Skip to content

Latest commit

 

History

History
131 lines (87 loc) · 2.84 KB

README.md

File metadata and controls

131 lines (87 loc) · 2.84 KB

Brain MRI Segmentation (Unet model)

Table of contents

Description

Repository contains whole training pipeline using own implementation of unet model on Brain MRI segmentation dataset. Main difference between original paper model and this implementation is droput replacement with batch normalization. Purpose: create segmentation model for anomalous brain parts detection -> helping doctors with expertise. Simple api included.

Files structure:

  1. src (all scripts)
    • data_preparation.py - loading whole data/specific patient and spliting into test train
    • evaluate_model.py - evaluate model with default model metric (binary iou)
    • predict.py - make prediction on data and save images in output folder
    • unet_model_recipe.py - whole unet model architecture
    • unet_training.py - model training pipeline
    • api (fastapi, one prediction endpoint)
      • api.py - simple API for making predictions on brain images, outputs segmentation mask (without thresholding)
      • api_test.py - test of API, making call with image from dataset
  2. notebooks (notebooks and analysis)
    • model_predictions_analysis.ipynb - check model predictions, specific patient output
  3. models (pretrained models)
    • unet_brain_segmentation.h5 - pretrained unet model for brain segmentation
  4. data (raw data)

Getting Started

Quick start

Tested with python 3.10.4

Libraries used for training: - tensorflow - scikit-learn - numpy - matplotlib

Libraries used for api: - fastapi - uvicorn

You can install all using pip.

pip install -r requirements.txt

Download dataset from Kaggle https://www.kaggle.com/datasets/mateuszbuda/lgg-mri-segmentation

Default data structure looks like this:

data

-> kaggle_3m

--->patient_1

--->patient_2

--->...

Usage

Scripts

Model training:

python src/unet_training.py

Model evaluation:

python src/evaluate_model.py

Make prediction on whole dataset:

python src/predict.py

Run API server:

python src/api/api.py

Test API endpoint (make prediction):

python src/api/api_test.py

Dockerfile

Simple dockerfile for api server running.

Build

docker build -t brain_segmentation .

Run (in background)

docker run -d -it --name brain_segmentation-run -p 8000:8000 brain_segmentation

Example output

Binary IoU metric for unet

Train set: 0.9047

Test set: 0.8806

One patient data (0.5 > threshold)

Example one patient data