forked from PaddlePaddle/Research
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
827 lines (746 loc) · 31.7 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import ast
import copy
import logging
import multiprocessing
import os
import six
import sys
import time
import numpy as np
import paddle.fluid as fluid
import reader
from config import *
from desc import *
from model import transformer, position_encoding_init
def parse_args():
parser = argparse.ArgumentParser("Training for Transformer.")
parser.add_argument(
"--src_vocab_fpath",
type=str,
required=True,
help="The path of vocabulary file of source language.")
parser.add_argument(
"--trg_vocab_fpath",
type=str,
required=True,
help="The path of vocabulary file of target language.")
parser.add_argument(
"--phoneme_vocab_fpath",
type=str,
required=True,
help="The path of vocabulary file of phonemes.")
parser.add_argument(
"--lexicon_fpath",
type=str,
required=True,
help="The path of lexicon of source language.")
parser.add_argument(
"--train_file_pattern",
type=str,
required=True,
help="The pattern to match training data files.")
parser.add_argument(
"--val_file_pattern",
type=str,
help="The pattern to match validation data files.")
parser.add_argument(
"--use_token_batch",
type=ast.literal_eval,
default=True,
help="The flag indicating whether to "
"produce batch data according to token number.")
parser.add_argument(
"--batch_size",
type=int,
default=4096,
help="The number of sequences contained in a mini-batch, or the maximum "
"number of tokens (include paddings) contained in a mini-batch. Note "
"that this represents the number on single device and the actual batch "
"size for multi-devices will multiply the device number.")
parser.add_argument(
"--pool_size",
type=int,
default=200000,
help="The buffer size to pool data.")
parser.add_argument(
"--sort_type",
default="pool",
choices=("global", "pool", "none"),
help="The grain to sort by length: global for all instances; pool for "
"instances in pool; none for no sort.")
parser.add_argument(
"--shuffle",
type=ast.literal_eval,
default=True,
help="The flag indicating whether to shuffle instances in each pass.")
parser.add_argument(
"--shuffle_batch",
type=ast.literal_eval,
default=True,
help="The flag indicating whether to shuffle the data batches.")
parser.add_argument(
"--special_token",
type=str,
default=["<s>", "<e>", "<unk>"],
nargs=3,
help="The <bos>, <eos> and <unk> tokens in the dictionary.")
parser.add_argument(
"--token_delimiter",
type=lambda x: str(x.encode().decode("unicode-escape")),
default=" ",
help="The delimiter used to split tokens in source or target sentences. "
"For EN-DE BPE data we provided, use spaces as token delimiter. ")
parser.add_argument(
'opts',
help='See config.py for all options',
default=None,
nargs=argparse.REMAINDER)
parser.add_argument(
'--local',
type=ast.literal_eval,
default=True,
help='Whether to run as local mode.')
parser.add_argument(
'--device',
type=str,
default='GPU',
choices=['CPU', 'GPU'],
help="The device type.")
parser.add_argument(
'--update_method',
choices=("pserver", "nccl2"),
default="pserver",
help='Update method.')
parser.add_argument(
'--sync', type=ast.literal_eval, default=True, help="sync mode.")
parser.add_argument(
"--enable_ce",
type=ast.literal_eval,
default=False,
help="The flag indicating whether to run the task "
"for continuous evaluation.")
parser.add_argument(
"--use_py_reader",
type=ast.literal_eval,
default=True,
help="The flag indicating whether to use py_reader.")
parser.add_argument(
"--fetch_steps",
type=int,
default=100,
help="The frequency to fetch and print output.")
