generated from kyegomez/Python-Package-Template
-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathr1_pipeline.py
357 lines (318 loc) · 11.9 KB
/
r1_pipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
# sft -> grpo -> sft + grpo -> new model
import subprocess
import sys
import uuid
from typing import Callable, List, Optional
import torch
from accelerate import PartialState
from datasets import load_dataset
from loguru import logger
from peft import LoraConfig
from pydantic import BaseModel, Field
from transformers import AutoModelForCausalLM, AutoTokenizer
from trl import GRPOConfig, GRPOTrainer, SFTConfig, SFTTrainer
from agentgym.reward_funcs import (
correctness_reward_func,
format_reward_func,
int_reward_func,
reward_func_for_format,
reward_len,
soft_format_reward_func,
strict_format_reward_func,
xmlcount_reward_func,
)
peft_config = LoraConfig(
r=16,
lora_alpha=32,
lora_dropout=0.05,
target_modules="all-linear",
modules_to_save=["lm_head", "embed_token"],
task_type="CAUSAL_LM",
)
class GRPOArgs(BaseModel):
output_dir: Optional[str] = Field(None, alias="output_dir")
run_name: Optional[str] = Field(None, alias="run_name")
learning_rate: Optional[float] = Field(
5e-6, alias="learning_rate"
)
adam_beta1: Optional[float] = Field(0.9, alias="adam_beta1")
adam_beta2: Optional[float] = Field(0.99, alias="adam_beta2")
weight_decay: Optional[float] = Field(0.1, alias="weight_decay")
warmup_ratio: Optional[float] = Field(0.1, alias="warmup_ratio")
lr_scheduler_type: Optional[str] = Field(
"cosine", alias="lr_scheduler_type"
)
logging_steps: Optional[int] = Field(1, alias="logging_steps")
bf16: Optional[bool] = Field(True, alias="bf16")
per_device_train_batch_size: Optional[int] = Field(
1, alias="per_device_train_batch_size"
)
gradient_accumulation_steps: Optional[int] = Field(
4, alias="gradient_accumulation_steps"
)
num_generations: Optional[int] = Field(
16, alias="num_generations"
)
max_prompt_length: Optional[int] = Field(
256, alias="max_prompt_length"
)
max_completion_length: Optional[int] = Field(
786, alias="max_completion_length"
)
num_train_epochs: Optional[int] = Field(
1, alias="num_train_epochs"
)
save_steps: Optional[int] = Field(100, alias="save_steps")
max_grad_norm: Optional[float] = Field(0.1, alias="max_grad_norm")
report_to: Optional[str] = Field("wandb", alias="report_to")
log_on_each_node: Optional[bool] = Field(
False, alias="log_on_each_node"
)
prebuilt_reward_funcs = [
xmlcount_reward_func,
soft_format_reward_func,
strict_format_reward_func,
int_reward_func,
correctness_reward_func,
reward_len,
reward_func_for_format,
format_reward_func,
]
def generate_model_uuid():
"""
This function generates a short UUID.
"""
return str(uuid.uuid4())[:8]
def check_gpu_availability():
"""
This function checks if a GPU is available.
"""
if torch.cuda.is_available():
return True
else:
return False
class R1Pipeline:
def __init__(
self,
output_dir: str = "/tmp",
sft_dataset: str = "stanfordnlp/imdb",
sft_model: str = "facebook/opt-350m",
sft_args: SFTConfig = SFTConfig(output_dir="/tmp"),
saved_model_file_path: str = None,
reward_funcs: List[Callable] = [],
multi_gpu: bool = False,
sft_lora_only: bool = False,
liger_kernel_on: bool = False,
peft_config: Optional[LoraConfig] = peft_config,
model_name: str = "agent-gym-r1",
check_gpu_availability: bool = check_gpu_availability,
grpo_args: GRPOArgs = GRPOArgs(),
tokenizer_name: str = "None",
use_prebuilt_reward_funcs: bool = True,
only_grpo: bool = False,
use_vllm: bool = False,
*args,
**kwargs,
):
self.output_dir = output_dir
self.sft_args = sft_args
self.sft_dataset = load_dataset(sft_dataset, split="train")
device_string = PartialState().process_index
self.sft_model = AutoModelForCausalLM.from_pretrained(
sft_model,
device_map={"": device_string} if multi_gpu else None,
)
self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_name)
self.tokenizer.pad_token = self.tokenizer.eos_token
self.saved_model_file_path = saved_model_file_path
self.multi_gpu = multi_gpu
self.peft_config = peft_config
self.reward_funcs = reward_funcs
self.sft_lora_only = sft_lora_only
self.liger_kernel_on = liger_kernel_on
self.model_name = model_name
self.check_gpu_availability = check_gpu_availability
self.grpo_args = grpo_args
self.use_prebuilt_reward_funcs = use_prebuilt_reward_funcs
self.only_grpo = only_grpo
self.use_vllm = use_vllm
self.saved_model_file_path = f"{self.output_dir}/{model_name}_{generate_model_uuid()}.pth"
self.check_for_flash_attention()
if self.liger_kernel_on:
self.download_liger_kernel()
self.sft_trainer = SFTTrainer(
model=self.sft_model,
train_dataset=self.sft_dataset,
args=self.sft_args,
peft_config=(
self.peft_config if sft_lora_only is True else None
),
# use_liger=(
# self.liger_kernel_on
# if liger_kernel_on is True
# else False
# ),
*args,
**kwargs,
)
def sft_train(self, *args, **kwargs):
# run the training loop
try:
logger.info("Starting training...")
