-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathqvalue.go
201 lines (168 loc) · 4.72 KB
/
qvalue.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
// qvalue.go
package qpool
import (
"fmt"
"math"
"math/rand/v2"
"sync"
"time"
)
// Probability represents a quantum state probability
type Probability float64
// UncertaintyLevel defines how uncertain we are about a value
type UncertaintyLevel float64
const (
MinUncertainty UncertaintyLevel = 0.0
MaxUncertainty UncertaintyLevel = 1.0
)
// ObservationEffect represents how observation affects the quantum state
type ObservationEffect struct {
ObserverID string
ObservedAt time.Time
StateCollapse bool
Uncertainty UncertaintyLevel
}
// QValue represents a value with quantum-like properties
type QValue struct {
mu sync.RWMutex
// Core value and metadata
Value interface{}
Error error
CreatedAt time.Time
TTL time.Duration
// Quantum properties
States []State // Possible superposition states
Uncertainty UncertaintyLevel // Heisenberg-inspired uncertainty
Observations []ObservationEffect
Entangled []string // IDs of entangled values
// Wave function collapse tracking
isCollapsed bool
collapseTime time.Time
}
// NewQValue creates a new quantum value with initial states
func NewQValue(initialValue interface{}, states []State) *QValue {
qv := &QValue{
Value: initialValue,
CreatedAt: time.Now(),
States: states,
Uncertainty: calculateInitialUncertainty(states),
isCollapsed: false,
}
return qv
}
// Observe triggers wave function collapse based on quantum rules
func (qv *QValue) Observe(observerID string) interface{} {
qv.mu.Lock()
defer qv.mu.Unlock()
observation := ObservationEffect{
ObserverID: observerID,
ObservedAt: time.Now(),
Uncertainty: qv.Uncertainty,
StateCollapse: !qv.isCollapsed,
}
qv.Observations = append(qv.Observations, observation)
// First observation collapses the wave function
if !qv.isCollapsed {
qv.collapse()
}
// Increase uncertainty based on Heisenberg principle
qv.updateUncertainty()
return qv.Value
}
// collapse performs wave function collapse, choosing a state based on probabilities
func (qv *QValue) collapse() {
if len(qv.States) == 0 {
return
}
// Calculate cumulative probabilities
cumProb := 0.0
probs := make([]float64, len(qv.States))
for i, state := range qv.States {
cumProb += float64(state.Probability)
probs[i] = cumProb
}
// Normalize probabilities
for i := range probs {
probs[i] /= cumProb
}
// Random selection based on probabilities
r := rand.Float64()
for i, threshold := range probs {
if r <= threshold {
qv.Value = qv.States[i].Value
break
}
}
qv.isCollapsed = true
qv.collapseTime = time.Now()
}
// updateUncertainty increases uncertainty based on time since collapse
func (qv *QValue) updateUncertainty() {
if !qv.isCollapsed {
qv.Uncertainty = MaxUncertainty
return
}
timeSinceCollapse := time.Since(qv.collapseTime)
uncertaintyIncrease := UncertaintyLevel(math.Log1p(float64(timeSinceCollapse.Nanoseconds())))
qv.Uncertainty = UncertaintyLevel(math.Min(
float64(qv.Uncertainty+uncertaintyIncrease),
float64(MaxUncertainty),
))
}
// calculateInitialUncertainty determines starting uncertainty based on state count
func calculateInitialUncertainty(states []State) UncertaintyLevel {
if len(states) <= 1 {
return MinUncertainty
}
// More states = more initial uncertainty
return UncertaintyLevel(math.Log2(float64(len(states))) / 10.0)
}
// Entangle connects this value with another quantum value
func (qv *QValue) Entangle(other *QValue) {
qv.mu.Lock()
other.mu.Lock()
defer qv.mu.Unlock()
defer other.mu.Unlock()
// Add bidirectional entanglement
qv.Entangled = append(qv.Entangled, other.ID())
other.Entangled = append(other.Entangled, qv.ID())
// Share states between entangled values
qv.States = mergeSates(qv.States, other.States)
other.States = qv.States
// Increase uncertainty due to entanglement
entanglementUncertainty := UncertaintyLevel(0.1)
qv.Uncertainty += entanglementUncertainty
other.Uncertainty += entanglementUncertainty
}
// mergeSates combines states from two quantum values
func mergeSates(a, b []State) []State {
seen := make(map[interface{}]bool)
merged := make([]State, 0)
// Helper to add unique states
addState := func(s State) {
if !seen[s.Value] {
seen[s.Value] = true
merged = append(merged, s)
}
}
// Add all states, avoiding duplicates
for _, s := range a {
addState(s)
}
for _, s := range b {
addState(s)
}
// Normalize probabilities
totalProb := Probability(0)
for _, s := range merged {
totalProb += Probability(s.Probability)
}
for i := range merged {
merged[i].Probability /= float64(totalProb)
}
return merged
}
// ID generates a unique identifier for this quantum value
func (qv *QValue) ID() string {
return fmt.Sprintf("qv_%v_%d", qv.Value, qv.CreatedAt.UnixNano())
}