args = parser.parse_args()
# Append args related to dict
src_dict = reader.DataReader.load_dict(args.src_vocab_fpath)
trg_dict = reader.DataReader.load_dict(args.trg_vocab_fpath)
phone_dict = reader.DataReader.load_dict(args.phoneme_vocab_fpath)
dict_args = [
"src_vocab_size", str(len(src_dict)), "trg_vocab_size",
str(len(trg_dict)), "phone_vocab_size", str(len(phone_dict)), "bos_idx",
str(src_dict[args.special_token[0]]), "eos_idx",
str(src_dict[args.special_token[1]]), "unk_idx",
str(src_dict[args.special_token[2]])
]
merge_cfg_from_list(args.opts + dict_args,
[TrainTaskConfig, ModelHyperParams])
return args
def append_nccl2_prepare(startup_prog, trainer_id, worker_endpoints,
current_endpoint):
assert (trainer_id >= 0 and len(worker_endpoints) > 1 and
current_endpoint in worker_endpoints)
eps = copy.deepcopy(worker_endpoints)
eps.remove(current_endpoint)
nccl_id_var = startup_prog.global_block().create_var(
name="NCCLID", persistable=True, type=fluid.core.VarDesc.VarType.RAW)
startup_prog.global_block().append_op(
type="gen_nccl_id",
inputs={},
outputs={"NCCLID": nccl_id_var},
attrs={
"endpoint": current_endpoint,
"endpoint_list": eps,
"trainer_id": trainer_id
})
return nccl_id_var
def pad_phoneme_data(phoneme_seqs, pad_idx, max_seq_len):
"""
Pad the instances to the max sequence length in batch, and generate the
corresponding position data and attention bias.
"""
ph_seq_lens = []
for ps in phoneme_seqs:
cur_seq_lens = [len(x) for x in ps]
ph_seq_lens.append(max(cur_seq_lens))
max_ph_seq_len = max(ph_seq_lens)
batch_size = len(phoneme_seqs)
phoneme_data = pad_idx * np.ones(
(batch_size, max_seq_len, max_ph_seq_len), dtype=np.int64)
phoneme_mask = np.zeros(
(batch_size, max_seq_len, max_ph_seq_len), dtype=np.int64)
for i in range(batch_size):
cur_ph_seq = phoneme_seqs[i]
for j, cur_word_phs in enumerate(cur_ph_seq):
word_phs_len = len(cur_word_phs)
phoneme_data[i, j, :word_phs_len] = cur_word_phs
phoneme_mask[i, j, :word_phs_len] = 1
phoneme_data = np.reshape(phoneme_data, [batch_size, max_seq_len, -1, 1])
return phoneme_data, phoneme_mask, max_ph_seq_len
def pad_batch_data(insts,
pad_idx,
n_head,
is_target=False,
is_label=False,
return_attn_bias=True,
return_max_len=True,
return_num_token=False):
"""
Pad the instances to the max sequence length in batch, and generate the
corresponding position data and attention bias.
"""
return_list = []
max_len = max(len(inst) for inst in insts)
# Any token included in dict can be used to pad, since the paddings' loss
# will be masked out by weights and make no effect on parameter gradients.
inst_data = np.array(
[inst + [pad_idx] * (max_len - len(inst)) for inst in insts])
return_list += [inst_data.astype("int64").reshape([-1, 1])]
if is_label: # label weight
inst_weight = np.array([[1.] * len(inst) + [0.] * (max_len - len(inst))
for inst in insts])
return_list += [inst_weight.astype("float32").reshape([-1, 1])]
else: # position data
inst_pos = np.array([
list(range(0, len(inst))) + [0] * (max_len - len(inst))
for inst in insts
])
return_list += [inst_pos.astype("int64").reshape([-1, 1])]
if return_attn_bias:
if is_target:
# This is used to avoid attention on paddings and subsequent
# words.
slf_attn_bias_data = np.ones((inst_data.shape[0], max_len, max_len))
slf_attn_bias_data = np.triu(slf_attn_bias_data,
1).reshape([-1, 1, max_len, max_len])
slf_attn_bias_data = np.tile(slf_attn_bias_data,
[1, n_head, 1, 1]) * [-1e9]
else:
# This is used to avoid attention on paddings.
slf_attn_bias_data = np.array([[0] * len(inst) + [-1e9] *
(max_len - len(inst))
for inst in insts])
slf_attn_bias_data = np.tile(
slf_attn_bias_data.reshape([-1, 1, 1, max_len]),
[1, n_head, max_len, 1])
return_list += [slf_attn_bias_data.astype("float32")]
if return_max_len:
return_list += [max_len]
if return_num_token:
num_token = 0
for inst in insts:
num_token += len(inst)
return_list += [num_token]
return return_list if len(return_list) > 1 else return_list[0]
def prepare_batch_input(insts, data_input_names, src_pad_idx, phone_pad_idx,
trg_pad_idx, n_head, d_model):
"""
Put all padded data needed by training into a dict.
