-
Notifications
You must be signed in to change notification settings - Fork 0
/
searchAgents.py
716 lines (599 loc) · 27.3 KB
/
searchAgents.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
# searchAgents.py
# ---------------
# Licensing Information: You are free to use or extend these projects for
# educational purposes provided that (1) you do not distribute or publish
# solutions, (2) you retain this notice, and (3) you provide clear
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
#
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
# The core projects and autograders were primarily created by John DeNero
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
# Student side autograding was added by Brad Miller, Nick Hay, and
# Pieter Abbeel (pabbeel@cs.berkeley.edu).
"""
This file contains all of the agents that can be selected to control Pacman. To
select an agent, use the '-p' option when running pacman.py. Arguments can be
passed to your agent using '-a'. For example, to load a SearchAgent that uses
depth first search (dfs), run the following command:
> python pacman.py -p SearchAgent -a fn=depthFirstSearch
Commands to invoke other search strategies can be found in the project
description.
Please only change the parts of the file you are asked to. Look for the lines
that say
"*** YOUR CODE HERE ***"
The parts you fill in start about 3/4 of the way down. Follow the project
description for details.
Good luck and happy searching!
"""
from game import Directions
from game import Agent
from game import Actions
import util
import time
import search
class GoWestAgent(Agent):
"An agent that goes West until it can't."
def getAction(self, state):
"The agent receives a GameState (defined in pacman.py)."
if Directions.WEST in state.getLegalPacmanActions():
return Directions.WEST
else:
return Directions.STOP
#######################################################
# This portion is written for you, but will only work #
# after you fill in parts of search.py #
#######################################################
class SearchAgent(Agent):
"""
This very general search agent finds a path using a supplied search
algorithm for a supplied search problem, then returns actions to follow that
path.
As a default, this agent runs DFS on a PositionSearchProblem to find
location (1,1)
Options for fn include:
depthFirstSearch or dfs
breadthFirstSearch or bfs
Note: You should NOT change any code in SearchAgent
"""
def __init__(self, fn='depthFirstSearch', prob='PositionSearchProblem', heuristic='nullHeuristic'):
# Warning: some advanced Python magic is employed below to find the right functions and problems
# Get the search function from the name and heuristic
if fn not in dir(search):
raise AttributeError(fn + ' is not a search function in search.py.')
func = getattr(search, fn)
if 'heuristic' not in func.__code__.co_varnames:
print('[SearchAgent] using function ' + fn)
self.searchFunction = func
else:
if heuristic in globals().keys():
heur = globals()[heuristic]
elif heuristic in dir(search):
heur = getattr(search, heuristic)
else:
raise AttributeError(heuristic + ' is not a function in searchAgents.py or search.py.')
print('[SearchAgent] using function %s and heuristic %s' % (fn, heuristic))
# Note: this bit of Python trickery combines the search algorithm and the heuristic
self.searchFunction = lambda x: func(x, heuristic=heur)
# Get the search problem type from the name
if prob not in globals().keys() or not prob.endswith('Problem'):
raise AttributeError(prob + ' is not a search problem type in SearchAgents.py.')
self.searchType = globals()[prob]
print('[SearchAgent] using problem type ' + prob)
def registerInitialState(self, state):
"""
This is the first time that the agent sees the layout of the game
board. Here, we choose a path to the goal. In this phase, the agent
should compute the path to the goal and store it in a local variable.
All of the work is done in this method!
state: a GameState object (pacman.py)
"""
if self.searchFunction == None: raise Exception("No search function provided for SearchAgent")
starttime = time.time()
problem = self.searchType(state) # Makes a new search problem
self.actions = self.searchFunction(problem) # Find a path
totalCost = problem.getCostOfActionSequence(self.actions)
print('Path found with total cost of %d in %.1f seconds' % (totalCost, time.time() - starttime))
if '_expanded' in dir(problem): print('Search nodes expanded: %d' % problem._expanded)
def getAction(self, state):
"""
Returns the next action in the path chosen earlier (in
registerInitialState). Return Directions.STOP if there is no further
action to take.
state: a GameState object (pacman.py)
"""
if 'actionIndex' not in dir(self): self.actionIndex = 0
i = self.actionIndex
self.actionIndex += 1
if i < len(self.actions):
return self.actions[i]
else:
return Directions.STOP
class PositionSearchProblem(search.SearchProblem):
"""
A search problem defines the state space, start state, goal test, child
function and cost function. This search problem can be used to find paths
to a particular point on the pacman board.
The state space consists of (x,y) positions in a pacman game.
Note: this search problem is fully specified; you should NOT change it.
