-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathUsbMidiKliK4x4.ino
1123 lines (948 loc) · 38.9 KB
/
UsbMidiKliK4x4.ino
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
__ __| | | /_) | ___| | |
| __ \ _ \ ' / | | / | _ \ __ \ | _` | __ \ __|
| | | | __/ . \ | < | | __/ | | | ( | | |\__ \
_| _| |_|\___| _|\_\_|_|\_\\____|\___|_| _| _____|\__,_|_.__/ ____/
-----------------------------------------------------------------------------
USBMIDIKLIK 4X4 - USB Midi advanced firmware for STM32F1 platform.
Copyright (C) 2019 by The KikGen labs.
LICENCE CREATIVE COMMONS - Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
This file is part of the USBMIDIKLIK-4x4 distribution
https://github.com/TheKikGen/USBMidiKliK4x4
Copyright (c) 2019 TheKikGen Labs team.
-----------------------------------------------------------------------------
Disclaimer.
This work is licensed under the Creative Commons Attribution-NonCommercial 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-nc/4.0/
or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
NON COMMERCIAL - PERSONAL USE ONLY : You may not use the material for pure
commercial closed code solution without the licensor permission.
You are free to copy and redistribute the material in any medium or format,
adapt, transform, and build upon the material.
You must give appropriate credit, a link to the github site
https://github.com/TheKikGen/USBMidiKliK4x4 , provide a link to the license,
and indicate if changes were made. You may do so in any reasonable manner,
but not in any way that suggests the licensor endorses you or your use.
You may not apply legal terms or technological measures that legally restrict
others from doing anything the license permits.
You do not have to comply with the license for elements of the material
in the public domain or where your use is permitted by an applicable exception
or limitation.
No warranties are given. The license may not give you all of the permissions
necessary for your intended use. This program is distributed in the hope that
it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
*/
#include "build_number_defines.h"
#include <string.h>
#include <stdarg.h>
#include <libmaple/nvic.h>
#include "libmaple/flash.h"
#include "libmaple/pwr.h"
#include "libmaple/rcc.h"
#include "libmaple/bkp.h"
#include <Wire_slave.h>
#include <midiXparser.h>
#include "usbmidiklik4x4.h"
#include "usb_midi.h"
#include "ringbuffer.h"
///////////////////////////////////////////////////////////////////////////////
// GLOBALS
///////////////////////////////////////////////////////////////////////////////
// EEPROMS parameters
EEPROM_Prm_t EE_Prm;
// Default Boot modes magic word
uint16_t bootMagicWord = BOOT_MIDI_MAGIC;
// Serial interfaces Array
HardwareSerial * serialHw[SERIAL_INTERFACE_MAX] = {SERIALS_PLIST};
// LED Management
volatile LEDTick_t LED_ConnectTick= { LED_CONNECT,0};
// LEDs ticks for Connect, MIDIN and MIDIOUT
#ifdef HAS_MIDITECH_HARDWARE
// LED must be declared in the same order as hardware serials
#define LED_MIDI_SIZE 4
volatile LEDTick_t LED_MidiInTick[LED_MIDI_SIZE] = {
{D4,0},{D5,0},{D6,0},{D7,0}
};
volatile LEDTick_t LED_MidiOutTick[LED_MIDI_SIZE] = {
{D36,0},{D37,0},{D16,0},{D17,0}
};
#endif
// Midi Clocks initialize
bpmTick_t bpmTicks[MIDI_CLOCKGEN_MAX] ;
// USB Midi object & globals
USBMidi MidiUSB;
volatile bool midiUSBCx = false ;
volatile bool midiUSBIdle = false ;
bool isSerialBusy = false ;
// USB cable max ports. 16 if in bus mode or value changed by the end user.
uint8_t UsbCableInterfaceMax = 4;
// MIDI Parsers for serial 1 to n
midiXparser midiSerial[SERIAL_INTERFACE_MAX];
// Multi purpose data buffer.
uint8_t globalDataBuffer[GLOBAL_DATA_BUFF_SIZE] ;
// Intelligent midi thru mode
volatile bool midiIthruActive = false ;
unsigned long ithruUSBIdlelMillis = DEFAULT_ITHRU_USB_IDLE_TIME_PERIOD * 15000;
// Bus Mode globals
volatile uint8_t I2C_Command = B_CMD_NONE;
// True if events received from Master when slave
volatile boolean I2C_MasterIsActive = false;
// Master to slave synchonization globals
volatile boolean I2C_SlaveSyncStarted = false;
volatile boolean I2C_SlaveSyncDoUpdate = false;
// Array of active devices
uint8_t I2C_DeviceIdActive[B_MAX_NB_DEVICE-1]; // Minus the master
uint8_t I2C_DeviceActiveCount=0;
// Templated RingBuffers to manage I2C slave reception/transmission outside I2C ISR
// Volatile by default and RESERVED TO SLAVE
RingBuffer<uint8_t,B_RING_BUFFER_PACKET_SIZE> I2C_QPacketsFromMaster;
RingBuffer<uint8_t,B_RING_BUFFER_MPACKET_SIZE> I2C_QPacketsToMaster;
// Vector for process run in main Loop to avoid testing flags in a pure loop
// approch. All function pointer are added when they are only necessary in Setup.