"""
src_word, src_pos, src_slf_attn_bias, src_max_len = pad_batch_data(
[inst[0] for inst in insts], src_pad_idx, n_head, is_target=False)
src_word = src_word.reshape(-1, src_max_len, 1)
src_pos = src_pos.reshape(-1, src_max_len, 1)
src_phone, src_phone_mask, max_phone_len = pad_phoneme_data(
[inst[1] for inst in insts], phone_pad_idx, src_max_len)
trg_word, trg_pos, trg_slf_attn_bias, trg_max_len = pad_batch_data(
[inst[2] for inst in insts], trg_pad_idx, n_head, is_target=True)
trg_word = trg_word.reshape(-1, trg_max_len, 1)
trg_pos = trg_pos.reshape(-1, trg_max_len, 1)
trg_src_attn_bias = np.tile(src_slf_attn_bias[:, :, ::src_max_len, :],
[1, 1, trg_max_len, 1]).astype("float32")
lbl_word, lbl_weight, num_token = pad_batch_data(
[inst[3] for inst in insts],
trg_pad_idx,
n_head,
is_target=False,
is_label=True,
return_attn_bias=False,
return_max_len=False,
return_num_token=True)
data_input_dict = dict(
zip(data_input_names, [
src_word, src_pos, src_slf_attn_bias, src_phone, src_phone_mask,
trg_word, trg_pos, trg_slf_attn_bias, trg_src_attn_bias, lbl_word,
lbl_weight
]))
return data_input_dict, np.asarray([num_token], dtype="float32")
def prepare_data_generator(args,
is_test,
count,
pyreader,
py_reader_provider_wrapper,
place=None):
"""
Data generator wrapper for DataReader. If use py_reader, set the data
provider for py_reader
"""
data_reader = reader.DataReader(
phoneme_vocab_fpath=args.phoneme_vocab_fpath,
lexicon_fpath=args.lexicon_fpath,
fpattern=args.val_file_pattern if is_test else args.train_file_pattern,
src_vocab_fpath=args.src_vocab_fpath,
trg_vocab_fpath=args.trg_vocab_fpath,
token_delimiter=args.token_delimiter,
use_token_batch=args.use_token_batch,
batch_size=args.batch_size * (1 if args.use_token_batch else count),
pool_size=args.pool_size,
sort_type=args.sort_type,
shuffle=args.shuffle,
shuffle_batch=args.shuffle_batch,
start_mark=args.special_token[0],
end_mark=args.special_token[1],
unk_mark=args.special_token[2],
# count start and end tokens out
max_length=ModelHyperParams.max_length - 2,
clip_last_batch=False).batch_generator
def stack(data_reader, count, clip_last=True):
def __impl__():
res = []
for item in data_reader():
res.append(item)
if len(res) == count:
yield res
res = []
if len(res) == count:
yield res
elif not clip_last:
data = []
for item in res:
data += item
if len(data) > count:
inst_num_per_part = len(data) // count
yield [
data[inst_num_per_part * i:inst_num_per_part * (i + 1)]
for i in range(count)
]
return __impl__
def split(data_reader, count):
def __impl__():
for item in data_reader():
inst_num_per_part = len(item) // count
for i in range(count):
yield item[inst_num_per_part * i:inst_num_per_part * (i + 1
)]
return __impl__
if not args.use_token_batch:
# to make data on each device have similar token number
data_reader = split(data_reader, count)
if args.use_py_reader:
pyreader.decorate_tensor_provider(
py_reader_provider_wrapper(data_reader, place))
data_reader = None
else: # Data generator for multi-devices
data_reader = stack(data_reader, count)
return data_reader
def prepare_feed_dict_list(data_generator, init_flag, count):
"""
Prepare the list of feed dict for multi-devices.
