-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmodel.py
586 lines (487 loc) · 24.5 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
from torch.utils.data import DataLoader, TensorDataset, SequentialSampler, RandomSampler
from tqdm import tqdm_notebook, tqdm
import math
import os
import random
import collections
import numpy as np
import torch
from torch import nn
from torch.nn import functional as F
from torch import optim
from torch.optim.lr_scheduler import LambdaLR
from torch.utils.tensorboard import SummaryWriter
from utils import load_vocab
class Config(object):
def __init__(self):
self.num_epoch = 5
self.learning_rate = 0.01
self.weight_decay = 1e-4
self.adam_eps = 1e-8
self.batch_size = 128
self.eval_batch_size = 128
self.nstep_logging = 500
self.warmup_steps= 2000
self.max_restart = 4
self.window_size = 15
self.seed = 150
self.max_sent = self.window_size * 2 + 1
self.vocab_word_size = 14078
self.fine_tune=True
self.EPAD_ID = 0
self.WPAD_ID = 0
self.LAB_PAD_ID = -100
self.EPAD = 'PAD'
self.WPAD = 'PAD'
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
self.dir_train = 'data/train.json'
self.dir_dev = 'data/dev.json'
self.test_dir = 'data/test.json'
self.dir_word2vec = 'data/trimmed_word2vec_new.txt'
self.dir_data = 'data/'
self.output_dir = 'results/gcn_2018/'
self.load_data()
try:
print('Currently working on ', torch.cuda.get_device_name(0))
except:
pass
def load_data(self):
vocab_event = load_vocab(self.dir_data + 'vocab_event.txt', hasPad=False)
self.vocab_event = dict({'O': 0})
for key in vocab_event:
if key[2:] not in self.vocab_event and key[2:] != '':
self.vocab_event.update({key[2:]: len(self.vocab_event)})
self.vocab_ner = load_vocab(self.dir_data + 'vocab_ner_tail.txt')
self.num_class_events = len(self.vocab_event)
self.num_class_entities = len(self.vocab_ner)
def set_seed(self, seed=None):
if seed is None:
random.seed(self.seed)
np.random.seed(self.seed)
torch.manual_seed(self.seed)
torch.cuda.manual_seed(self.seed)
else:
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
def get_linear_schedule_with_warmup(optimizer, num_warmup_steps, num_training_steps, last_epoch=-1):
""" Create a schedule with a learning rate that decreases linearly after
linearly increasing during a warmup period.
"""
def lr_lambda(current_step):
if current_step < num_warmup_steps:
return float(current_step) / float(max(1, num_warmup_steps))
return max(0.0, float(num_training_steps - current_step) / float(max(1, num_training_steps - num_warmup_steps)))
return LambdaLR(optimizer, lr_lambda, last_epoch)
class AttentionLayer(nn.Module):
def __init__(self, D, H=128, return_sequences=False):
'''
A single convolutional unit
:param D: int, input feature dim
:param H: int, hidden feature dim
:param return_sequences: boolean, whether return sequence
'''
super(AttentionLayer, self).__init__()
# Config copying
self.H = H
self.return_sequences = return_sequences
self.D = D
self.W1 = nn.Linear(D, H)
self.W2 = nn.Linear(D, H)
self.V = nn.Linear(H, 1)
def softmax_mask(self, x, mask):
'''
Softmax with mask
:param x: torch.FloatTensor, logits, [batch_size, seq_len, seq_len, 1]
:param mask: torch.ByteTensor, masks for sentences, [batch_size, seq_len]
:return: torch.FloatTensor, probabilities, [batch_size, seq_len, seq_len, 1]
'''
x_exp = torch.exp(x)
if mask is not None:
mask = mask.unsqueeze(1).unsqueeze(-1)
x_exp = x_exp * mask.float()
x_sum = torch.sum(x_exp, dim=-1, keepdim=True) + 1e-16
x_exp /= x_sum # batch, seq1, seq2,1
return x_exp
def forward(self, x_text, mask, x_attention=None):
'''
Forward this module
:param x_text: torch.FloatTensor, input features, [batch_size, seq_len, D]
:param mask: torch.ByteTensor, masks for features, [batch_size, seq_len]
:param x_attention: torch.FloatTensor, input features No. 2 to attent with x_text, [batch_size, seq_len, D]