// Check carefully the array size...
uint8_t procVectorFnCount = 0;
procVectorFn_t procVectorFn[6] ;
///////////////////////////////////////////////////////////////////////////////
// CODE MODULES
//-----------------------------------------------------------------------------
// Due to the unusual make process of Arduino platform, modules are included
// directly here as "h" type. This allows a better code separation and readability.
///////////////////////////////////////////////////////////////////////////////
// DO NOT REMOVE OR CHANGE THE ORDER !
#include "mod_macros.h"
#include "mod_eeprom.h"
#include "mod_intsysex.h"
#include "mod_configui.h"
#include "mod_i2cbus.h"
#include "mod_miditransfn.h"
///////////////////////////////////////////////////////////////////////////////
// CORE FUNCTIONS
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
// memcmpcpy : copy if different
///////////////////////////////////////////////////////////////////////////////
int memcmpcpy ( void * pDest, void * pSrc, size_t sz )
{
int r = 0;
if ( ( r = memcmp(pDest,pSrc,sz) ) ) {
memcpy(pDest,pSrc,sz);
};
return r;
}
///////////////////////////////////////////////////////////////////////////////
// Timer2 interrupt handler - 1 millisec timer
///////////////////////////////////////////////////////////////////////////////
void TimerMillisHandler(void)
{
LED_Update();
}
///////////////////////////////////////////////////////////////////////////////
// LED MANAGEMENT - Init PINS
///////////////////////////////////////////////////////////////////////////////
void LED_Init()
{
// Initialize LED arrays
// LED connect
gpio_set_mode(PIN_MAP[LED_ConnectTick.pin].gpio_device, PIN_MAP[LED_ConnectTick.pin].gpio_bit, GPIO_OUTPUT_PP);
LED_ConnectTick.tick = 0;
// LEDs IN/OUT if available
#ifdef HAS_MIDITECH_HARDWARE
for (uint8_t i=0 ; i != LED_MIDI_SIZE ; i++ ) {
gpio_set_mode(PIN_MAP[LED_MidiInTick[i].pin].gpio_device, PIN_MAP[LED_MidiInTick[i].pin].gpio_bit, GPIO_OUTPUT_PP);
gpio_set_mode(PIN_MAP[LED_MidiOutTick[i].pin].gpio_device, PIN_MAP[LED_MidiOutTick[i].pin].gpio_bit, GPIO_OUTPUT_PP);
LED_MidiOutTick[i].tick = 0;
LED_MidiInTick[i].tick = 0;
}
#endif
}
///////////////////////////////////////////////////////////////////////////////
// LED MANAGEMENT - Turn ON / OFF A LED (Faster with GPIO functions)
///////////////////////////////////////////////////////////////////////////////
void LED_TurnOn(volatile LEDTick_t *ledTick)
{
gpio_write_bit(PIN_MAP[ledTick->pin].gpio_device, PIN_MAP[ledTick->pin].gpio_bit, LOW);
}
void LED_TurnOff(volatile LEDTick_t *ledTick)
{
gpio_write_bit(PIN_MAP[ledTick->pin].gpio_device, PIN_MAP[ledTick->pin].gpio_bit, HIGH);
}
///////////////////////////////////////////////////////////////////////////////
// LED MANAGEMENT - FLASH A LED DURING LED_TICK_COUNT*TIMER2_RATE_MICROS
///////////////////////////////////////////////////////////////////////////////
boolean LED_Flash(volatile LEDTick_t *ledTick)
{
if ( ! ledTick->tick ) {
gpio_write_bit(PIN_MAP[ledTick->pin].gpio_device, PIN_MAP[ledTick->pin].gpio_bit, LOW);
ledTick->tick = LED_TICK_COUNT;
return true;
}
ledTick->tick = LED_TICK_COUNT;
return false;
}
///////////////////////////////////////////////////////////////////////////////
// LED MANAGEMENT - CHECK TO SWITCH OFF FLASHED LEDS AT TIMER2_RATE_MICROS RATE
///////////////////////////////////////////////////////////////////////////////
void LED_Update()
{
// LED connect
if ( LED_ConnectTick.tick ) {
if ( !( --LED_ConnectTick.tick ) ) {
// LED OFF
gpio_write_bit(PIN_MAP[LED_ConnectTick.pin].gpio_device, PIN_MAP[LED_ConnectTick.pin].gpio_bit, HIGH);
}
}
#ifdef LED_MIDI_SIZE
for (uint8_t i=0 ; i != LED_MIDI_SIZE ; i++ ) {
if ( LED_MidiInTick[i].tick ) {
if ( !(--LED_MidiInTick[i].tick) ) {
// LED OFF
gpio_write_bit(PIN_MAP[LED_MidiInTick[i].pin].gpio_device, PIN_MAP[LED_MidiInTick[i].pin].gpio_bit, HIGH);
}
}
if ( LED_MidiOutTick[i].tick ) {
if ( !(--LED_MidiOutTick[i].tick) ) {
// LED OFF
gpio_write_bit(PIN_MAP[LED_MidiOutTick[i].pin].gpio_device, PIN_MAP[LED_MidiOutTick[i].pin].gpio_bit, HIGH);
}
}
}
#endif
}
///////////////////////////////////////////////////////////////////////////////
// FlashAllLeds . 0 = Alls.