self.sft_trainer.train(*args, **kwargs)
logger.info("Training completed successfully")
return self.save_model_weights()
except Exception as e:
logger.error(f"Error during training: {e}")
raise e
def save_model_weights(self):
try:
logger.info("Saving model weights...")
self.sft_trainer.save_model(self.saved_model_file_path)
logger.info("Model weights saved successfully")
except Exception as e:
logger.error(f"Error saving model weights: {e}")
raise e
def check_for_flash_attention(self):
try:
device = check_gpu_availability()
if device is True:
subprocess.run(
[
sys.executable,
"-m",
"pip",
"install",
"flash-attn",
],
check=True,
)
self.sft_model.attn_implementation = (
"flash_attention_2",
)
logger.info("Flash attention 2 is enabled")
else:
logger.info("Flash attention 2 is not enabled")
except Exception as e:
logger.error(f"Error checking for flash attention: {e}")
raise e
def load_grpo_args(self):
args = GRPOArgs()
# Ensure all necessary attributes are set with default values if they are None
args.output_dir = args.output_dir or '/tmp'
args.run_name = args.run_name or 'default_run_name'
args.learning_rate = args.learning_rate or 5e-5
args.adam_beta1 = args.adam_beta1 or 0.9
args.adam_beta2 = args.adam_beta2 or 0.999
args.weight_decay = args.weight_decay or 0.01
args.warmup_ratio = args.warmup_ratio or 0.1
args.lr_scheduler_type = args.lr_scheduler_type or 'linear'
args.logging_steps = args.logging_steps or 500
args.bf16 = args.bf16 if args.bf16 is not None else False
args.per_device_train_batch_size = args.per_device_train_batch_size or 8
args.gradient_accumulation_steps = args.gradient_accumulation_steps or 1
args.num_generations = args.num_generations or 1
args.max_prompt_length = args.max_prompt_length or 512
args.max_completion_length = args.max_completion_length or 128
args.num_train_epochs = args.num_train_epochs or 3
args.save_steps = args.save_steps or 1000
args.max_grad_norm = args.max_grad_norm or 1.0
args.report_to = args.report_to or 'none'
args.log_on_each_node = args.log_on_each_node if args.log_on_each_node is not None else False
return GRPOConfig(
output_dir=args.output_dir,
run_name=args.run_name,
learning_rate=args.learning_rate,
adam_beta1=args.adam_beta1,
adam_beta2=args.adam_beta2,
weight_decay=args.weight_decay,
warmup_ratio=args.warmup_ratio,
lr_scheduler_type=args.lr_scheduler_type,
logging_steps=args.logging_steps,
bf16=args.bf16,
per_device_train_batch_size=args.per_device_train_batch_size,
gradient_accumulation_steps=args.gradient_accumulation_steps,
num_generations=args.num_generations,
max_prompt_length=args.max_prompt_length,
max_completion_length=args.max_completion_length,
num_train_epochs=args.num_train_epochs,
save_steps=args.save_steps,
max_grad_norm=args.max_grad_norm,
report_to=args.report_to,
log_on_each_node=args.log_on_each_node,
)
def grpo_train(self, model_path: str, *args, **kwargs):
try:
logger.info("Starting GRPO training...")
training_args = self.load_grpo_args()
reward_funcs = (
prebuilt_reward_funcs
if self.use_prebuilt_reward_funcs
else self.reward_funcs
)
trainer = GRPOTrainer(
model=self.sft_model,
processing_class=self.tokenizer,
reward_funcs=reward_funcs,
args=training_args,
train_dataset=self.sft_dataset,
*args,
**kwargs,
)
trainer.train()
trainer.save_model(self.saved_model_file_path)
logger.info(
f"GRPO training completed successfully and model saved to: {self.saved_model_file_path}"
)
return self.saved_model_file_path
except Exception as e:
logger.error(f"Error during GRPO training: {e}")
raise e
def download_package(self, package_name: str):
try:
subprocess.run(
[
sys.executable,
"-m",
"pip",
"install",
package_name,
],
check=True,
)
logger.info(
f"Package {package_name} installed successfully"
)
except Exception as e:
logger.error(
f"Error installing package {package_name}: {e}"
)
raise e
def download_liger_kernel(self):
try:
self.download_package("liger-kernel")
logger.info("Liger kernel installed successfully")
except Exception as e:
logger.error(f"Error installing liger kernel: {e}")
raise e
def run(self):
try:
if self.only_grpo is False:
logger.info(
"Starting R1 pipeline with SFT first and then GRPO"
)
model = self.sft_train()
logger.info(
f"SFT training completed successfully and model saved to: {model}"
)
else:
logger.info("Starting R1 pipeline with only GRPO")
model = self.grpo_train(self.saved_model_file_path)
logger.info(
f"GRPO training completed successfully and model saved to: {model}"
)
logger.info("R1 pipeline completed successfully")
return model
except Exception as e:
logger.error(f"Error during R1 pipeline: {e}")
raise e