:return: torch.FloatTensor, output features, if return sequences, output shape is [batch, SEQ_LEN, D];
otherwise output shape is [batch, D]
'''
if x_attention is None:
x_attention = x_text
x_text = x_text.unsqueeze(2) # batch, seq, 1, dim ~ query
x_attention = x_attention.unsqueeze(1) # batch, 1 ,seq, dim ~ key, value
scores = self.V(torch.tanh(self.W1(x_attention) + self.W2(x_test))) # batch, seq, seq, 1
scores_masked = self.softmax_mask(scores, mask)
output = (x_attention * scores_masked).sum(-2)
if not self.return_sequences:
output = torch.sum(output, -2)
return output
class GCNLayer(nn.Module):
"""
Simple GCN layer, similar to https://arxiv.org/abs/1609.02907
"""
def __init__(self, in_features, out_features, bias=True):
super(GCNLayer, self).__init__()
self.in_features = in_features
self.out_features = out_features
# self.linear = nn.Linear(in_features, out_features)
self.weight = nn.parameter.Parameter(torch.FloatTensor(out_features, in_features))
if bias:
self.bias = nn.parameter.Parameter(torch.FloatTensor(out_features))
else:
self.register_parameter('bias', None)
self.reset_parameters()
def reset_parameters(self):
stdv = 1. / math.sqrt(self.weight.size(1))
self.weight.data.uniform_(-stdv, stdv)
if self.bias is not None:
self.bias.data.uniform_(-stdv, stdv)
def forward(self, input, adj):
if self.bias is not None:
support = F.linear(input, self.weight, self.bias)
else:
support = F.linear(input, self.weight)
output = torch.bmm(adj, support)
return output
def __repr__(self):
return self.__class__.__name__ + ' (' \
+ str(self.in_features) + ' -> ' \
+ str(self.out_features) + ')'
class EdgeWiseGateLayer(nn.Module):
def __init__(self, in_features=300, opt='origin'):
super(EdgeWiseGateLayer, self).__init__()
self.W = nn.Linear(in_features=in_features, out_features=1)
self.act = nn.Sigmoid()
self.opt = opt
self.in_features = in_features
def forward(self, h_v):
s_k = self.act(self.W(h_v))
return s_k
def __repr__(self):
return self.__class__.__name__+'(opt={}, in_feat={} -> out_feat=1'.format(self.opt, self.in_features)
class GCNLayer2(nn.Module):
def __init__(self, in_features=300, out_features=300):
super().__init__()
self.in_features = in_features
self.out_features = out_features
self.W_out = nn.Linear(in_features=in_features, out_features=out_features)
self.W_inverse = nn.Linear(in_features, out_features=out_features)
self.W_self = nn.Linear(in_features, out_features)
self.gate_out = EdgeWiseGateLayer(in_features, 'origin')
self.gate_inverse = EdgeWiseGateLayer(in_features, 'inverse')
self.gate_self = EdgeWiseGateLayer(in_features, 'self')
self.act = nn.ReLU()
def forward(self, input, adj_out, adj_inv, adj_self):
assert adj_out.shape == adj_inv.shape == adj_self.shape, self.print_err(adj_out, adj_self)
h_out = torch.bmm(adj_out, self.gate_out(input) * self.W_out(input))
h_inverse = torch.bmm(adj_inv, self.gate_inverse(input) * self.W_inverse(input))
h_self = torch.bmm(adj_self, self.gate_self(input) * self.W_self(input))
output = self.act(h_inverse + h_out + h_self)
return output
def print_err(self, adj_out, adj_self):
string = 'get adj_out shape= {}, adj_self shape = {}'.format(adj_out.shape, adj_self.shape)
return "shape of three adj matrices corresponding with 3 types of edge: origin, inverse, self-attention have to be equal\n"+ string
class PoolLayer(nn.Module):
def __init__(self, config):
self.config = config
super().__init__()
def forward(self, input_hid, idx_current_word, entity_input):
if idx_current_word is not None:
current_word = input_hid[:, idx_current_word].unsqueeze(1)
else:
current_word = input_hid[:, config.window_size].unsqueeze(1)
active_entities = (entity_input != self.config.EPAD_ID).float()
notNone_entities = (entity_input != 1).float()
# print(active_entities.shape)
# print(input_hid.shape)
entity_vecs = input_hid * active_entities.unsqueeze(-1) * notNone_entities.unsqueeze(-1)
