-
Notifications
You must be signed in to change notification settings - Fork 5
/
eval_sampling.py
227 lines (185 loc) · 6.88 KB
/
eval_sampling.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
import json
import re
import os
from ruamel.yaml import YAML
from math import comb
from omegaconf import DictConfig, OmegaConf
import hydra
ANS_RE = re.compile(r"#+ (\-?[0-9\.\,]+)")
INVALID_ANS = "[invalid]"
def extract_answer(completion):
# ans_lst = re.findall(r'\d*\.?\d+', completion)
ans_lst = re.findall(ANS_RE, completion)
if len(ans_lst) > 0:
try:
ans = re.sub(',', '', ans_lst[-1])
ans = float(ans)
except:
ans = INVALID_ANS
else:
ans = INVALID_ANS
return ans
def parse_gold(lines):
all_ans = []
for line in lines:
all_ans.append(line['ans'])
return all_ans
def parse(lines):
all_ans = []
for line in lines:
ans = extract_answer(json.loads(line)[0][1])
all_ans.append(ans)
return all_ans
def get_gold_qa(split, max_data=0):
with open(f'gsm8k/{split}.jsonl', 'r') as f:
lines = f.readlines()
ans_lst = []
question_lst = []
solution_lst = []
for l in lines:
data = json.loads(l)
ans_lst.append(data['ans'])
question_lst.append(data['question'])
solution_lst.append(data['answer'])
if max_data > 0 and len(ans_lst) == max_data:
break
return question_lst, solution_lst, ans_lst
# def get_gold_qa_train(filename, max_data=0):
# with open(filename, 'r') as f:
# lines = f.readlines()
# ans_lst = []
# question_lst = []
# solution_lst = []
# for l in lines:
# data = json.loads(l)
# ans_lst.append(data['ans'])
# question_lst.append(data['question'])
# solution_lst.append(data['answer'])
# if max_data > 0 and len(ans_lst) == max_data:
# break
# return question_lst, solution_lst, ans_lst
def eval_json(json_path, gold_ans):
with open(json_path, 'r') as f:
lines = f.readlines()
pred_ans = parse(lines)
cor = 0
assert len(pred_ans) >= len(gold_ans)
for i in range(len(gold_ans)):
if pred_ans[i] != INVALID_ANS and abs(float(pred_ans[i]) - float(gold_ans[i])) < 1e-4:
cor += 1
return {i:json.loads(lines[i])[0][1] for i in range(len(gold_ans))}, \
{i:pred_ans[i] for i in range(len(gold_ans))}, \
cor, \
len(gold_ans)
@hydra.main(version_base=None, config_path="exp_config/t5")
# def eval_diverse(cfg:str, split:str, key:str, max_seed:int, t:float=0.7):
def eval_diverse(cfg : DictConfig):
# yaml=YAML(typ='safe')
# with open(cfg, 'r', encoding='utf-8') as f:
# load_dict = yaml.load(f)
# exp_name = load_dict['general']['exp_name']
# args_dict = load_dict[key]
# run_name = args_dict['run_name']
exp_name = cfg.exp_name
run_name = cfg.trainer.run_name
split = cfg.data.split
temperature = cfg.eval.sampling.temperature
json_path = os.path.join(
'model_outputs/',
exp_name,
run_name,
split,
)
print(json_path)
max_seed = cfg.eval.sampling.max_seed
path_list = [os.path.join(json_path, f'seed_{idx}-t_{temperature}.json') for idx in range(0,max_seed,1)]
path_list = [f for f in path_list if os.path.exists(f)]
assert len(path_list) == max_seed
# if split == 'train':
# questions, solutions, gold_ans = get_gold_qa_train(load_dict['general']['origin_train_data'])
# else:
# questions, solutions, gold_ans = get_gold_qa(split)
questions, solutions, gold_ans = get_gold_qa(split)
all_q = []
all_ans = []
new_path_list = []
for file_path_idx in range(len(path_list)):
file_path = path_list[file_path_idx]
res, pred, _, cnt = eval_json(file_path, gold_ans)
all_q.append(res)
all_ans.append(pred)
new_path_list.append(file_path)
path_list = new_path_list
output = [{} for _ in range(len(gold_ans))]
for i in range(len(output)):
output[i]['question'] = questions[i]
output[i]['gold_ans'] = solutions[i]
output[i]['positives'] = []
output[i]['negatives'] = []
for file_path_idx in range(len(path_list)):
for idx in range(len(gold_ans)):
if all_ans[file_path_idx][idx] != INVALID_ANS and float(all_ans[file_path_idx][idx]) == float(gold_ans[idx]):
key = 'positives'
else:
key = 'negatives'
solution = all_q[file_path_idx][idx]
output[idx][key].append(solution)
no_positives = 0
no_negatives = 0
with open(f'{json_path}/{split}_dpo_data.jsonl', 'w') as f:
for item in output:
if len(item['positives']) == 0:
no_positives += 1
if len(item['negatives']) == 0:
no_negatives += 1
f.write(json.dumps(item) + '\n')
if split == 'train':
print(f'# w/o positives: {no_positives} ({no_positives/len(gold_ans)*100:.1f}%)')
print(f'# w/o negatives: {no_negatives} ({no_negatives/len(gold_ans)*100:.1f}%)')
corrects = len(gold_ans) - no_positives
pass_at_10 = corrects/len(gold_ans)
print(f'\nPass 1@{max_seed}: {corrects} / {len(gold_ans)} = {pass_at_10*100:.1f}')
if max_seed >= 5:
pass_5_corr = 0
for item in output:
totay_ways = comb(max_seed, 5)
all_wrong_ways = comb(len(item['negatives']), 5)
pass_5_corr += 1 - all_wrong_ways / totay_ways
pass_at_5 = pass_5_corr/len(gold_ans)
print(f'\nPass 1@5: {int(pass_5_corr)} / {len(gold_ans)} = {pass_at_5*100:.1f}')
pass_3_corr = 0
for item in output:
totay_ways = comb(max_seed, 3)
all_wrong_ways = comb(len(item['negatives']), 3)
pass_3_corr += 1 - all_wrong_ways / totay_ways
pass_at_3 = pass_3_corr/len(gold_ans)
print(f'\nPass 1@3: {int(pass_3_corr)} / {len(gold_ans)} = {pass_at_3*100:.1f}')
res = {}
model_id = run_name
if model_id not in res:
res[model_id] = dict()
res[model_id][f'{split}@{max_seed}'] = f'{pass_at_10 * 100:.1f}'
if max_seed >= 5:
res[model_id][f'{split}@5'] = f'{pass_at_5 * 100:.1f}'
res[model_id][f'{split}@3'] = f'{pass_at_3 * 100:.1f}'
if not os.path.exists('results'):
os.makedirs('results')
if os.path.exists(f'results/{exp_name}.json'):
with open(f'results/{exp_name}.json', 'r') as f:
res = json.load(f)
else:
res = {}
model_id = run_name
if model_id not in res:
res[model_id] = dict()
res[model_id][f'{split}@{max_seed}'] = f'{pass_at_10 * 100:.1f}'
if max_seed >= 5:
res[model_id][f'{split}@5'] = f'{pass_at_5 * 100:.1f}'
res[model_id][f'{split}@3'] = f'{pass_at_3 * 100:.1f}'
with open(f'results/{exp_name}.json', 'w') as f:
json.dump(res, f, indent=4)
print('-=-=-=-=-=-=-=-=-=')
if __name__ == "__main__":
# from jsonargparse import CLI
# CLI(eval_diverse, as_positional=False)
eval_diverse()