"""
feed_dict_list = []
if data_generator is not None: # use_py_reader == False
data_input_names = encoder_data_input_fields + \
decoder_data_input_fields[:-1] + label_data_input_fields
data = next(data_generator)
for idx, data_buffer in enumerate(data):
data_input_dict, num_token = prepare_batch_input(
data_buffer, data_input_names, ModelHyperParams.eos_idx,
ModelHyperParams.phone_pad_idx, ModelHyperParams.eos_idx,
ModelHyperParams.n_head, ModelHyperParams.d_model)
feed_dict_list.append(data_input_dict)
if init_flag:
for idx in range(count):
pos_enc_tables = dict()
for pos_enc_param_name in pos_enc_param_names:
pos_enc_tables[pos_enc_param_name] = position_encoding_init(
ModelHyperParams.max_length + 1, ModelHyperParams.d_model)
if len(feed_dict_list) <= idx:
feed_dict_list.append(pos_enc_tables)
else:
feed_dict_list[idx] = dict(
list(pos_enc_tables.items()) + list(feed_dict_list[idx]
.items()))
return feed_dict_list if len(feed_dict_list) == count else None
def py_reader_provider_wrapper(data_reader, place):
"""
Data provider needed by fluid.layers.py_reader.
"""
def py_reader_provider():
data_input_names = encoder_data_input_fields + \
decoder_data_input_fields[:-1] + label_data_input_fields
for batch_id, data in enumerate(data_reader()):
data_input_dict, num_token = prepare_batch_input(
data, data_input_names, ModelHyperParams.eos_idx,
ModelHyperParams.phone_pad_idx, ModelHyperParams.eos_idx,
ModelHyperParams.n_head, ModelHyperParams.d_model)
yield [data_input_dict[item] for item in data_input_names]
return py_reader_provider
def test_context(exe, train_exe, dev_count):
# Context to do validation.
test_prog = fluid.Program()
startup_prog = fluid.Program()
if args.enable_ce:
test_prog.random_seed = 1000
startup_prog.random_seed = 1000
with fluid.program_guard(test_prog, startup_prog):
with fluid.unique_name.guard():
sum_cost, avg_cost, predict, token_num, pyreader = transformer(
ModelHyperParams.src_vocab_size,
ModelHyperParams.trg_vocab_size,
ModelHyperParams.max_length + 1,
ModelHyperParams.n_layer,
ModelHyperParams.n_head,
ModelHyperParams.d_key,
ModelHyperParams.d_value,
ModelHyperParams.d_model,
ModelHyperParams.d_inner_hid,
ModelHyperParams.prepostprocess_dropout,
ModelHyperParams.attention_dropout,
ModelHyperParams.relu_dropout,
ModelHyperParams.preprocess_cmd,
ModelHyperParams.postprocess_cmd,
ModelHyperParams.weight_sharing,
TrainTaskConfig.label_smooth_eps,
use_py_reader=args.use_py_reader,
beta=ModelHyperParams.beta,
is_test=True)
test_prog = test_prog.clone(for_test=True)
test_data = prepare_data_generator(
args,
is_test=True,
count=dev_count,
pyreader=pyreader,
py_reader_provider_wrapper=py_reader_provider_wrapper)
exe.run(startup_prog) # to init pyreader for testing
if TrainTaskConfig.ckpt_path:
fluid.io.load_persistables(
exe, TrainTaskConfig.ckpt_path, main_program=test_prog)
exec_strategy = fluid.ExecutionStrategy()
exec_strategy.use_experimental_executor = True
build_strategy = fluid.BuildStrategy()
test_exe = fluid.ParallelExecutor(
use_cuda=TrainTaskConfig.use_gpu,
main_program=test_prog,
build_strategy=build_strategy,
exec_strategy=exec_strategy,
share_vars_from=train_exe)
def test(exe=test_exe, pyreader=pyreader):
test_total_cost = 0
test_total_token = 0
if args.use_py_reader:
pyreader.start()
data_generator = None
else:
data_generator = test_data()
while True:
try:
feed_dict_list = prepare_feed_dict_list(data_generator, False,
dev_count)
outs = test_exe.run(fetch_list=[sum_cost.name, token_num.name],
feed=feed_dict_list)
except (StopIteration, fluid.core.EOFException):