// 1 = In
// 2 = Out
// 3 = (In1,Out1) and so on
///////////////////////////////////////////////////////////////////////////////
void FlashAllLeds(uint8_t mode)
{
for ( uint8_t f=0 ; f!= 4 ; f++ ) {
#ifdef LED_MIDI_SIZE
for ( uint8_t i=0 ; i != LED_MIDI_SIZE ; i++ ) {
if ( mode == 0 || mode ==1 || mode == 3 ) FLASH_LED_IN(i);
if ( mode == 0 || mode ==2 || mode == 3 ) FLASH_LED_OUT(i);
if ( mode == 3 ) delay(250);
}
#else
FLASH_LED_OUT(0);
#endif
delay(100);
}
}
///////////////////////////////////////////////////////////////////////////////
// Send a midi msg to serial. 0 is Serial1.
///////////////////////////////////////////////////////////////////////////////
void SerialMidi_SendMsg(uint8_t *msg, uint8_t serialNo)
{
if (serialNo >= SERIAL_INTERFACE_MAX ) return;
uint8_t msgLen = midiXparser::getMidiStatusMsgLen(msg[0]);
if ( msgLen > 0 ) {
serialHw[serialNo]->write(msg,msgLen);
FLASH_LED_OUT(serialNo);
}
}
///////////////////////////////////////////////////////////////////////////////
// Send a USB midi packet to ad-hoc serial
///////////////////////////////////////////////////////////////////////////////
void SerialMidi_SendPacket(midiPacket_t *pk, uint8_t serialNo)
{
if (serialNo >= SERIAL_INTERFACE_MAX ) return;
uint8_t msgLen = USBMidi::CINToLenTable[pk->packet[0] & 0x0F] ;
if ( msgLen > 0 ) {
serialHw[serialNo]->write(&pk->packet[1],msgLen);
FLASH_LED_OUT(serialNo);
}
}
///////////////////////////////////////////////////////////////////////////////
// Prepare a pseudo packet from serial midi and route it to the right target
///////////////////////////////////////////////////////////////////////////////
void SerialMidi_RouteMsg( uint8_t cable, midiXparser* xpMidi )
{
midiPacket_t pk = { .i = 0 };
uint8_t msgLen = xpMidi->getMidiMsgLen();
uint8_t msgType = xpMidi->getMidiMsgType();
pk.packet[0] = cable << 4;
memcpy(&pk.packet[1],&(xpMidi->getMidiMsg()[0]),msgLen);
// Real time single byte message CIN F->
if ( msgType == midiXparser::realTimeMsgTypeMsk ) pk.packet[0] += 0xF;
else
// Channel voice message => CIN A-E
if ( msgType == midiXparser::channelVoiceMsgTypeMsk )
pk.packet[0] += ( (xpMidi->getMidiMsg()[0]) >> 4);
else
// System common message CIN 2-3
if ( msgType == midiXparser::systemCommonMsgTypeMsk ) {
// 5 - single-byte system common message (Tune request is the only case)
if ( msgLen == 1 ) pk.packet[0] += 5;
// 2/3 - two/three bytes system common message
else pk.packet[0] += msgLen;
}
else return; // We should never be here !
RoutePacketToTarget( PORT_TYPE_JACK,&pk);
}
///////////////////////////////////////////////////////////////////////////////
// Parse sysex flows and make a packet for USB
// ----------------------------------------------------------------------------
// We use the midiXparser 'on the fly' mode, allowing to tag bytes as "captured"
// when they belong to a midi SYSEX message, without storing them in a buffer.
///////////////////////////////////////////////////////////////////////////////
void SerialMidi_RouteSysEx( uint8_t cable, midiXparser* xpMidi )
{
static midiPacket_t pk[SERIAL_INTERFACE_MAX];
static uint8_t packetLen[SERIAL_INTERFACE_MAX];
static bool firstCall = true;
uint8_t readByte = xpMidi->getByte();
// Initialize everything at the first call
if (firstCall ) {
firstCall = false;
memset(pk,0,sizeof(midiPacket_t)*SERIAL_INTERFACE_MAX);
memset(packetLen,0,sizeof(uint8_t)*SERIAL_INTERFACE_MAX);
}
// Normal End of SysEx or : End of SysEx with error.
// Force clean end of SYSEX as the midi usb driver
// will not understand if we send the packet as is
if ( xpMidi->wasSysExMode() ) {
// Force the eox byte in case we have a SYSEX error.
packetLen[cable]++;
pk[cable].packet[ packetLen[cable] ] = midiXparser::eoxStatus;
// CIN = 5/6/7 sysex ends with one/two/three bytes,
pk[cable].packet[0] = (cable << 4) + (packetLen[cable] + 4) ;
RoutePacketToTarget( PORT_TYPE_JACK,&pk[cable]);
packetLen[cable] = 0;
pk[cable].i = 0;
return;
} else
// Fill USB sysex packet
if ( xpMidi->isSysExMode() ) {
packetLen[cable]++;
pk[cable].packet[ packetLen[cable] ] = readByte ;
// Packet complete ?
if (packetLen[cable] == 3 ) {
pk[cable].packet[0] = (cable << 4) + 4 ; // Sysex start or continue
RoutePacketToTarget( PORT_TYPE_JACK,&pk[cable]);
packetLen[cable] = 0;
pk[cable].i = 0;
}
}
}
///////////////////////////////////////////////////////////////////////////////
// THE MIDI PACKET ROUTER
//-----------------------------------------------------------------------------
// Route a packet from a midi IN jack / USB OUT to
// a midi OUT jacks / USB IN or I2C remote serial midi on another device
///////////////////////////////////////////////////////////////////////////////
void RoutePacketToTarget(uint8_t portType, midiPacket_t *pk)
{
if ( portType != PORT_TYPE_CABLE && portType != PORT_TYPE_JACK && portType != PORT_TYPE_VIRTUAL) return;
// NB : we use the same routine to route USB and jack serial/ I2C .
