-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrandom_contraction.R
85 lines (65 loc) · 2.4 KB
/
random_contraction.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
# randomized contraction algorithm for finding min cuts
min_cut_hw = read.table("~/Dropbox/Algorithms/min_cut_hw.txt",fill=TRUE,header=FALSE,col.names=(paste(1:40,"var")))
# test cases
#min_cut_hw = read.table("~/Dropbox/Algorithms/test_cases/case5.txt",fill=TRUE,header=FALSE,col.names=(paste(1:8,"var")))
print("A")
library(foreach)
library(foreach)
library(doParallel)
library(parallel)
numCores <- detectCores()
cl <- makeCluster(numCores)
registerDoParallel(cl)
print("B")
least_crossing_edges = NA
sol <- foreach(x=1:3000) %dopar% {
print("HIIIII")
print(paste("round:",x))
print(paste("best cut so far:",least_crossing_edges))
min_cut_copy = min_cut_hw
vertices_sets = sapply(1:(nrow(min_cut_copy)),list)
while(TRUE){
while(TRUE){
row <- sample(1:(nrow(min_cut_copy)),1)
column <- sample(2:(ncol(min_cut_copy)),1)
if(is.na(min_cut_copy[row,column])){
next
}
else{
vertex1 <- row
vertex2 <- min_cut_copy[row,column]
break
}
}
min_cut_copy[row,column] <- NA
other_column <- which(min_cut_copy[vertex2,] == vertex1)
min_cut_copy[vertex2,other_column] <- NA
vertex1_set_index <- which(TRUE == sapply(vertices_sets, function(x){vertex1 %in% x}))
vertex2_set_index <- which(TRUE == sapply(vertices_sets, function(x){vertex2 %in% x}))
vertex1_set <- vertices_sets[[vertex1_set_index]]
vertex2_set <- vertices_sets[[vertex2_set_index]]
for(first_vertex in vertex1_set){
for(second_vertex in vertex2_set){
connected <- which(second_vertex == min_cut_copy[first_vertex,])
if(length(connected) == 1){
min_cut_copy[first_vertex,connected] <- NA
other_end <- which(first_vertex == min_cut_copy[second_vertex,])
min_cut_copy[second_vertex,other_end] <- NA
}
}
}
vertices_sets[[vertex1_set_index]] <- c(vertices_sets[[vertex1_set_index]],vertices_sets[[vertex2_set_index]])
vertices_sets[[vertex2_set_index]] <- NULL
if(length(vertices_sets) == 2){
crossing_edges <- sum(sapply(min_cut_copy[,2:(ncol(min_cut_copy))],function(x){sum(!is.na(x))})) / 2
return(crossing_edges)
if(is.na(least_crossing_edges) || least_crossing_edges > crossing_edges){
least_crossing_edges <- crossing_edges
}
break
}
}
}
minnn <- min(sol)
write.csv(minnn,"~/Dropbox/Algorithms/solution.txt")
#return(least_crossing_edges)