"""
def __init__(self, gameState, costFn = lambda x: 1, goal=(1,1), start=None, warn=True, visualize=True):
"""
Stores the start and goal.
gameState: A GameState object (pacman.py)
costFn: A function from a search state (tuple) to a non-negative number
goal: A position in the gameState
"""
self.walls = gameState.getWalls()
self.startState = gameState.getPacmanPosition()
if start != None: self.startState = start
self.goal = goal
self.costFn = costFn
self.visualize = visualize
if warn and (gameState.getNumFood() != 1 or not gameState.hasFood(*goal)):
print('Warning: this does not look like a regular search maze')
# For display purposes
self._visited, self._visitedlist, self._expanded = {}, [], 0 # DO NOT CHANGE
def getStartState(self):
return self.startState
def isGoalState(self, state):
isGoal = state == self.goal
# For display purposes only
if isGoal and self.visualize:
self._visitedlist.append(state)
import __main__
if '_display' in dir(__main__):
if 'drawExpandedCells' in dir(__main__._display): #@UndefinedVariable
__main__._display.drawExpandedCells(self._visitedlist) #@UndefinedVariable
return isGoal
def expand(self, state):
"""
Returns child states, the actions they require, and a cost of 1.
As noted in search.py:
For a given state, this should return a list of triples,
(child, action, stepCost), where 'child' is a
child to the current state, 'action' is the action
required to get there, and 'stepCost' is the incremental
cost of expanding to that child
"""
children = []
for action in self.getActions(state):
nextState = self.getNextState(state, action)
cost = self.getActionCost(state, action, nextState)
children.append( ( nextState, action, cost) )
# Bookkeeping for display purposes
self._expanded += 1 # DO NOT CHANGE
if state not in self._visited:
self._visited[state] = True
self._visitedlist.append(state)
return children
def getActions(self, state):
possible_directions = [Directions.NORTH, Directions.SOUTH, Directions.EAST, Directions.WEST]
valid_actions_from_state = []
for action in possible_directions:
x, y = state
dx, dy = Actions.directionToVector(action)
nextx, nexty = int(x + dx), int(y + dy)
if not self.walls[nextx][nexty]:
valid_actions_from_state.append(action)
return valid_actions_from_state
def getActionCost(self, state, action, next_state):
assert next_state == self.getNextState(state, action), (
"Invalid next state passed to getActionCost().")
return self.costFn(next_state)
def getNextState(self, state, action):
assert action in self.getActions(state), (
"Invalid action passed to getActionCost().")
x, y = state
dx, dy = Actions.directionToVector(action)
nextx, nexty = int(x + dx), int(y + dy)
return (nextx, nexty)
def getCostOfActionSequence(self, actions):
"""
Returns the cost of a particular sequence of actions. If those actions
include an illegal move, return 999999.
"""
if actions == None: return 999999
x,y= self.getStartState()
cost = 0
for action in actions:
# Check figure out the next state and see whether its' legal
dx, dy = Actions.directionToVector(action)
x, y = int(x + dx), int(y + dy)
if self.walls[x][y]: return 999999
cost += self.costFn((x,y))
return cost
class StayEastSearchAgent(SearchAgent):
"""
An agent for position search with a cost function that penalizes being in
positions on the West side of the board.
The cost function for stepping into a position (x,y) is 1/2^x.
"""
def __init__(self):
self.searchFunction = search.uniformCostSearch
costFn = lambda pos: .5 ** pos[0]
self.searchType = lambda state: PositionSearchProblem(state, costFn, (1, 1), None, False)
class StayWestSearchAgent(SearchAgent):
"""
An agent for position search with a cost function that penalizes being in
positions on the East side of the board.
The cost function for stepping into a position (x,y) is 2^x.
"""
def __init__(self):
self.searchFunction = search.uniformCostSearch
costFn = lambda pos: 2 ** pos[0]
self.searchType = lambda state: PositionSearchProblem(state, costFn)
def manhattanHeuristic(position, problem, info={}):
"The Manhattan distance heuristic for a PositionSearchProblem"
xy1 = position
xy2 = problem.goal
return abs(xy1[0] - xy2[0]) + abs(xy1[1] - xy2[1])
def euclideanHeuristic(position, problem, info={}):
"The Euclidean distance heuristic for a PositionSearchProblem"
xy1 = position
xy2 = problem.goal
return ( (xy1[0] - xy2[0]) ** 2 + (xy1[1] - xy2[1]) ** 2 ) ** 0.5
#####################################################
# This portion is incomplete. Time to write code! #
#####################################################
class CornersProblem(search.SearchProblem):
"""
This search problem finds paths through all four corners of a layout.