# The current pass is over.
if args.use_py_reader:
pyreader.reset()
break
sum_cost_val, token_num_val = np.array(outs[0]), np.array(outs[1])
test_total_cost += sum_cost_val.sum()
test_total_token += token_num_val.sum()
test_avg_cost = test_total_cost / test_total_token
test_ppl = np.exp([min(test_avg_cost, 100)])
return test_avg_cost, test_ppl
return test
def train_loop(exe,
train_prog,
startup_prog,
dev_count,
sum_cost,
avg_cost,
token_num,
predict,
pyreader,
nccl2_num_trainers=1,
nccl2_trainer_id=0):
# Initialize the parameters.
if TrainTaskConfig.ckpt_path:
exe.run(startup_prog) # to init pyreader for training
logging.info("load checkpoint from {}".format(
TrainTaskConfig.ckpt_path))
fluid.io.load_persistables(
exe, TrainTaskConfig.ckpt_path, main_program=train_prog)
else:
logging.info("init fluid.framework.default_startup_program")
exe.run(startup_prog)
logging.info("begin reader")
train_data = prepare_data_generator(
args,
is_test=False,
count=dev_count,
pyreader=pyreader,
py_reader_provider_wrapper=py_reader_provider_wrapper)
# For faster executor
exec_strategy = fluid.ExecutionStrategy()
exec_strategy.use_experimental_executor = True
exec_strategy.num_iteration_per_drop_scope = int(args.fetch_steps)
build_strategy = fluid.BuildStrategy()
# Since the token number differs among devices, customize gradient scale to
# use token average cost among multi-devices. and the gradient scale is
# `1 / token_number` for average cost.
# build_strategy.gradient_scale_strategy = fluid.BuildStrategy.GradientScaleStrategy.Customized
logging.info("begin executor")
train_exe = fluid.ParallelExecutor(
use_cuda=TrainTaskConfig.use_gpu,
loss_name=avg_cost.name,
main_program=train_prog,
build_strategy=build_strategy,
exec_strategy=exec_strategy,
num_trainers=nccl2_num_trainers,
trainer_id=nccl2_trainer_id)
if args.val_file_pattern is not None:
test = test_context(exe, train_exe, dev_count)
# the best cross-entropy value with label smoothing
loss_normalizer = -((1. - TrainTaskConfig.label_smooth_eps) * np.log(
(1. - TrainTaskConfig.label_smooth_eps
)) + TrainTaskConfig.label_smooth_eps *
np.log(TrainTaskConfig.label_smooth_eps / (
ModelHyperParams.trg_vocab_size - 1) + 1e-20))
step_idx = 0
init_flag = True
logging.info("begin train")
for pass_id in six.moves.xrange(TrainTaskConfig.pass_num):
pass_start_time = time.time()
if args.use_py_reader:
pyreader.start()
data_generator = None
else:
data_generator = train_data()
batch_id = 0
while True:
try:
feed_dict_list = prepare_feed_dict_list(data_generator,
init_flag, dev_count)
outs = train_exe.run(
fetch_list=[sum_cost.name, token_num.name]
if step_idx % args.fetch_steps == 0 else [],
feed=feed_dict_list)
if step_idx % args.fetch_steps == 0:
sum_cost_val, token_num_val = np.array(outs[0]), np.array(
outs[1])
# sum the cost from multi-devices
total_sum_cost = sum_cost_val.sum()
total_token_num = token_num_val.sum()
total_avg_cost = total_sum_cost / total_token_num
if step_idx == 0:
logging.info(
"step_idx: %d, epoch: %d, batch: %d, avg loss: %f, "
"normalized loss: %f, ppl: %f" %
(step_idx, pass_id, batch_id, total_avg_cost,
total_avg_cost - loss_normalizer,
np.exp([min(total_avg_cost, 100)])))
avg_batch_time = time.time()
else:
logging.info(
"step_idx: %d, epoch: %d, batch: %d, avg loss: %f, "
"normalized loss: %f, ppl: %f, speed: %.2f step/s" %
(step_idx, pass_id, batch_id, total_avg_cost,
total_avg_cost - loss_normalizer, np.exp(
[min(total_avg_cost, 100)]),
args.fetch_steps / (time.time() - avg_batch_time)))
avg_batch_time = time.time()
if step_idx % TrainTaskConfig.save_freq == 0 and step_idx > 0:
fluid.io.save_persistables(
exe,
os.path.join(TrainTaskConfig.ckpt_dir,
"latest.checkpoint"), train_prog)
fluid.io.save_params(
exe,
os.path.join(TrainTaskConfig.model_dir,
"iter_" + str(step_idx) + ".infer.model"),
train_prog)
init_flag = False
batch_id += 1
step_idx += 1
except (StopIteration, fluid.core.EOFException):