concate_vec = torch.cat((current_word, entity_vecs), dim=-2) # batch_size, 1+num_entities, dim_hid
max_pooling_vec = torch.max(concate_vec, dim=1).values # batch_size, dim_hid
return max_pooling_vec
class EDModel(nn.Module):
def __init__(self, config, pretrained_embeddings=None):
self.config = config
super().__init__()
self.word_embeddings = nn.Embedding(config.vocab_word_size, 300, padding_idx=0, _weight=pretrained_embeddings)
self.ner_embeddings = nn.Embedding(config.num_class_entities, 50, padding_idx=0)
self.position_embeddings = nn.Embedding(config.max_sent, 50)
self.biLSTM = nn.LSTM(input_size=400, hidden_size=300, num_layers=2, dropout=0.5,
batch_first=True, bidirectional=True)
self.gcn = GCNLayer2(in_features=300*2, out_features=300)
self.gcn2 = GCNLayer2(in_features=300, out_features=300)
self.pooler = PoolLayer(config)
self.dropout = nn.ModuleList()
for _ in range(4):
self.dropout.append(nn.Dropout(0.5))
self.classifier = nn.Linear(in_features=300, out_features=config.num_class_events)
def forward(self,
input_ids,
input_ners,
input_adj_out,
input_adj_inv,
input_self,
labels=None
):
word_embeddings = self.word_embeddings(input_ids)
ner_embeddings = self.ner_embeddings(input_ners)
seq_len = input_ids.shape[1]
position_ids = torch.arange(seq_len, dtype=torch.long, device=self.config.device)
position_ids = position_ids.unsqueeze(0).expand(input_ids.shape)
position_embeddings = self.position_embeddings(position_ids)
embeddings = torch.cat((word_embeddings, ner_embeddings, position_embeddings), dim=-1)
embeddings = self.dropout[0](embeddings)
bilstm = self.biLSTM(embeddings)
bilstm = self.dropout[1](bilstm[0])
gcn_out = self.gcn(bilstm,
input_adj_out,
input_adj_inv,
input_self,)
gcn_out = self.dropout[2](gcn_out)
gcn_out = self.gcn2(gcn_out,
input_adj_out,
input_adj_inv,
input_self,)
pool_out = self.pooler(gcn_out, input_ners) # (batch_size, hid_dim)
pool_out = self.dropout[3](pool_out)
logits = self.classifier(pool_out)
outputs = (logits,)
if labels is not None:
active_loss = labels.view(-1) != -100
active_logits = logits[active_loss]
activel_labels = labels[active_loss]
loss_func = nn.CrossEntropyLoss()
loss = loss_func(active_logits, activel_labels)
outputs += (loss,)
return outputs # (logits, loss)
class EDModel2(nn.Module):
"""
implement the model from paper: https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16329
"""
def __init__(self, config, pretrained_embeddings=None):
self.config = config
super().__init__()
self.word_embeddings = nn.Embedding(config.vocab_word_size, 300, padding_idx=0, max_norm=3)
if pretrained_embeddings is not None:
self.word_embeddings.weight.data.copy_(pretrained_embeddings)
self.word_embeddings.weight.requires_grad = config.fine_tune
self.ner_embeddings = nn.Embedding(config.num_class_entities, 50, padding_idx=0)
self.position_embeddings = nn.Embedding(config.max_sent, 50)
self.biLSTM = nn.LSTM(input_size=400, hidden_size=300, num_layers=2, dropout=0.5,
batch_first=True, bidirectional=True)
self.gcn = GCNLayer2(in_features=300*2, out_features=300)
self.gcn2 = GCNLayer2(in_features=300, out_features=300)
self.pooler = PoolLayer(config)
self.dropout = nn.ModuleList()
for _ in range(4):
self.dropout.append(nn.Dropout(0.5))
self.classifier = nn.Linear(in_features=300, out_features=config.num_class_events)
def get_sentence_positional_feature(self, BATCH_SIZE, SEQ_LEN):
positions = [[abs(j) for j in range(-i, SEQ_LEN - i)] for i in range(SEQ_LEN)] # list [SEQ_LEN, SEQ_LEN]
positions = [torch.LongTensor(position) for position in positions] # list of tensors [SEQ_LEN]
positions = [torch.cat([position] * BATCH_SIZE).resize_(BATCH_SIZE, position.size(0))
for position in positions] # list of tensors [BATCH_SIZE, SEQ_LEN]
return positions
def forward(self,
input_ids,
input_ners,
input_adj_out,
input_adj_inv,
input_self,
labels=None
):
word_embeddings = self.word_embeddings(input_ids)