// The Cable can be the serial port # if coming from local serial
uint8_t port = pk->packet[0] >> 4;
uint8_t cin = pk->packet[0] & 0x0F ;
// ROUTING rules masks
uint16_t cbInTargets = 0;
uint16_t jkOutTargets = 0;
uint16_t vrInTargets = 0;
uint8_t attachedSlot = 0;
// Save midiIthruActive state as it could be changed in an interrupt
boolean ithru = midiIthruActive;
FLASH_LED_IN(port);
// A midi packet from physical serial jack ?
if ( portType == PORT_TYPE_JACK ) {
// Check at the physical level (i.e. not the bus)
if ( port >= SERIAL_INTERFACE_MAX ) return;
// If bus mode active, the local port# must be translated according
// to the device Id, before routing
if (EE_Prm.I2C_BusModeState == B_ENABLED ) {
port = GET_BUS_SERIALNO_FROM_LOCALDEV(EE_Prm.I2C_DeviceId,port);
// Rebuild packet header with source port translated
pk->packet[0] = cin + ( port << 4) ;
}
// IntelliThru active ? If so, take the good routing rules
if ( ithru ) {
jkOutTargets = EE_Prm.rtRulesIthru[port].jkOutTgMsk;
vrInTargets = EE_Prm.rtRulesIthru[port].vrInTgMsk;
attachedSlot = EE_Prm.rtRulesIthru[port].slot;
}
// else Standard jack rules
else {
cbInTargets = EE_Prm.rtRulesJack[port].cbInTgMsk;
jkOutTargets = EE_Prm.rtRulesJack[port].jkOutTgMsk;
vrInTargets = EE_Prm.rtRulesJack[port].vrInTgMsk;
attachedSlot = EE_Prm.rtRulesJack[port].slot;
}
}
// A midi packet from USB cable out ?
else if ( portType == PORT_TYPE_CABLE ) {
if ( port >= UsbCableInterfaceMax ) return;
cbInTargets = EE_Prm.rtRulesCable[port].cbInTgMsk;
jkOutTargets = EE_Prm.rtRulesCable[port].jkOutTgMsk;
vrInTargets = EE_Prm.rtRulesCable[port].vrInTgMsk;
attachedSlot = EE_Prm.rtRulesCable[port].slot;
}
// A midi packet from a virtual port ?
else if ( portType == PORT_TYPE_VIRTUAL ) {
if ( port >= VIRTUAL_INTERFACE_MAX ) return;
cbInTargets = EE_Prm.rtRulesVirtual[port].cbInTgMsk;
jkOutTargets = EE_Prm.rtRulesVirtual[port].jkOutTgMsk;
attachedSlot = EE_Prm.rtRulesVirtual[port].slot;
}
// Sysex is a particular case when routing or modifying packets.
// Internal sysex must be sent to Jack/Cable port 0. These ports 0 must be ALWAYS
// available whatever routing is to insure that internal sysex will be always interpreted.
// Internal sysex packets can't be looped back, because that will corrupt the flow.
// A slave must not interpret sysex when active on bus to stay synchronized with the master.
// The port#0 is mandatory a port of the master or a port of a slave without bus.
// Only virtual port can be 0 when bus mode active.
if (port == 0 && portType != PORT_TYPE_VIRTUAL && !slotLockMsk) {
// CIN 5 exception : tune request. It is not a sysex packet !
if ( cin <= 7 && cin >= 4 && pk->packet[1] != midiXparser::tuneRequestStatus) {
if (SysExInternal_Parse(portType, pk,globalDataBuffer))
SysExInternal_Process(portType,globalDataBuffer);
}
}
// 1/ Apply pipeline if any. Drop packet if a pipe returned false
if ( attachedSlot && !TransPacketPipelineExec(portType, attachedSlot, pk) ) return ;
// 2/ Apply virtual port routing if a target match
uint8_t t=0;
while ( vrInTargets && t != VIRTUAL_INTERFACE_MAX ) {
if ( vrInTargets & 1 ) {
midiPacket_t pk2 = { .i = pk->i }; // packet copy
pk2.packet[0] = ( t << 4 ) + cin;
RoutePacketToTarget(PORT_TYPE_VIRTUAL, &pk2);
}
t++; vrInTargets >>= 1;
}
// 3/ Apply serial jack routing if a target match
t=0;
while ( jkOutTargets && t != SERIAL_INTERFACE_COUNT ) {
if ( jkOutTargets & 1 ) {
// Route via the bus or local serial if bus mode disabled
if (EE_Prm.I2C_BusModeState == B_ENABLED ) I2C_BusSerialSendMidiPacket(pk, t);
else SerialMidi_SendPacket(pk,t);
}
t++; jkOutTargets >>= 1;
}
// Stop here if IntelliThru active (no USB active but maybe connected)
// or no USB connection (owned by the master).