# The current pass is over.
if args.use_py_reader:
pyreader.reset()
break
time_consumed = time.time() - pass_start_time
# Validate and save the persistable.
if args.val_file_pattern is not None:
val_avg_cost, val_ppl = test()
logging.info(
"epoch: %d, val avg loss: %f, val normalized loss: %f, val ppl: %f,"
" consumed %fs" % (pass_id, val_avg_cost,
val_avg_cost - loss_normalizer, val_ppl,
time_consumed))
else:
logging.info("epoch: %d, consumed %fs" % (pass_id, time_consumed))
if not args.enable_ce:
fluid.io.save_persistables(
exe,
os.path.join(TrainTaskConfig.ckpt_dir,
"pass_" + str(pass_id) + ".checkpoint"),
train_prog)
if args.enable_ce: # For CE
print("kpis\ttrain_cost_card%d\t%f" % (dev_count, total_avg_cost))
if args.val_file_pattern is not None:
print("kpis\ttest_cost_card%d\t%f" % (dev_count, val_avg_cost))
print("kpis\ttrain_duration_card%d\t%f" % (dev_count, time_consumed))
def train(args):
# priority: ENV > args > config
is_local = os.getenv("PADDLE_IS_LOCAL", "1")
if is_local == '0':
args.local = False
logging.info(args)
if args.device == 'CPU':
TrainTaskConfig.use_gpu = False
training_role = os.getenv("TRAINING_ROLE", "TRAINER")
if training_role == "PSERVER" or (not TrainTaskConfig.use_gpu):
place = fluid.CPUPlace()
dev_count = int(os.environ.get('CPU_NUM', multiprocessing.cpu_count()))
else:
place = fluid.CUDAPlace(0)
dev_count = fluid.core.get_cuda_device_count()
exe = fluid.Executor(place)
train_prog = fluid.Program()
startup_prog = fluid.Program()
if args.enable_ce:
train_prog.random_seed = 1000
startup_prog.random_seed = 1000
with fluid.program_guard(train_prog, startup_prog):
with fluid.unique_name.guard():
sum_cost, avg_cost, predict, token_num, pyreader = transformer(
ModelHyperParams.src_vocab_size,
ModelHyperParams.trg_vocab_size,
ModelHyperParams.phone_vocab_size,
ModelHyperParams.max_length + 1,
ModelHyperParams.n_layer,
ModelHyperParams.n_head,
ModelHyperParams.d_key,
ModelHyperParams.d_value,
ModelHyperParams.d_model,
ModelHyperParams.d_inner_hid,
ModelHyperParams.prepostprocess_dropout,
ModelHyperParams.attention_dropout,
ModelHyperParams.relu_dropout,
ModelHyperParams.preprocess_cmd,
ModelHyperParams.postprocess_cmd,
ModelHyperParams.weight_sharing,
TrainTaskConfig.label_smooth_eps,
ModelHyperParams.beta,
ModelHyperParams.bos_idx,
use_py_reader=args.use_py_reader,
is_test=False)
optimizer = None
if args.sync:
lr_decay = fluid.layers.learning_rate_scheduler.noam_decay(
ModelHyperParams.d_model, TrainTaskConfig.warmup_steps)
logging.info("before adam")
with fluid.default_main_program()._lr_schedule_guard():
learning_rate = lr_decay * TrainTaskConfig.learning_rate
optimizer = fluid.optimizer.Adam(
learning_rate=learning_rate,
beta1=TrainTaskConfig.beta1,
beta2=TrainTaskConfig.beta2,
epsilon=TrainTaskConfig.eps)
else:
optimizer = fluid.optimizer.SGD(0.003)
optimizer.minimize(avg_cost)
if args.local:
logging.info("local start_up:")
train_loop(exe, train_prog, startup_prog, dev_count, sum_cost, avg_cost,
token_num, predict, pyreader)
else:
if args.update_method == "nccl2":
trainer_id = int(os.getenv("PADDLE_TRAINER_ID", "0"))
port = os.getenv("PADDLE_PORT")
worker_ips = os.getenv("PADDLE_TRAINERS")
worker_endpoints = []
for ip in worker_ips.split(","):
worker_endpoints.append(':'.join([ip, port]))
trainers_num = len(worker_endpoints)
current_endpoint = os.getenv("POD_IP") + ":" + port
if trainer_id == 0:
logging.info("train_id == 0, sleep 60s")
time.sleep(60)
logging.info("trainers_num:{}".format(trainers_num))
logging.info("worker_endpoints:{}".format(worker_endpoints))
logging.info("current_endpoint:{}".format(current_endpoint))
append_nccl2_prepare(startup_prog, trainer_id, worker_endpoints,
current_endpoint)
train_loop(exe, train_prog, startup_prog, dev_count, sum_cost,
avg_cost, token_num, predict, pyreader, trainers_num,
trainer_id)
return
port = os.getenv("PADDLE_PORT", "6174")
pserver_ips = os.getenv("PADDLE_PSERVERS") # ip,ip...
eplist = []
for ip in pserver_ips.split(","):
eplist.append(':'.join([ip, port]))
pserver_endpoints = ",".join(eplist) # ip:port,ip:port...
trainers = int(os.getenv("PADDLE_TRAINERS_NUM", "0"))
current_endpoint = os.getenv("POD_IP") + ":" + port
trainer_id = int(os.getenv("PADDLE_TRAINER_ID"))
logging.info("pserver_endpoints:{}".format(pserver_endpoints))
logging.info("current_endpoint:{}".format(current_endpoint))
logging.info("trainer_id:{}".format(trainer_id))
logging.info("pserver_ips:{}".format(pserver_ips))
logging.info("port:{}".format(port))
t = fluid.DistributeTranspiler()
t.transpile(
trainer_id,
pservers=pserver_endpoints,
trainers=trainers,
program=train_prog,
startup_program=startup_prog)
if training_role == "PSERVER":
logging.info("distributed: pserver started")
current_endpoint = os.getenv("POD_IP") + ":" + os.getenv(
"PADDLE_PORT")
if not current_endpoint:
logging.critical("need env SERVER_ENDPOINT")
exit(1)
pserver_prog = t.get_pserver_program(current_endpoint)
pserver_startup = t.get_startup_program(current_endpoint,
pserver_prog)
exe.run(pserver_startup)
exe.run(pserver_prog)
elif training_role == "TRAINER":
logging.info("distributed: trainer started")
trainer_prog = t.get_trainer_program()
train_loop(exe, train_prog, startup_prog, dev_count, sum_cost,
avg_cost, token_num, predict, pyreader)
else:
logging.critical(
"environment var TRAINER_ROLE should be TRAINER os PSERVER")
exit(1)
if __name__ == "__main__":
LOG_FORMAT = "[%(asctime)s %(levelname)s %(filename)s:%(lineno)d] %(message)s"
logging.basicConfig(
stream=sys.stdout, level=logging.DEBUG, format=LOG_FORMAT)
logging.getLogger().setLevel(logging.INFO)
args = parse_args()
train(args)