word_embeddings = self.dropout[0](word_embeddings)
ner_embeddings = self.ner_embeddings(input_ners)
ner_embeddings = self.dropout[1](ner_embeddings)
seq_len = input_ids.shape[1]
position_sequences = self.get_sentence_positional_feature(input_ids.shape[0], seq_len)
x_out = []
for idw in range(config.max_sent):
position_embeddings = self.position_embeddings(position_sequences[idw].to(self.config.device))
position_embeddings = self.dropout[2](position_embeddings)
embeddings = torch.cat((word_embeddings, ner_embeddings, position_embeddings), dim=-1)
bilstm = self.biLSTM(embeddings)
bilstm = self.dropout[1](bilstm[0])
gcn_out = self.gcn(bilstm,
input_adj_out,
input_adj_inv,
input_self,)
gcn_out = self.dropout[2](gcn_out)
gcn_out = self.gcn2(gcn_out,
input_adj_out,
input_adj_inv,
input_self,)
pool_out = self.pooler(gcn_out, idw, input_ners) # (batch_size, hid_dim)
pool_out = self.dropout[3](pool_out)
x_out.append(pool_out)
x_out = torch.stack(x_out, dim=1) # batch_size, seq_len, hid_dim
logits = self.classifier(x_out)
outputs = (logits,)
if labels is not None:
active_loss = labels.view(-1) != -100
active_logits = logits.view(-1, self.config.num_class_events)[active_loss]
activel_labels = labels.view(-1)[active_loss]
loss_func = nn.CrossEntropyLoss()
loss = loss_func(active_logits, activel_labels)
outputs += (loss,)
return outputs # (logits, loss)
def params_requires_grad(self):
return list(filter(lambda p: p.requires_grad, self.parameters()))
if __name__ == "__main__":
from utils import load_trimmed_word2vec, load_vocab, encode_window2, load_data_pickle
print('--> Load vocab: ')
word2id = load_vocab('data/vocab_word.txt')
event2id = load_vocab('data/vocab_event.txt', False)
entity2id = load_vocab('data/vocab_ner_tail.txt')
nwords, word2id, id2word, pretrained_embeddings = load_trimmed_word2vec('data/trimmed_word2vec_new.txt')
# print('Data preparation')
# word2id.update({'PAD': 0})
# event2id.update({'PAD': -100})
# vocab_event = event2id
# # vocab_event = dict({'O' : 0})
# # for key in event2id:
# # if key[2:] not in vocab_event and key[2:] != '':
# # vocab_event.update({key[2:] : len(vocab_event)})
# # print(vocab_event)
# for op in ['dev', 'test', 'train']:
# print('-->opt: ', op)
# words_sents, lab_triggers_sents, entities_sents, dep_sents = load_data_json('data/{}.json'.format(op))
# encode_window2(words_sents, lab_triggers_sents, entities_sents, dep_sents, word2id, vocab_event, entity2id,
# window_size=31, save=False, prefix='data/loaddata/{}_'.format(op))
print('-> Load data')
train_data = load_data_pickle('data/loaddata/train_', max_sent=31)
dev_data = load_data_pickle('data/loaddata/dev_', max_sent=31)
test_data = load_data_pickle('data/loaddata/test_', max_sent=31)
train_dataset = TensorDataset(train_data[0], train_data[1], train_data[2], train_data[3], train_data[4])
dev_dataset = TensorDataset(dev_data[0], dev_data[1], dev_data[2], dev_data[3], dev_data[4])
test_dataset = TensorDataset(test_data[0], test_data[1], test_data[2], test_data[3], test_data[4])
print('input_ids shape: ', train_data[0].shape)
print('adj_out matrix shape: ', train_data[1].shape)
print('-> Build model')
config = Config()
config.set_seed(150)
config.nstep_logging = 50
config.eval_batch_size = 128
config.batch_size = 50
config.learning_rate = 5e-3
config.num_epoch = 60
config.weight_decay = 1e-4
config.warmup_steps = 2000
config.window_size = 15
config.fine_tune = True
if not os.path.exists(config.output_dir):
os.makedirs(config.output_dir)
model = EDModel2(config, torch.tensor(pretrained_embeddings, dtype=torch.float32))
model.to(config.device)
optimizer = optim.Adadelta(model.params_requires_grad(),
weight_decay=config.weight_decay,
lr=config.learning_rate,
eps=config.adam_eps)
print(model)
global_steps = 0.
f1_best = 0.
f1_test = 0.
logging_loss, tr_loss = 0., 0.
epoch_improve = 0.
