-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset.py
58 lines (48 loc) · 1.56 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import numpy as np
import random
import torchvision
import torch
# Dataset iterator
def inf_train_gen(n_samples):
scale = 3
num_samples = n_samples
centers = [
(0, 0, 0),
(1, 1, 0),
(1, -1, 0),
(1, 0, 1),
(1 , 0, -1),
#(-1, 1, 0),
#(-1, -1, 0 ),
#(-1, 0, 1),
#(-1, 0, -1),
]
centers = [(scale * x, scale * y, scale * z ) for x, y, z in centers]
#while True:
dataset = []
for i in range(num_samples):
point = np.random.randn(3) * 0.2
point[2] = point[2]*random.choice([1,-1])
center = random.choice(centers)
point[0] += center[0]
point[1] += center[1]
point[2] += center[2]
dataset.append(point)
dataset = np.array(dataset, dtype='float32')
dataset /= 1.414 # stdev
return dataset
def mnist_loader():
#Converting data to torch.FloatTensor
transform = torchvision.transforms.ToTensor()
# Download the training and test datasets
train_data = torchvision.datasets.MNIST(root='data', train=True, download=True, transform=transform)
test_data = torchvision.datasets.MNIST(root='data', train=False, download=True, transform=transform)
train_loader = torch.utils.data.DataLoader(train_data, batch_size=1000, num_workers=0)
test_loader = torch.utils.data.DataLoader(test_data, batch_size=1000, num_workers=0)
print(len(test_data))
print(len(train_data))
classes = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9']
# dataiter = iter(train_loader)
# images, labels = dataiter.next()
# images = images.numpy()
return train_data, test_data, classes