-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataloader.py
300 lines (249 loc) · 13.4 KB
/
dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
from __future__ import absolute_import
import tensorflow as tf
import multiprocessing
import anchors
from object_detection import preprocessor
from collections import OrderedDict
import glob
MAX_NUM_INSTANCES = 50
def pad_to_fixed_size(data, pad_value, output_shape):
"""Pad data to a fixed length at the first dimension.
Args:
data: Tensor to be padded to output_shape.
pad_value: A constant value assigned to the paddings.
output_shape: The output shape of a 2D tensor.
Returns:
The Padded tensor with output_shape [max_num_instances, dimension].
"""
max_num_instances = output_shape[0]
dimension = output_shape[1]
data = tf.reshape(data, [-1, dimension])
num_instances = tf.shape(data)[0]
tf.Assert(tf.less_equal(num_instances, max_num_instances), [num_instances])
pad_length = max_num_instances - num_instances
paddings = pad_value * tf.ones([pad_length, dimension])
padded_data = tf.concat([data, paddings], axis=0)
padded_data = tf.reshape(padded_data, output_shape)
return padded_data
class InputProcessor(object):
"""Base class of Input processor."""
def __init__(self, image, output_size):
"""Initializes a new `InputProcessor`.
Args:
image: The input image before processing.
output_size: The output image size after calling resize_and_crop_image
function.
"""
self._image = image
self._output_size = output_size
def normalize_image(self):
"""Normalize the image to zero mean and unit variance."""
# The image normalization is identical to Cloud TPU ResNet.
self._image = tf.image.convert_image_dtype(self._image, dtype=tf.float32)
offset = tf.constant([123, 117, 104], dtype=tf.float32)
self._image -= offset
def resize_and_crop_image(self, method=tf.image.ResizeMethod.BILINEAR):
"""Resize input image and crop it to the self._output dimension."""
scaled_image = tf.image.resize_images(
self._image, [self._output_size, self._output_size], method=method)
return scaled_image
class DetectionInputProcessor(InputProcessor):
"""Input processor for object detection."""
def __init__(self, image, output_size, boxes=None, classes=None):
InputProcessor.__init__(self, image, output_size)
self._boxes = boxes
self._classes = classes
def random_horizontal_flip(self):
"""Randomly flip input image and bounding boxes."""
self._image, self._boxes = preprocessor.random_horizontal_flip(
self._image, boxes=self._boxes)
def clip_boxes(self, boxes):
"""Clip boxes to fit in an image."""
boxes = tf.where(tf.less(boxes, 0), tf.zeros_like(boxes), boxes)
boxes = tf.where(tf.greater(boxes, self._output_size - 1),
(self._output_size - 1) * tf.ones_like(boxes), boxes)
return boxes
def resize_and_crop_boxes(self):
"""Resize boxes and crop it to the self._output dimension."""
boxlist = preprocessor.box_list.BoxList(self._boxes)
boxes = preprocessor.box_list_scale(
boxlist, self._output_size, self._output_size).get()
# Clip the boxes.
boxes = self.clip_boxes(boxes)
# Filter out ground truth boxes that are all zeros.
indices = tf.where(tf.not_equal(tf.reduce_sum(boxes, axis=1), 0))
boxes = tf.gather_nd(boxes, indices)
classes = tf.gather_nd(self._classes, indices)
return boxes, classes
class InputReader(object):
"""Input reader for dataset."""
def __init__(self, params):
self._max_num_instances = MAX_NUM_INSTANCES
self._image_size = params["image_size"]
self._num_classes = params["num_classes"]
input_anchors = anchors.Anchors(params['min_level'], params['max_level'],
params['num_scales'],
params['aspect_ratios'],
params['anchor_scale'],
(params['image_size'] - 5))
self.anchor_labeler = anchors.AnchorLabeler(input_anchors, params['num_classes'])
def parse_function(self, example_proto, sequence_length, training):
"""
Parses tf-records created with build_imagenet_data.py
:param example_proto:
Single example from tf record
:param image_size:
Output image size
:param num_classes:
Number of classes in dataset
:param training:
Whether or not the model is training
:param mean_value:
Imagenet mean to subtract from the output iamge
:param method:
How to generate the input image
:return:
Features dict containing image, and labels dict containing class index and one hot vector
"""
# Define how to parse the example
context_features = {
"length": tf.FixedLenFeature([], dtype=tf.int64),
# "width": tf.FixedLenFeature([], dtype=tf.int64),
# "height": tf.FixedLenFeature([], dtype=tf.int64),
# "filename": tf.FixedLenFeature([], dtype=tf.string),
# "object_in_frame": tf.VarLenFeature(dtype=tf.int64)
}
sequence_features = {
"images": tf.FixedLenSequenceFeature([], dtype=tf.string),
"anno/bboxes": tf.VarLenFeature(dtype=tf.float32),
# "anno/occluded": tf.VarLenFeature(dtype=tf.int64),
# "anno/generated": tf.VarLenFeature(dtype=tf.int64),
# "anno/trackid": tf.VarLenFeature(dtype=tf.int64),
"anno/label": tf.VarLenFeature(dtype=tf.int64)
}
# Parse example using schema
context_features, sequence_features = tf.parse_single_sequence_example(example_proto,
context_features=context_features,
sequence_features=sequence_features)
# index = tf.cast(tf.reshape(tf.sparse_tensor_to_dense(context_features["object_in_frame"]),[-1,1]),tf.int32)
example_length = tf.cast(context_features["length"], tf.int32)
first_frame = tf.random_uniform([1], maxval=tf.maximum(
example_length - sequence_length/2, 1), dtype=tf.int32)[0]
indices = tf.range(first_frame, tf.minimum(first_frame + sequence_length,example_length), dtype=tf.int32)
jpeg_images = tf.gather(sequence_features["images"], indices)
indices = tf.cast(indices,tf.int64)
bboxes = tf.sparse_tensor_to_dense(sequence_features["anno/bboxes"])
bboxes = tf.gather(bboxes, indices)
classes = tf.sparse_tensor_to_dense(sequence_features["anno/label"])
classes_select = tf.cast(tf.gather(classes, indices),tf.float32)
def process_fn(inputs):
jpeg_image, boxes,classes = inputs
boxes = tf.reshape(boxes, [-1, 4])
classes = tf.reshape(classes, [-1, 1])
mask = tf.greater(classes[:,0],0)
boxes = tf.boolean_mask(boxes,mask)
classes = tf.boolean_mask(classes, mask)-1
image = tf.cast(tf.image.decode_jpeg(jpeg_image), tf.float32)
input_processor = DetectionInputProcessor(
image, self._image_size, boxes, classes)
input_processor.normalize_image()
image = input_processor.resize_and_crop_image()
boxes, classes = input_processor.resize_and_crop_boxes()