restart_used = 0
model_name = 'model_gcn_2018.ckpt'
log_name = 'log_gcn2018.txt'
tensorboard_name = 'model_1.ckpt'
train_sampler = RandomSampler(train_dataset)
train_loader = DataLoader(train_dataset, sampler=train_sampler, batch_size=config.batch_size)
total_steps = len(train_loader) * config.num_epoch
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=config.warmup_steps,
num_training_steps=total_steps)
tb_writer = SummaryWriter(os.path.join(config.output_dir, tensorboard_name))
identity_matrix = torch.eye(config.max_sent).unsqueeze(0)
print('-> Start training process')
print('nepoch: ', config.num_epoch)
print('total step: ', total_steps)
print('step per epoch: ', len(train_loader))
for ep in range(config.num_epoch):
train_iterator = tqdm(train_loader)
for step, batch in enumerate(train_iterator):
global_steps += 1
model.train()
model.zero_grad()
batch = tuple(t.to(config.device) for t in batch)
identity_matrix_batch = identity_matrix.repeat(batch[1].shape[0], 1, 1).to(config.device)
inputs = {"input_ids": batch[0],
"input_adj_out": batch[1],
"input_adj_inv": batch[2],
"input_self": identity_matrix_batch,
"input_ners": batch[3],
"labels": batch[4]}
_, loss = model(**inputs)
tr_loss += loss.item()
loss.backward()
# train_iterator.set_description("Epoch {}/{}(lr = {:.10f})-l={:.3f}".format(int(ep), int(config.num_epoch), optimizer.param_groups[0]['lr'], loss.item()))
torch.nn.utils.clip_grad_norm_(model.params_requires_grad(), 1)
optimizer.step()
# if global_steps % 100 == 0:
scheduler.step()
if config.nstep_logging > 0 and (
global_steps % config.nstep_logging == 0 or step == len(train_iterator) - 1):
print('lr = {}\n'.format(optimizer.param_groups[0]['lr']))
# print(loss)
# print('check', ep, global_steps)
results = evaluate(config, dev_dataset, model, word2id,
prefix='dev set, step {}/{}'.format(global_steps, ep))
test_results = evaluate(config, test_dataset, model, word2id,
prefix='test set, step {}/{}'.format(global_steps, ep))
if test_results['f1'] > f1_test:
f1_test = test_results['f1']
print('-->Test new best score! f1_test = ', f1_test)
if results['f1'] > f1_best:
f1_best = results['f1']
epoch_improve = ep
print('--> New best score! f1 = ', f1_best)
torch.save(model.state_dict(), os.path.join(config.output_dir, model_name))
with open(os.path.join(config.output_dir, log_name), 'a', encoding='utf-8') as f:
f.write('Epoch: {:3.0f}, step: {:4.0f} global_step: {:5.0f} (lr= {:.7f})\n\
Results: P= {:.4f} - R= {:.4f} - F= {:.4f} \n \t--=>>>New best score!\n'.format(
ep, step, global_steps, optimizer.param_groups[0]['lr'],
results['precision'],
results['recall'],
results['f1']))
for key, value in results.items():
if key != 'loss':
tb_writer.add_scalar("{} score".format(key), value, global_step)
tb_writer.add_scalar("learning rate", scheduler.get_last_lr()[0], global_step)
tb_writer.add_scalars("loss", {'train_loss': (tr_loss - logging_loss) / args.nstep_logging,
'dev_loss': results['loss']}, global_step)
logging_loss = tr_loss
else:
with open(os.path.join(config.output_dir, log_name), 'a', encoding='utf-8') as f:
f.write('Epoch: {:3.0f}, step: {:4.0f} global_step: {:5.0f} (lr= {:.7f})\n\
Results: P= {:.4f} - R= {:.4f} - F= {:.4f}\n'.format(ep, step, global_steps,
optimizer.param_groups[0]['lr'],
results['precision'],
results['recall'],
results['f1']))
if ep - epoch_improve > 10:
if restart_used > config.max_restart:
print('Restarting model is run out')
break
else:
restart_used += 1
print('--->>>RELOAD MODEL from epoch {}'.format(epoch_improve))
with open(os.path.join(config.output_dir, log_name), 'a', encoding='utf-8') as f:
f.write('---->>>>RELOAD MODEL FROM EPOCH {}\n'.format(epoch_improve))
model.load_state_dict(torch.load(os.path.join(config.output_dir, model_name)))
epoch_improve = ep
scheduler = get_linear_schedule_with_warmup(optimizer,
num_warmup_steps=config.warmup_steps * (
total_steps - global_steps) / total_steps,
num_training_steps=total_steps - global_steps)
# if (ep+1) % 5 == 0:
# output.clear()
print('-->FINAL TEST')
test_results = evaluate(config, test_dataset, model, word2id, prefix='test set- final test')