forked from NVIDIA/UnsupervisedLandmarkLearning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdump_preds.py
158 lines (131 loc) · 6.53 KB
/
dump_preds.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
""" Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
This script is for dumping the gaussian landmark predictions,
provided the dataset and trained landmark model checkpoint.
This is necessary for evaluating the landmark quality (on BBC)
as well as for performing the video manipulation tasks.
"""
import torch
import argparse
import pickle
import os
import numpy as np
from torch.utils.data import DataLoader
from dataloaders.bbc_pose_dataset import BBCPoseLandmarkEvalDataset
from utils.utils import parse_all_args, load_weights, get_model
from copy import deepcopy
def setup_dataloaders(config):
# setup the dataset
num_workers = config['num_workers']
val_dataloader = None
# For both video manipulation and landmark evaluation (regression to annotated keypoints)
if config['dataset'] == 'bbc_pose':
train_dataset = BBCPoseLandmarkEvalDataset(config, 'train')
val_dataset = BBCPoseLandmarkEvalDataset(config, 'val')
test_dataset = BBCPoseLandmarkEvalDataset(config, 'test')
# validation set for model selection based on landmark evaluation.
val_dataloader = DataLoader(val_dataset, batch_size=config['batch_size'],
shuffle=False, num_workers=num_workers)
else:
print("unrecognized dataset!")
exit(1)
train_dataloader = DataLoader(train_dataset, batch_size=config['batch_size'],
shuffle=False, num_workers=num_workers)
test_dataloader = DataLoader(test_dataset, batch_size=config['batch_size'],
shuffle=False, num_workers=num_workers)
return train_dataloader, test_dataloader, val_dataloader
def convert_encoding(config, model, dataloader):
"""
iterate the data and extract the tensors we need
"""
all_preds = []
all_preds_cov = []
all_preds_cov_values = []
all_vid_idx = []
all_frame_idx = []
all_gt_kpts = []
all_bboxes = []
print('length of dataset: ', len(dataloader))
for cnt, curr_batch in enumerate(dataloader):
if cnt % 10 == 0:
print('cnt', cnt, 'total', len(dataloader))
# im will be b x c x 128 x 128
# gt_keypoints will be b x 10
# this avoids a shared memory problem when num_workers > 0 (hopefully)
curr_batch_cpy = deepcopy(curr_batch)
del curr_batch
curr_batch = curr_batch_cpy
vid_idx = deepcopy(curr_batch['vid_idx']).numpy()
frame_idx = curr_batch['img_idx'].numpy()
im = deepcopy(curr_batch['input_a'])
if config['dataset'] == 'bbc_pose':
all_gt_kpts.append(curr_batch['gt_kpts'].numpy())
all_bboxes.append(curr_batch['bbox'].numpy())
output_dict = model(im.cuda())
heatmap_centers = output_dict['vis_centers']
heatmap_centers_x = heatmap_centers[0].cpu()
heatmap_centers_y = heatmap_centers[1].cpu()
heatmap_cov = output_dict['vis_cov'].cpu()
heatmap_centers_cat = torch.cat((heatmap_centers_x, heatmap_centers_y), 1)
all_vid_idx.append(vid_idx)
all_frame_idx.append(frame_idx)
all_preds.append(heatmap_centers_cat.cpu().detach().numpy().astype('float16'))
# if cov is fitted, save original and after decomposing
if not config['use_identity_covariance']:
cov_chol = torch.cholesky(heatmap_cov)
all_preds_cov_values.append(cov_chol.cpu().detach().numpy().astype('float16'))
all_preds_cov.append(heatmap_cov.detach().numpy().astype('float16'))
all_preds_cat = np.concatenate(all_preds, 0)
all_vid_idx = np.concatenate(all_vid_idx, 0)
all_frame_idx = np.concatenate(all_frame_idx, 0)
# currently only bbc has GT keypoints for evaluation
if config['dataset'] == 'bbc_pose':
all_bboxes = np.concatenate(all_bboxes, 0)
all_gt_kpts = np.concatenate(all_gt_kpts, 0)
if not config['use_identity_covariance']:
all_preds_cov_values = np.concatenate(all_preds_cov_values, 0)
all_preds_cov = np.concatenate(all_preds_cov, 0)
return all_preds_cat, all_preds_cov, all_preds_cov_values, all_vid_idx, all_frame_idx, all_bboxes, all_gt_kpts
def save_files(x, x_cov, x_cov_values, vid, frame, bboxes, gt, out_dir):
results = {}
if not os.path.exists(out_dir):
os.makedirs(out_dir)
outname = os.path.join(out_dir, 'gaussians.pkl3')
results['predictions_mean'] = x
results['predictions_cov'] = x_cov
results['predictions_cov_decomp'] = x_cov_values
results['vid'] = vid
results['frame'] = frame
results['bboxes'] = bboxes
results['gt'] = gt
with open(outname, 'wb') as handle:
pickle.dump(results, handle, protocol=3)
def eval_encoding(config, model, train_dataloader, test_dataloader, val_dataloader):
preds_cat, preds_cov, preds_cov_values, vid_idx, frame_idx, bboxes, gt = convert_encoding(config, model, test_dataloader)
# multiply test ground truth keypoints by 0 to avoid any potential leakage of test annotations
save_files(preds_cat, preds_cov, preds_cov_values, vid_idx, frame_idx, bboxes, 0*gt, config['gaussians_save_path'] + '/test')
preds_cat, preds_cov, preds_cov_values, vid_idx, frame_idx, bboxes, gt = convert_encoding(config, model, train_dataloader)
save_files(preds_cat, preds_cov, preds_cov_values, vid_idx, frame_idx, bboxes, gt, config['gaussians_save_path'] + '/train')
if val_dataloader is not None:
# multiply val ground truth keypoints by 0 to avoid any potential leakage of validation set annotations
preds_cat, preds_cov, preds_cov_values, vid_idx, frame_idx, bboxes, gt = convert_encoding(config, model, val_dataloader)
save_files(preds_cat, preds_cov, preds_cov_values, vid_idx, frame_idx, bboxes, 0*gt, config['gaussians_save_path'] + '/val')
def main(config):
print(config)
# initialize model
model = get_model(config)
# load weights from checkpoint
state_dict = load_weights(config['resume_ckpt'])
model.load_state_dict(state_dict)
model.cuda()
model.eval()
train_dataloader, test_dataloader, val_dataloader = setup_dataloaders(config)
eval_encoding(config, model, train_dataloader, test_dataloader, val_dataloader)
if __name__ == '__main__':
# load yaml
parser = argparse.ArgumentParser(description='')
parser.add_argument('--config', type=str)
parser.add_argument('--gaussians_save_path', type=str)
config, args = parse_all_args(parser, 'configs/defaults.yaml', return_args=True)
config['gaussians_save_path'] = args.gaussians_save_path
config['no_verbose'] = True
main(config)