forked from PaddlePaddle/Research
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclassifier.py
135 lines (116 loc) · 4.93 KB
/
classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Model for classifier."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import sys
import numpy as np
import paddle.fluid as fluid
sys.path.append("./BERT")
from model.bert import BertModel
def create_model(args,
pyreader_name,
bert_config,
num_labels,
is_prediction=False):
"""
define fine-tuning model
"""
if args.binary:
pyreader = fluid.layers.py_reader(
capacity=50,
shapes=[[-1, args.max_seq_len, 1], [-1, args.max_seq_len, 1],
[-1, args.max_seq_len, 1], [-1, args.max_seq_len, 1],
[-1, 1], [-1, 1]],
dtypes=['int64', 'int64', 'int64', 'float32', 'int64', 'int64'],
lod_levels=[0, 0, 0, 0, 0, 0],
name=pyreader_name,
use_double_buffer=True)
(src_ids, pos_ids, sent_ids, input_mask, seq_len,
labels) = fluid.layers.read_file(pyreader)
bert = BertModel(
src_ids=src_ids,
position_ids=pos_ids,
sentence_ids=sent_ids,
input_mask=input_mask,
config=bert_config,
use_fp16=args.use_fp16)
if args.sub_model_type == 'raw':
cls_feats = bert.get_pooled_output()
elif args.sub_model_type == 'cnn':
bert_seq_out = bert.get_sequence_output()
bert_seq_out = fluid.layers.sequence_unpad(bert_seq_out, seq_len)
cnn_hidden_size = 100
convs = []
for h in [3, 4, 5]:
conv_feats = fluid.layers.sequence_conv(
input=bert_seq_out, num_filters=cnn_hidden_size, filter_size=h)
conv_feats = fluid.layers.batch_norm(input=conv_feats, act="relu")
conv_feats = fluid.layers.sequence_pool(
input=conv_feats, pool_type='max')
convs.append(conv_feats)
cls_feats = fluid.layers.concat(input=convs, axis=1)
elif args.sub_model_type == 'gru':
bert_seq_out = bert.get_sequence_output()
bert_seq_out = fluid.layers.sequence_unpad(bert_seq_out, seq_len)
gru_hidden_size = 1024
gru_input = fluid.layers.fc(input=bert_seq_out,
size=gru_hidden_size * 3)
gru_forward = fluid.layers.dynamic_gru(
input=gru_input, size=gru_hidden_size, is_reverse=False)
gru_backward = fluid.layers.dynamic_gru(
input=gru_input, size=gru_hidden_size, is_reverse=True)
gru_output = fluid.layers.concat([gru_forward, gru_backward], axis=1)
cls_feats = fluid.layers.sequence_pool(
input=gru_output, pool_type='max')
elif args.sub_model_type == 'ffa':
bert_seq_out = bert.get_sequence_output()
attn = fluid.layers.fc(input=bert_seq_out,
num_flatten_dims=2,
size=1,
act='tanh')
attn = fluid.layers.softmax(attn)
weighted_input = bert_seq_out * attn
weighted_input = fluid.layers.sequence_unpad(weighted_input, seq_len)
cls_feats = fluid.layers.sequence_pool(weighted_input, pool_type='sum')
else:
raise NotImplementedError("%s is not implemented!" %
args.sub_model_type)
cls_feats = fluid.layers.dropout(
x=cls_feats,
dropout_prob=0.1,
dropout_implementation="upscale_in_train")
logits = fluid.layers.fc(
input=cls_feats,
size=num_labels,
param_attr=fluid.ParamAttr(
name="cls_out_w",
initializer=fluid.initializer.TruncatedNormal(scale=0.02)),
bias_attr=fluid.ParamAttr(
name="cls_out_b", initializer=fluid.initializer.Constant(0.)))
probs = fluid.layers.softmax(logits)
if is_prediction:
feed_targets_name = [
src_ids.name, pos_ids.name, sent_ids.name, input_mask.name
]
return pyreader, probs, feed_targets_name
ce_loss = fluid.layers.softmax_with_cross_entropy(
logits=logits, label=labels)
loss = fluid.layers.mean(x=ce_loss)
if args.use_fp16 and args.loss_scaling > 1.0:
loss *= args.loss_scaling
num_seqs = fluid.layers.create_tensor(dtype='int64')
accuracy = fluid.layers.accuracy(input=probs, label=labels, total=num_seqs)
return (pyreader, loss, probs, accuracy, labels, num_seqs)