// If we are a slave, the master should have notified us
// Intellithru is always activated by the master in bus mode!.
if ( ithru || !midiUSBCx ) return;
// 4/ Apply cable routing rules only if USB connected and thru mode inactive
t=0;
while ( cbInTargets && t != UsbCableInterfaceMax ) {
if ( cbInTargets & 1 ) {
midiPacket_t pk2 = { .i = pk->i }; // packet copy to change the dest cable
pk2.packet[0] = ( t << 4 ) + cin;
// Only the master has USB midi privilege in bus MODE
// Everybody else if an usb connection is active
if ( !(IS_SLAVE && IS_BUS_E) ) {
MidiUSB.writePacket(&pk2.i);
} else
// A slave in bus mode ?
// We need to add a master packet to the Master's queue.
{
masterMidiPacket_t mpk;
mpk.mpk.dest = PORT_TYPE_CABLE;
// Copy the midi packet to the master packet
mpk.mpk.pk.i = pk2.i;
I2C_QPacketsToMaster.write(mpk.packet,sizeof(masterMidiPacket_t));
}
}
t++; cbInTargets >>= 1;
}
// All Routing Done !
}
///////////////////////////////////////////////////////////////////////////////
// MIDI CLOCK GENERATOR TO VIRTUAL PORTS
// Clocks are mandatory attached to their respective virtual port.
///////////////////////////////////////////////////////////////////////////////
void MidiClockGenerator()
{
static unsigned long nextMTCFrameTick = 0;
uint8_t frameByte = 0;
boolean sendMTC = false;
// MTC Frame byte
if ( micros() > nextMTCFrameTick ) {
nextMTCFrameTick = micros() + MTC_FRAME_TICK;
frameByte = MidiTimeCodeGetFrameByte();
sendMTC = true;
}
for ( uint8_t i = 0 ; i != MIDI_CLOCKGEN_MAX ; i++ ) {
// MTC
if ( EE_Prm.bpmClocks[i].mtc && sendMTC ) {
midiPacket_t MtcPk = {.packet = { (uint8_t)(0x02 + (i<<4)),0XF1, frameByte,0x00 } };
RoutePacketToTarget(PORT_TYPE_VIRTUAL, &MtcPk);
}
// Midi Clock
if ( EE_Prm.bpmClocks[i].enabled ) {
// Generate a midi timingClock status packet
if ( micros() > bpmTicks[i].nextBpmTick ) {
// Change virtual port clk 0 to port 0, clk1 port1, ...
midiPacket_t timingClockPk = { .packet= {0x0F ,0XF8,0,0} };
timingClockPk.packet[0] += (i<< 4);
RoutePacketToTarget(PORT_TYPE_VIRTUAL, &timingClockPk);
bpmTicks[i].nextBpmTick += bpmTicks[i].tickBpm ;
}
}
}
}
///////////////////////////////////////////////////////////////////////////////
// Set a midi clock bpm or 7F for all.
///////////////////////////////////////////////////////////////////////////////
boolean SetMidiBpmClock(uint8_t clockNo, uint16_t bpm)
{
if (clockNo != 0x7F && clockNo >= MIDI_CLOCKGEN_MAX ) return false;
if ( (bpm != 0 && bpm < MIN_BPM) || bpm > MAX_BPM ) return false;
if ( clockNo == 0x7F) {
for ( uint8_t i=0 ; i !=MIDI_CLOCKGEN_MAX ; i++ ) {
// If bpm = 0, then current bpm is kept.
if (bpm) EE_Prm.bpmClocks[i].bpm = bpm;
bpmTicks[i].tickBpm = ( (60000000 / EE_Prm.bpmClocks[i].bpm ) / 24 ) * 10;
bpmTicks[i].nextBpmTick = micros() + bpmTicks[i].tickBpm;
}
return true;
}
// a valid bpm value is required here
if (! bpm) return false;
EE_Prm.bpmClocks[clockNo].bpm = bpm;
bpmTicks[clockNo].tickBpm = ( (60000000 / EE_Prm.bpmClocks[clockNo].bpm ) / 24 ) * 10;
bpmTicks[clockNo].nextBpmTick = micros() + bpmTicks[clockNo].tickBpm;
return true;
}
///////////////////////////////////////////////////////////////////////////////
// Enable/Disable a midi clock or 7F for all .