You must select a suitable state space and child function
"""
def __init__(self, startingGameState):
"""
Stores the walls, pacman's starting position and corners.
"""
self.walls = startingGameState.getWalls()
self.startingPosition = startingGameState.getPacmanPosition()
top, right = self.walls.height-2, self.walls.width-2
self.corners = ((1,1), (1,top), (right, 1), (right, top))
visited = []
for corner in self.corners:
if not startingGameState.hasFood(*corner):
print('Warning: no food in corner ' + str(corner))
# check if it starts on a corner
if self.startingPosition == corner:
pair = (corner, True)
visited.append(pair)
else:
pair = (corner, False)
visited.append(pair)
self._expanded = 0 # DO NOT CHANGE; Number of search nodes expanded
# Please add any code here which you would like to use
# in initializing the problem
self.heuristicInfo = {}
self.beginningState = ( (self.startingPosition), tuple(visited))
def getStartState(self):
"""
Returns the start state (in your state space, not the full Pacman state
space)
"""
return(self.beginningState)
def isGoalState(self, state):
"""
Returns whether this search state is a goal state of the problem.
"""
for corner in state[1]:
if corner[1] == False:
return False
return True
def expand(self, state):
"""
Returns child states, the actions they require, and a cost of 1.
As noted in search.py:
For a given state, this should return a list of triples, (child,
action, stepCost), where 'child' is a child to the current
state, 'action' is the action required to get there, and 'stepCost'
is the incremental cost of expanding to that child
"""
children = []
for action in self.getActions(state):
# Add a child state to the child list if the action is legal
# You should call getActions, getActionCost, and getNextState.
nextState = self.getNextState(state, action)
cost = self.getActionCost(state, action, nextState)
children.append( (nextState, action, cost) )
self._expanded += 1 # DO NOT CHANGE
return children
def getActions(self, state):
possible_directions = [Directions.NORTH, Directions.SOUTH, Directions.EAST, Directions.WEST]
valid_actions_from_state = []
for action in possible_directions:
x, y = state[0]
dx, dy = Actions.directionToVector(action)
nextx, nexty = int(x + dx), int(y + dy)
if not self.walls[nextx][nexty]:
valid_actions_from_state.append(action)
return valid_actions_from_state
def getActionCost(self, state, action, next_state):
assert next_state == self.getNextState(state, action), (
"Invalid next state passed to getActionCost().")
return 1
def getNextState(self, state, action):
assert action in self.getActions(state), (
"Invalid action passed to getActionCost().")
x, y = state[0]
dx, dy = Actions.directionToVector(action)
nextx, nexty = int(x + dx), int(y + dy)
visited = []
for corner in state[1]:
if (nextx, nexty) == corner[0]:
pair = (corner[0], True)
visited.append(pair)
else:
visited.append(corner)
return ((nextx, nexty), tuple(visited))
def getCostOfActionSequence(self, actions):
"""
Returns the cost of a particular sequence of actions. If those actions
include an illegal move, return 999999. This is implemented for you.
"""
if actions == None: return 999999
x,y= self.startingPosition
for action in actions:
dx, dy = Actions.directionToVector(action)
x, y = int(x + dx), int(y + dy)
if self.walls[x][y]: return 999999
return len(actions)
def cornersHeuristic(state, problem):
"""
A heuristic for the CornersProblem that you defined.
state: The current search state
(a data structure you chose in your search problem)
problem: The CornersProblem instance for this layout.
This function should always return a number that is a lower bound on the
shortest path from the state to a goal of the problem; i.e. it should be
admissible (as well as consistent).
