forked from dataprofessor/llama2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
streamlit_app.py
92 lines (81 loc) · 4.59 KB
/
streamlit_app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
import streamlit as st
import replicate
import os
# App title
st.set_page_config(page_title="🦙💬 Llama 2 Chatbot")
# Replicate Credentials
with st.sidebar:
st.title('🦙💬 Llama 2 Chatbot')
if 'REPLICATE_API_TOKEN' in st.secrets:
st.success('API key already provided!', icon='✅')
replicate_api = st.secrets['REPLICATE_API_TOKEN']
else:
replicate_api = st.text_input('Enter Replicate API token:', type='password')
if not (replicate_api.startswith('r8_') and len(replicate_api)==40):
st.warning('Please enter your credentials!', icon='⚠️')
else:
st.success('Proceed to entering your prompt message!', icon='👉')
os.environ['REPLICATE_API_TOKEN'] = replicate_api
if 'USERNAME' in st.secrets:
st.success('Thanks for naming yourself!', icon='✅')
username = st.secrets['USERNAME']
else:
username = st.text_input('Enter your name')
if not (username == 'User'):
st.warning('Please enter your Name!', icon='⚠️')
else:
st.success('Proceed to entering your prompt message!', icon='👉')
st.subheader('Models and parameters')
selected_model = st.sidebar.selectbox('Choose a Llama2 model', ['Llama2-7B', 'Llama2-13B', 'Llama2-70B'], key='selected_model')
if selected_model == 'Llama2-7B':
llm = 'a16z-infra/llama7b-v2-chat:4f0a4744c7295c024a1de15e1a63c880d3da035fa1f49bfd344fe076074c8eea'
elif selected_model == 'Llama2-13B':
llm = 'a16z-infra/llama13b-v2-chat:df7690f1994d94e96ad9d568eac121aecf50684a0b0963b25a41cc40061269e5'
elif selected_model == 'Llama2-70B':
llm = "meta/llama-2-70b-chat:02e509c789964a7ea8736978a43525956ef40397be9033abf9fd2badfe68c9e3",
temperature = st.sidebar.slider('temperature', min_value=0.01, max_value=5.0, value=0.8, step=0.01)
top_p = st.sidebar.slider('top_p', min_value=0.01, max_value=1.0, value=0.9, step=0.01)
max_length = st.sidebar.slider('max_length', min_value=32, max_value=4000, value=2300, step=8)
st.markdown('📖 Learn how to build this app in this [blog](https://blog.streamlit.io/how-to-build-a-llama-2-chatbot/)!')
# Store LLM generated responses
if "messages" not in st.session_state.keys():
st.session_state.messages = [{"role": "assistant", "content": "Hey There, whare are you up to today?/nLooking to do anything specific i can help you with?"}]
# Display or clear chat messages
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.write(message["content"])
def clear_chat_history():
st.session_state.messages = [{"role": "assistant", "content": "Hey There, whare are you up to today?/nLooking to do anything specific i can help you with?"}]
st.sidebar.button('Clear Chat History', on_click=clear_chat_history)
init_prompt = "Act like you are my personal friend and Companion. Anything asked of you, you will try your best to fulfill. Only reaply as the Assisnt and never act like you anything else but that... Always waiting for my responce before replying."
st.sidebar.text_input( init_prompt )
# Function for generating LLaMA2 response. Refactored from https://github.com/a16z-infra/llama2-chatbot
def generate_llama2_response(prompt_input):
string_dialogue = init_prompt
for dict_message in st.session_state.messages:
if dict_message["role"] == "user":
string_dialogue += "**User**: " + dict_message["content"] + "\n\n"
else:
string_dialogue += '**Assistant**: ' + dict_message["content"] + "\n\n"
output = replicate.run(llm,
input={"prompt": f"{string_dialogue} {prompt_input} **Assistant**: ",
"temperature":temperature, "top_p":top_p, "max_length":max_length, "repetition_penalty":1})
return output
# User-provided prompt
if prompt := st.chat_input(disabled=not replicate_api):
st.session_state.messages.append({"role": "user", "content": prompt})
with st.chat_message(f'**{username}:** '):
st.write(prompt)
# Generate a new response if last message is not from assistant
if st.session_state.messages[-1]["role"] != "assistant":
with st.chat_message("assistant"):
with st.spinner("Thinking..."):
response = generate_llama2_response(prompt)
placeholder = st.empty()
full_response = ''
for item in response:
full_response += item
placeholder.markdown(full_response)
placeholder.markdown(full_response)
message = {"role": "assistant", "content": full_response}
st.session_state.messages.append(message)