///////////////////////////////////////////////////////////////////////////////
boolean SetMidiEnableClock(uint8_t clockNo, boolean enable)
{
if (clockNo != 0x7F && clockNo >= MIDI_CLOCKGEN_MAX ) return false;
if ( clockNo == 0x7F) {
for ( uint8_t i=0 ; i !=MIDI_CLOCKGEN_MAX ; i++ ) {
EE_Prm.bpmClocks[i].enabled = enable;
bpmTicks[i].nextBpmTick = micros() + bpmTicks[i].tickBpm;
}
return true;
}
bpmTicks[clockNo].nextBpmTick = micros() + bpmTicks[clockNo].tickBpm;
EE_Prm.bpmClocks[clockNo].enabled = enable;
return true;
}
///////////////////////////////////////////////////////////////////////////////
// Generate the midi time code (MTC) frame byte
///////////////////////////////////////////////////////////////////////////////
uint8_t MidiTimeCodeGetFrameByte()
{
//static unsigned long nextFrameTick = 0;
static uint8_t hh=0, mm=0 , ss=0, frmType=0, frmCount=0;
// MTC packet F1 0nnn dddd
// 0nnn = frame Type - dddd = 4 bits data
uint8_t frameByte = 0;
// frame type
frameByte = frmType << 4;
// 0 = Frame count LS nibble
if ( frmType == 0 ) frameByte += frmCount & 0x0F ;
// 1 = Frame count MS nibble
else if ( frmType == 1 ) frameByte += frmCount >> 4 ;
// 2 = Seconds LS nibble
else if ( frmType == 2 ) frameByte += ss & 0x0F ;
// 3 = Seconds count MS nibble
else if ( frmType == 3 ) frameByte += ss >> 4 ;
// 4 = Minutes count LS nibble
else if ( frmType == 4 ) frameByte += mm & 0x0F ;
// 5 = Minutes count MS nibble
else if ( frmType == 5 ) frameByte += mm >> 4 ;
// 6 = Hours count LS nibble
else if ( frmType == 6 ) frameByte += hh & 0x0F ;
// 7 = Hours count MS nibble and SMPTE Type : 0nnn x yy d
// Where nnn is 7. x is unused and set to 0.
// d is bit 4 of the Hours Time. yy tells the SMPTE Type as follows:
// 0 = 24 fps, 1 = 25 fps, 2 = 30 fps (Drop-Frame), 3 = 30 fps
if ( frmType++ == 7 ) { frameByte += (hh >> 4) + (MTC_SMPTE_TYPE<<1) ; frmType = 0; }
if ( ++frmCount == MTC_FPS ) { frmCount = 0 ;
if ( ++ss > 59 ) { ss = 0 ;
if ( ++mm > 59 ) { mm = 0 ;
if ( ++hh > 23 ) hh = 0;
} //mm
} // ss
} //frmCount
return frameByte;
}
///////////////////////////////////////////////////////////////////////////////
// Reset routing rules to default factory
// ROUTING_RESET_ALL : Factory defaults
// ROUTING_RESET_MIDIUSB : Midi USB , serial, virtual routing to defaults
// ROUTING_RESET_INTELLITHRU : Intellithru to factory defaults
// ROUTING_INTELLITHRU_OFF : Stop IntelliThru
// ROUTING_CLEAR_ALL : Erase all routing and pipeline rules
///////////////////////////////////////////////////////////////////////////////
void ResetMidiRoutingRules(uint8_t mode)
{
// Clear all pipelines slots
if (mode == ROUTING_RESET_ALL || mode == ROUTING_CLEAR_ALL ) {
TransPacketPipeline_ClearSlot(0x7F);
}
if (mode == ROUTING_RESET_ALL || mode == ROUTING_RESET_MIDIUSB || mode == ROUTING_CLEAR_ALL ) {
// Virtual
for ( uint8_t i = 0 ; i != VIRTUAL_INTERFACE_MAX ; i++ ) {
EE_Prm.rtRulesVirtual[i].slot = 0;
EE_Prm.rtRulesVirtual[i].cbInTgMsk = 0 ;
EE_Prm.rtRulesVirtual[i].jkOutTgMsk = 0 ;
}
}
if (mode == ROUTING_CLEAR_ALL ) {
for ( uint8_t i = 0 ; i != UsbCableInterfaceMax ; i++ ) {
// Cables
EE_Prm.rtRulesCable[i].slot = 0;
EE_Prm.rtRulesCable[i].cbInTgMsk = 0 ;
EE_Prm.rtRulesCable[i].jkOutTgMsk = 0 ;
EE_Prm.rtRulesCable[i].vrInTgMsk = 0 ;
}
// Jack serial
for ( uint8_t i = 0 ; i != B_SERIAL_INTERFACE_MAX ; i++ ) {
EE_Prm.rtRulesJack[i].slot = 0;
EE_Prm.rtRulesJack[i].cbInTgMsk = 0 ;
EE_Prm.rtRulesJack[i].jkOutTgMsk = 0 ;
EE_Prm.rtRulesJack[i].vrInTgMsk = 0 ;
}
// "Intelligent thru" serial mode
for ( uint8_t i = 0 ; i != B_SERIAL_INTERFACE_MAX ; i++ ) {
EE_Prm.rtRulesIthru[i].slot = 0;
EE_Prm.rtRulesIthru[i].jkOutTgMsk = 0 ;
EE_Prm.rtRulesIthru[i].vrInTgMsk = 0 ;
}
EE_Prm.ithruJackInMsk = 0;
EE_Prm.ithruUSBIdleTimePeriod = DEFAULT_ITHRU_USB_IDLE_TIME_PERIOD ;
}
if (mode == ROUTING_RESET_ALL || mode == ROUTING_RESET_MIDIUSB) {
