Skip to content

Latest commit

 

History

History
270 lines (219 loc) · 6.86 KB

README.md

File metadata and controls

270 lines (219 loc) · 6.86 KB

Swarms Deploy 🚀

Join our Discord Subscribe on YouTube Connect on LinkedIn Follow on X.com

PyPI version License: MIT Python 3.8+

Production-grade API deployment framework for Swarms AI workflows. Easily deploy, scale, and manage your swarm-based applications with enterprise features.

Features ✨

  • 🔥 Fast API-based deployment framework
  • 🤖 Support for synchronous and asynchronous swarm execution
  • 🔄 Built-in load balancing and scaling
  • 📊 Real-time monitoring and logging
  • 🛡️ Enterprise-grade error handling
  • 🎯 Priority-based task execution
  • 📦 Simple deployment and configuration
  • 🔌 Extensible plugin architecture

Installation 📦

pip install -U swarms-deploy

Quick Start 🚀

import os
from dotenv import load_dotenv
from swarms import Agent, SequentialWorkflow
from swarm_models import OpenAIChat
from swarm_deploy import SwarmDeploy

load_dotenv()

# Get the OpenAI API key from the environment variable
api_key = os.getenv("GROQ_API_KEY")

# Model
model = OpenAIChat(
    openai_api_base="https://api.groq.com/openai/v1",
    openai_api_key=api_key,
    model_name="llama-3.1-70b-versatile",
    temperature=0.1,
)


# Initialize specialized agents
data_extractor_agent = Agent(
    agent_name="Data-Extractor",
    system_prompt=None,
    llm=model,
    max_loops=1,
    autosave=True,
    verbose=True,
    dynamic_temperature_enabled=True,
    saved_state_path="data_extractor_agent.json",
    user_name="pe_firm",
    retry_attempts=1,
    context_length=200000,
    output_type="string",
)

summarizer_agent = Agent(
    agent_name="Document-Summarizer",
    system_prompt=None,
    llm=model,
    max_loops=1,
    autosave=True,
    verbose=True,
    dynamic_temperature_enabled=True,
    saved_state_path="summarizer_agent.json",
    user_name="pe_firm",
    retry_attempts=1,
    context_length=200000,
    output_type="string",
)

financial_analyst_agent = Agent(
    agent_name="Financial-Analyst",
    system_prompt=None,
    llm=model,
    max_loops=1,
    autosave=True,
    verbose=True,
    dynamic_temperature_enabled=True,
    saved_state_path="financial_analyst_agent.json",
    user_name="pe_firm",
    retry_attempts=1,
    context_length=200000,
    output_type="string",
)

market_analyst_agent = Agent(
    agent_name="Market-Analyst",
    system_prompt=None,
    llm=model,
    max_loops=1,
    autosave=True,
    verbose=True,
    dynamic_temperature_enabled=True,
    saved_state_path="market_analyst_agent.json",
    user_name="pe_firm",
    retry_attempts=1,
    context_length=200000,
    output_type="string",
)

operational_analyst_agent = Agent(
    agent_name="Operational-Analyst",
    system_prompt=None,
    llm=model,
    max_loops=1,
    autosave=True,
    verbose=True,
    dynamic_temperature_enabled=True,
    saved_state_path="operational_analyst_agent.json",
    user_name="pe_firm",
    retry_attempts=1,
    context_length=200000,
    output_type="string",
)

# Initialize the SwarmRouter
router = SequentialWorkflow(
    name="pe-document-analysis-swarm",
    description="Analyze documents for private equity due diligence and investment decision-making",
    max_loops=1,
    agents=[
        data_extractor_agent,
        summarizer_agent,
        financial_analyst_agent,
        market_analyst_agent,
        operational_analyst_agent,
    ],
    output_type="all",
)

# Advanced usage with configuration
swarm = SwarmDeploy(
    router,
    max_workers=4,
    # cache_backend="redis"
)
swarm.start(
    host="0.0.0.0",
    port=8000,
    workers=4,
    # ssl_keyfile="key.pem",
    # ssl_certfile="cert.pem"
)

# # Create a cluster
# instances = SwarmDeploy.create_cluster(
#     your_callable,
#     num_instances=3,
#     start_port=8000
# )

Advanced Usage 🔧

Configuration Options

swarm = SwarmDeploy(
    workflow,
    max_workers=4,
    cache_backend="redis",
    ssl_config={
        "keyfile": "path/to/key.pem",
        "certfile": "path/to/cert.pem"
    }
)

Clustering and Scaling

# Create a distributed cluster
instances = SwarmDeploy.create_cluster(
    workflow,
    num_instances=3,
    start_port=8000,
    hosts=["host1", "host2", "host3"]
)

API Reference 📚

SwarmInput Model

class SwarmInput(BaseModel):
    task: str          # Task description
    img: Optional[str] # Optional image input
    priority: int      # Task priority (0-10)

API Endpoints

  • POST /v1/swarms/completions/{callable_name}
    • Execute a task with the specified swarm
    • Returns: SwarmOutput or SwarmBatchOutput

Example Request

curl -X POST "http://localhost:8000/v1/swarms/completions/document-analysis" \
     -H "Content-Type: application/json" \
     -d '{"task": "Analyze financial report", "priority": 5}'

Monitoring and Logging 📊

SwarmDeploy provides built-in monitoring capabilities:

  • Real-time task execution stats
  • Error tracking and reporting
  • Performance metrics
  • Task history and audit logs

Error Handling 🛡️

The system includes comprehensive error handling:

try:
    result = await swarm.run(task)
except Exception as e:
    error_output = SwarmOutput(
        id=str(uuid.uuid4()),
        status="error",
        execution_time=time.time() - start_time,
        result=None,
        error=str(e)
    )

Best Practices 🎯

  1. Always set appropriate task priorities
  2. Implement proper error handling
  3. Use clustering for high-availability
  4. Monitor system performance
  5. Regular maintenance and updates

Contributing 🤝

Contributions are welcome! Please read our Contributing Guidelines for details on our code of conduct and the process for submitting pull requests.

Support 💬

License 📄

MIT License - see the LICENSE file for details.


Powered by swarms.ai 🚀

For enterprise support and custom solutions, contact kye@swarms.world