"""
corners = problem.corners # These are the corner coordinates
walls = problem.walls # These are the walls of the maze, as a Grid (game.py)
(x, y) = state[0]
countCorners = 0
minimumDistanceToACorner = 0
obstaclesToThatCorner = 0
for cornerState in state[1]:
if cornerState[1] == False:
corner = cornerState[0]
euclid = ((x - corner[0]) ** 2 + (y - corner[1]) ** 2 ) ** 0.5
countCorners += 1
obstacles = 0
# checking for walls
if corner == corners[0]:
if walls[x][y-1]:
obstacles+= 1
if walls[x-1][y]:
obstacles += 1
elif corner == corners[1]:
if walls[x][y+1]:
obstacles += 1
if walls[x-1][y]:
obstacles += 1
elif corner == corners[2]:
if walls[x][y-1]:
obstacles += 1
if walls[x+1][y]:
obstacles += 1
elif corner == corners[3]:
if walls[x][y+1]:
obstacles += 1
if walls[x+1][y]:
obstacles += 1
if minimumDistanceToACorner == 0:
minimumDistanceToACorner = euclid
obstaclesToThatCorner = obstacles
elif minimumDistanceToACorner > euclid and obstacles < obstaclesToThatCorner:
minimumDistanceToACorner = euclid
obstaclesToThatCorner = obstacles
if "cornersExplored" in problem.heuristicInfo:
if countCorners < problem.heuristicInfo["cornersExplored"]:
problem.heuristicInfo["cornersExplored"] = countCorners
elif countCorners > problem.heuristicInfo["cornersExplored"]:
return minimumDistanceToACorner*2
else:
problem.heuristicInfo["cornersExplored"] = countCorners
return minimumDistanceToACorner
class AStarCornersAgent(SearchAgent):
"A SearchAgent for FoodSearchProblem using A* and your foodHeuristic"
def __init__(self):
self.searchFunction = lambda prob: search.aStarSearch(prob, cornersHeuristic)
self.searchType = CornersProblem
class FoodSearchProblem:
"""
A search problem associated with finding the a path that collects all of the
food (dots) in a Pacman game.
A search state in this problem is a tuple ( pacmanPosition, foodGrid ) where
pacmanPosition: a tuple (x,y) of integers specifying Pacman's position
foodGrid: a Grid (see game.py) of either True or False, specifying remaining food
"""
def __init__(self, startingGameState):
self.start = (startingGameState.getPacmanPosition(), startingGameState.getFood(),)
self.walls = startingGameState.getWalls()
self.startingGameState = startingGameState
self._expanded = 0 # DO NOT CHANGE
self.heuristicInfo = {} # A dictionary for the heuristic to store information
def getStartState(self):
return self.start
def isGoalState(self, state):
return state[1].count() == 0
def expand(self, state):
"Returns child states, the actions they require, and a cost of 1."
children = []
self._expanded += 1 # DO NOT CHANGE
for action in self.getActions(state):
next_state = self.getNextState(state, action)
action_cost = self.getActionCost(state, action, next_state)
children.append( ( next_state, action, action_cost) )
return children
def getActions(self, state):
possible_directions = [Directions.NORTH, Directions.SOUTH, Directions.EAST, Directions.WEST]
valid_actions_from_state = []
for action in possible_directions:
x, y = state[0]
dx, dy = Actions.directionToVector(action)
nextx, nexty = int(x + dx), int(y + dy)
if not self.walls[nextx][nexty]:
valid_actions_from_state.append(action)
return valid_actions_from_state
def getActionCost(self, state, action, next_state):
assert next_state == self.getNextState(state, action), (
"Invalid next state passed to getActionCost().")
return 1
def getNextState(self, state, action):
assert action in self.getActions(state), (
"Invalid action passed to getActionCost().")
x, y = state[0]
dx, dy = Actions.directionToVector(action)
nextx, nexty = int(x + dx), int(y + dy)
nextFood = state[1].copy()
nextFood[nextx][nexty] = False
return ((nextx, nexty), nextFood)
def getCostOfActionSequence(self, actions):
"""Returns the cost of a particular sequence of actions. If those actions
include an illegal move, return 999999"""
x,y= self.getStartState()[0]
cost = 0
for action in actions:
# figure out the next state and see whether it's legal
dx, dy = Actions.directionToVector(action)
x, y = int(x + dx), int(y + dy)
if self.walls[x][y]:
return 999999
cost += 1
return cost
class AStarFoodSearchAgent(SearchAgent):
"A SearchAgent for FoodSearchProblem using A* and your foodHeuristic"
def __init__(self):
self.searchFunction = lambda prob: search.aStarSearch(prob, foodHeuristic)
self.searchType = FoodSearchProblem
def foodHeuristic(state, problem):
"""
Your heuristic for the FoodSearchProblem goes here.
This heuristic must be consistent to ensure correctness. First, try to come
up with an admissible heuristic; almost all admissible heuristics will be
consistent as well.
If using A* ever finds a solution that is worse uniform cost search finds,
your heuristic is *not* consistent, and probably not admissible! On the
other hand, inadmissible or inconsistent heuristics may find optimal
solutions, so be careful.
The state is a tuple ( pacmanPosition, foodGrid ) where foodGrid is a Grid
(see game.py) of either True or False. You can call foodGrid.asList() to get
a list of food coordinates instead.
If you want access to info like walls, capsules, etc., you can query the
problem. For example, problem.walls gives you a Grid of where the walls
are.