for ( uint8_t i = 0 ; i != UsbCableInterfaceMax ; i++ ) {
// Cables
EE_Prm.rtRulesCable[i].slot = 0;
EE_Prm.rtRulesCable[i].cbInTgMsk = 0 ;
EE_Prm.rtRulesCable[i].jkOutTgMsk = 1 << i ;
EE_Prm.rtRulesCable[i].vrInTgMsk = 0 ;
}
for ( uint8_t i = 0 ; i != B_SERIAL_INTERFACE_MAX ; i++ ) {
// Jack serial
EE_Prm.rtRulesJack[i].slot = 0;
EE_Prm.rtRulesJack[i].cbInTgMsk = 1 << i ;
EE_Prm.rtRulesJack[i].jkOutTgMsk = 0 ;
EE_Prm.rtRulesJack[i].vrInTgMsk = 0 ;
}
}
if (mode == ROUTING_RESET_ALL || mode == ROUTING_RESET_INTELLITHRU) {
// "Intelligent thru" serial mode
for ( uint8_t i = 0 ; i != B_SERIAL_INTERFACE_MAX ; i++ ) {
EE_Prm.rtRulesIthru[i].slot = 0;
EE_Prm.rtRulesIthru[i].jkOutTgMsk = 0 ;
EE_Prm.rtRulesIthru[i].vrInTgMsk = 0 ;
}
// Default IN 1 -> OUT 1,2 (split) , IN 2,3 -> OUT 3 (merge)
EE_Prm.rtRulesIthru[0].jkOutTgMsk = B0011 ;
EE_Prm.rtRulesIthru[1].jkOutTgMsk = B0100 ;
EE_Prm.rtRulesIthru[2].jkOutTgMsk = B0100 ;
EE_Prm.ithruJackInMsk = 0;
EE_Prm.ithruUSBIdleTimePeriod = DEFAULT_ITHRU_USB_IDLE_TIME_PERIOD ;
}
}
///////////////////////////////////////////////////////////////////////////////
// Send a SYSEX midi message to USB Cable 0
///////////////////////////////////////////////////////////////////////////////
boolean USBMidi_SendSysExPacket( uint8_t cable, const uint8_t sxBuff[],uint16_t sz)
{
midiPacket_t pk { .i = 0};
uint8_t b=0;
bool startSx=false;
bool endSx=false;
if (cable > 0x0F) return false;
if ( sxBuff[0] != 0xF0 || sxBuff[sz-1] != 0xF7) return false;
// Build sysex packets
// Multiple Sysyex messages can be embedded in the buffer :
// F0 nn ... nn F7 F0 nn ... nn F7 so we have to care about that.
for ( uint16_t i = 0; i != sz ; i ++ ) {
// Check integrity
if ( sxBuff[i] == 0xF0) startSx = true;
if ( sxBuff[i] == 0xF7) endSx = true;
if (startSx) {
pk.packet[++b] = sxBuff[i];
if ( b == 3 || endSx ) {
pk.packet[0] = (endSx ? b + 4 : 4 ) + (cable << 4);
MidiUSB.writePacket(&pk.i);
if (endSx) startSx = endSx = false;
b=0; pk.i = 0;
}
}
}
FLASH_LED_OUT(0);
return true;
}
///////////////////////////////////////////////////////////////////////////////
// Get/ Set magic boot mode
// DR5 backup register is used for UMK4x4
///////////////////////////////////////////////////////////////////////////////
uint16_t GetAndClearBootMagicWord()
{
uint16_t magicWord = 0x0000;
RCC_BASE->APB1ENR |= (RCC_APB1ENR_BKPEN | RCC_APB1ENR_PWREN) ;
// read magic word in register register
magicWord = BKP_BASE->BOOT_REGISTER ;
// Reset magic word
// Enable write access to the backup registers and the RTC
PWR_BASE->CR |= PWR_CR_DBP;
// write register
BKP_BASE->BOOT_REGISTER = BOOT_MIDI_MAGIC; // Default;
// Disable write
PWR_BASE->CR &= ~PWR_CR_DBP;
RCC_BASE->APB1ENR &= ~(RCC_APB1ENR_BKPEN | RCC_APB1ENR_PWREN) ;
return magicWord;
}
void SetBootMagicWord(uint16_t magicWord)
{
if ( magicWord != BOOT_BTL_MAGIC &&
magicWord != BOOT_CONFIG_MAGIC &&
magicWord != BOOT_MIDI_MAGIC )
return;
// global
bootMagicWord = magicWord;
// Write the Magic word bootloader
RCC_BASE->APB1ENR |= (RCC_APB1ENR_BKPEN | RCC_APB1ENR_PWREN) ;
// Enable write access to the backup registers and the RTC
PWR_BASE->CR |= PWR_CR_DBP;
// write register
// if bootloader then write hid_boolaoder magic word to DR4/10
// Write also DR5 to come back to config mode.
if (magicWord == BOOT_BTL_MAGIC ) {
BKP_BASE->BOOT_BTL_REGISTER = BOOT_BTL_MAGIC;
BKP_BASE->BOOT_REGISTER = BOOT_CONFIG_MAGIC;
}
// usual case. No Wait.
else {
BKP_BASE->BOOT_BTL_REGISTER = BOOT_BTL_MAGIC_NOWAIT;
BKP_BASE->BOOT_REGISTER = bootMagicWord;
}
// Disable write
PWR_BASE->CR &= ~PWR_CR_DBP;
RCC_BASE->APB1ENR &= ~(RCC_APB1ENR_BKPEN | RCC_APB1ENR_PWREN) ;
}
///////////////////////////////////////////////////////////////////////////////
// Check what is the current boot mode.
// Will never come back if config mode.