# Assign anchors.
(cls_targets, box_targets,
num_positives) = self.anchor_labeler.label_anchors(boxes, classes)
boxes = pad_to_fixed_size(boxes, -1, [self._max_num_instances, 4])
classes = pad_to_fixed_size(classes, -1, [self._max_num_instances, 1])
return (image, cls_targets, box_targets, num_positives, boxes, classes)
processed_data = tf.map_fn(process_fn, (jpeg_images, bboxes,classes_select), dtype=(tf.float32,
OrderedDict({3: tf.int32,
4: tf.int32,
5: tf.int32}),
OrderedDict(
{3: tf.float32,
4: tf.float32,
5: tf.float32}),
tf.float32,
tf.float32,
tf.float32))
# subtract mean
images = tf.reshape(processed_data[0], [-1, self._image_size, self._image_size, 3])
length = tf.shape(images)[0]
loss_mask = tf.pad(tf.ones(length, tf.float32), [[0, sequence_length - length]])
data_tuple = ({"images": images,
"example_length": tf.reshape(length, [1])}, \
{"cls_targets": processed_data[1],
"box_targets": processed_data[2],
"num_positives": processed_data[3],
"boxes":processed_data[4],
"classes":processed_data[5],
"loss_masks": loss_mask})
self.store_shapes(data_tuple[1],sequence_length)
return data_tuple
def store_shapes(self,labels,sequence_length):
shape_dict = {}
for key,value in labels.iteritems():
if isinstance(value, dict):
nested_shape_dict = OrderedDict()
for nested_key, tensor in value.iteritems():
nested_shape_dict[nested_key] = [sequence_length]+tensor.get_shape().as_list()[1:]
shape_dict[key] = nested_shape_dict
else:
shape_dict[key] = [sequence_length]+value.get_shape().as_list()[1:]
self.shapes_dict = shape_dict
class ReadTFRecords(object):
def __init__(self, batch_size, params):
self.batch_size = batch_size
self.params = params
self.image_size = params["image_size"]
def __call__(self, glob_pattern, sequence_length, training=True):
"""
Read tf records matching a glob pattern
:param glob_pattern:
glob pattern eg. "/usr/local/share/Datasets/Imagenet/train-*.tfrecords"
:param training:
Whether or not to shuffle the data for training and evaluation
:return:
Iterator generating one example of batch size for each training step
"""
threads = multiprocessing.cpu_count()
with tf.name_scope("tf_record_reader"):
# generate file list
files = tf.data.Dataset.list_files(glob_pattern, shuffle=training)
# parallel fetch tfrecords dataset using the file list in parallel
dataset = files.apply(tf.contrib.data.parallel_interleave(
lambda filename: tf.data.TFRecordDataset(filename), cycle_length=threads))
input_class = InputReader(self.params)
# map the parse function to each example individually in threads parallel calls
dataset = dataset.map(
map_func=lambda example: input_class.parse_function(example, sequence_length,
training),
num_parallel_calls=threads)
# shuffle and repeat examples for better randomness and allow training beyond one epoch
dataset = dataset.apply(tf.contrib.data.shuffle_and_repeat(4 * self.batch_size))
# batch the examples
dataset = dataset.padded_batch(batch_size=self.batch_size, padded_shapes=(
{"images": [sequence_length, self.image_size, self.image_size, 3],
"example_length": [1]},
input_class.shapes_dict))
# prefetch batch
dataset = dataset.prefetch(buffer_size=sequence_length)
return dataset.make_one_shot_iterator().get_next()
def test(self,glob_pattern, sequence_length,params, training=True):
# Create a list of filenames and pass it to a queue
filename_queue = tf.train.string_input_producer(glob.glob(glob_pattern), num_epochs=1)
# Define a reader and read the next record
reader = tf.TFRecordReader()
_, serialized_example = reader.read(filename_queue)
# Decode the record read by the reader
input_class = InputReader(params)
features,labels = input_class.parse_function(serialized_example,sequence_length,training)
init_op = tf.group(tf.global_variables_initializer(), tf.local_variables_initializer())
with tf.Session() as sess:
sess.run(init_op)
# Create a coordinator and run all QueueRunner objects
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord)
for i in range(0,1000):
print(i)
print(sess.run([features,labels]))