + return y_pred diff --git a/mlsauce/utils/__init__.py b/mlsauce/utils/__init__.py index 184a574..99dec6d 100644 --- a/mlsauce/utils/__init__.py +++ b/mlsauce/utils/__init__.py @@ -6,7 +6,7 @@ is_float, is_factor, check_and_install, - is_multitask_estimator + is_multitask_estimator, ) from .progress_bar import Progbar from .get_beta import get_beta @@ -21,5 +21,5 @@ "Progbar", "get_beta", "check_and_install", - "is_multitask_estimator" + "is_multitask_estimator", ] diff --git a/mlsauce/utils/misc/__init__.py b/mlsauce/utils/misc/__init__.py index 3b55c32..6fce534 100644 --- a/mlsauce/utils/misc/__init__.py +++ b/mlsauce/utils/misc/__init__.py @@ -5,7 +5,7 @@ is_float, is_factor, check_and_install, - is_multitask_estimator + is_multitask_estimator, ) @@ -16,5 +16,5 @@ "is_float", "is_factor", "check_and_install", - "is_multitask_estimator" + "is_multitask_estimator", ] diff --git a/mlsauce/utils/misc/misc.py b/mlsauce/utils/misc/misc.py index 677fa1c..d188792 100644 --- a/mlsauce/utils/misc/misc.py +++ b/mlsauce/utils/misc/misc.py @@ -134,8 +134,10 @@ def install_package(package_name): [sys.executable, "-m", "pip", "install", package_name] ) + def is_multitask_estimator(estimator): - return estimator._get_tags().get('multioutput', False) + return estimator._get_tags().get("multioutput", False) + def check_and_install(package_name): """Check if a package is installed; if not, install it.""" diff --git a/setup.py b/setup.py index 0c92809..188ab86 100644 --- a/setup.py +++ b/setup.py @@ -37,7 +37,7 @@ MAINTAINER_EMAIL = 'thierry.moudiki@gmail.com' LICENSE = 'BSD3 Clause Clear' -__version__ = '0.22.3' +__version__ = '0.22.4' VERSION = __version__