If you want to *store* information to be reused in other calls to the
heuristic, there is a dictionary called problem.heuristicInfo that you can
use. For example, if you only want to count the walls once and store that
value, try: problem.heuristicInfo['wallCount'] = problem.walls.count()
Subsequent calls to this heuristic can access
problem.heuristicInfo['wallCount']
"""
position, foodGrid = state
minimumDistanceToAPizzaDot = 0
obstaclesToThatPizzaDot = 0
for pizzaDot in foodGrid.asList():
euclid = ((position[0] - pizzaDot[0]) ** 2 + (position[1] - pizzaDot[1]) ** 2 ) ** 0.5
obstacles = 0
if pizzaDot[0] < position[0]:
if (position[0]-1, position[1]) in problem.walls:
obstacles += 1
if pizzaDot[0] > position[0]:
if (position[0]+1, position[1]) in problem.walls:
obstacles += 1
if pizzaDot[1] < position[1]:
if (position[0], position[1]-1) in problem.walls:
obstacles += 1
if pizzaDot[1] > position[1]:
if (position[0], position[1]+1) in problem.walls:
obstacles += 1
if minimumDistanceToAPizzaDot == 0:
minimumDistanceToAPizzaDot = euclid
elif minimumDistanceToAPizzaDot > euclid and obstacles < obstaclesToThatPizzaDot:
minimumDistanceToAPizzaDot = euclid
countDots = 0
for pizzaDot in foodGrid.asList():
countDots += 1
if "pizzas" in problem.heuristicInfo:
if countDots < problem.heuristicInfo["pizzas"]:
problem.heuristicInfo["pizzas"] = countDots
problem.heuristicInfo[countDots] = 0
elif countDots > problem.heuristicInfo["pizzas"]:
problem.heuristicInfo[countDots] += 1
return problem.heuristicInfo[countDots] + minimumDistanceToAPizzaDot
else:
problem.heuristicInfo["pizzas"] = countDots
problem.heuristicInfo[countDots] = 0
return minimumDistanceToAPizzaDot
class ClosestDotSearchAgent(SearchAgent):
"Search for all food using a sequence of searches"
def registerInitialState(self, state):
self.actions = []
currentState = state
while(currentState.getFood().count() > 0):
nextPathSegment = self.findPathToClosestDot(currentState) # The missing piece
self.actions += nextPathSegment
for action in nextPathSegment:
legal = currentState.getLegalActions()
if action not in legal:
t = (str(action), str(currentState))
raise Exception('findPathToClosestDot returned an illegal move: %s!\n%s' % t)
currentState = currentState.generateChild(0, action)
self.actionIndex = 0
print('Path found with cost %d.' % len(self.actions))
def findPathToClosestDot(self, gameState):
"""
Returns a path (a list of actions) to the closest dot, starting from
gameState.
"""
# Here are some useful elements of the startState
startPosition = gameState.getPacmanPosition()
food = gameState.getFood()
walls = gameState.getWalls()
problem = AnyFoodSearchProblem(gameState)
return search.breadthFirstSearch(problem)
class AnyFoodSearchProblem(PositionSearchProblem):
"""
A search problem for finding a path to any food.
This search problem is just like the PositionSearchProblem, but has a
different goal test, which you need to fill in below. The state space and
child function do not need to be changed.
The class definition above, AnyFoodSearchProblem(PositionSearchProblem),
inherits the methods of the PositionSearchProblem.
You can use this search problem to help you fill in the findPathToClosestDot
method.
"""
def __init__(self, gameState):
"Stores information from the gameState. You don't need to change this."
# Store the food for later reference
self.food = gameState.getFood()
# Store info for the PositionSearchProblem (no need to change this)
self.walls = gameState.getWalls()
self.startState = gameState.getPacmanPosition()
self.costFn = lambda x: 1
self._visited, self._visitedlist, self._expanded = {}, [], 0 # DO NOT CHANGE
def isGoalState(self, state):
"""
The state is Pacman's position. Fill this in with a goal test that will
complete the problem definition.
"""
x,y = state
food = self.food
if state in food.asList():
return True
return False
def mazeDistance(point1, point2, gameState):
"""
Returns the maze distance between any two points, using the search functions
you have already built. The gameState can be any game state -- Pacman's
position in that state is ignored.
Example usage: mazeDistance( (2,4), (5,6), gameState)
This might be a useful helper function for your ApproximateSearchAgent.
"""
x1, y1 = point1
x2, y2 = point2
walls = gameState.getWalls()
assert not walls[x1][y1], 'point1 is a wall: ' + str(point1)
assert not walls[x2][y2], 'point2 is a wall: ' + str(point2)
prob = PositionSearchProblem(gameState, start=point1, goal=point2, warn=False, visualize=False)
return len(search.bfs(prob))