///////////////////////////////////////////////////////////////////////////////
void CheckBootMode()
{
// Does the config menu boot mode is active ?
// if so, prepare the next boot in MIDI mode and jump to menu
// Read the boot magic word if default.
// If a new build was uploaded, we force config mode.
if (bootMagicWord == BOOT_CONFIG_MAGIC || GetAndClearBootMagicWord() == BOOT_CONFIG_MAGIC) {
// Next boot on Midi
SetBootMagicWord(BOOT_MIDI_MAGIC);
#ifdef HAS_MIDITECH_HARDWARE
// Assert DISC PIN (PA8 usually for Miditech) to enable USB
gpio_set_mode(PIN_MAP[PA8].gpio_device, PIN_MAP[PA8].gpio_bit, GPIO_OUTPUT_PP);
gpio_write_bit(PIN_MAP[PA8].gpio_device, PIN_MAP[PA8].gpio_bit, 1);
#endif
// start USB serial
Serial.begin(115200);
delay(500);
// Start Wire as a master for config & tests purpose in the menu
Wire.begin();
Wire.setClock(B_FREQ) ;
// wait for a serial monitor to be connected.
// 3 short flash
while (!Serial) {
LED_Flash(&LED_ConnectTick);delay(300);
LED_Flash(&LED_ConnectTick);delay(300);
LED_Flash(&LED_ConnectTick);delay(300);
}
digitalWrite(LED_CONNECT, LOW);
ShowConfigMenu(); // INFINITE LOOP
}
}
///////////////////////////////////////////////////////////////////////////////
// MIDI USB initiate connection if master
// + Set USB descriptor strings
///////////////////////////////////////////////////////////////////////////////
void USBMidi_Init(uint8_t nbports)
{
usb_midi_init_descriptor_config(nbports);
usb_midi_set_vid_pid(EE_Prm.vendorID,EE_Prm.productID);
usb_midi_set_product_string((char *) &EE_Prm.productString);
LED_TurnOff(&LED_ConnectTick);
MidiUSB.begin() ;
// Note : Usually around 4 s to fully detect USB Midi on the host
unsigned long USBIdleMillis = millis() + ithruUSBIdlelMillis ;
// Note : Usually around 4 s to fully detect USB Midi on the host
while (! MidiUSB.isConnected() ) {
FlashAllLeds(3);
if ( millis() > USBIdleMillis ) break ;
}
}
///////////////////////////////////////////////////////////////////////////////
// MIDI USB Loop Process
///////////////////////////////////////////////////////////////////////////////
void USBMidi_Process()
{
// Try to connect/reconnect USB if we detect a high level on USBDM
// This is to manage the case of a powered device without USB active or suspend mode for ex.
static unsigned long ledCxMillis = 0;
static unsigned long lastPacketMillis = 0;
if ( MidiUSB.isConnected() ) {
unsigned long lastPollMillis = millis();
if (lastPollMillis > ledCxMillis ) {
LED_TurnOn(&LED_ConnectTick);
ledCxMillis = lastPollMillis + LED_CONNECT_USB_RECOVER_TIME_MILLIS;
}
midiUSBCx = true;
// Do we have a MIDI USB packet available ?
if ( MidiUSB.available() ) {
lastPacketMillis = lastPollMillis ;
ledCxMillis = lastPollMillis + LED_CONNECT_USB_RECOVER_TIME_MILLIS;
midiUSBIdle = false;
midiIthruActive = false;
// Read a Midi USB packet .
if ( !isSerialBusy ) {
midiPacket_t pk ;
pk.i = MidiUSB.readPacket();
RoutePacketToTarget( PORT_TYPE_CABLE, &pk );
} else {
isSerialBusy = false ;
}
}
else
if (!midiUSBIdle && lastPollMillis > ( lastPacketMillis + ithruUSBIdlelMillis ) )
midiUSBIdle = true;
}
// Are we physically connected to USB
else {
if (midiUSBCx) LED_TurnOff(&LED_ConnectTick);
midiUSBCx = false;
midiUSBIdle = true;
}
if ( midiUSBIdle && !midiIthruActive && EE_Prm.ithruJackInMsk) {
midiIthruActive = true;
FlashAllLeds(0); // All leds when Midi intellithru mode active
}
}
///////////////////////////////////////////////////////////////////////////////
// MIDI SERIAL Loop Process
///////////////////////////////////////////////////////////////////////////////
void SerialMidi_Process()
{
// LOCAL SERIAL JACK MIDI IN PROCESS
for ( uint8_t s = 0; s< SERIAL_INTERFACE_MAX ; s++ )
{
// Do we have any MIDI msg on Serial 1 to n ?
if ( serialHw[s]->available() ) {
if ( midiSerial[s].parse( serialHw[s]->read() ) ) {
// We manage sysEx "on the fly". Clean end of a sysexe msg ?
if ( midiSerial[s].getMidiMsgType() == midiXparser::sysExMsgTypeMsk )
SerialMidi_RouteSysEx(s, &midiSerial[s]) ;
// Not a sysex. The message is complete.
else {
SerialMidi_RouteMsg( s, &midiSerial[s]);
}
}
else
// Acknowledge any sysex error
if ( midiSerial[s].isSysExError() )
SerialMidi_RouteSysEx(s, &midiSerial[s]) ;