forked from GMvandeVen/continual-learning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata.py
217 lines (177 loc) · 9.15 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import copy
import numpy as np
from torchvision import datasets, transforms
from torch.utils.data import ConcatDataset, Dataset
import torch
def _permutate_image_pixels(image, permutation):
'''Permutate the pixels of an image according to [permutation].
[image] 3D-tensor containing the image
[permutation] <ndarray> of pixel-indeces in their new order'''
if permutation is None:
return image
else:
c, h, w = image.size()
image = image.view(c, -1)
image = image[:, permutation] #--> same permutation for each channel
image = image.view(c, h, w)
return image
def get_dataset(name, type='train', download=True, capacity=None, permutation=None, dir='./datasets',
verbose=False, target_transform=None):
'''Create [train|valid|test]-dataset.'''
data_name = 'mnist' if name=='mnist28' else name
dataset_class = AVAILABLE_DATASETS[data_name]
# specify image-transformations to be applied
dataset_transform = transforms.Compose([
*AVAILABLE_TRANSFORMS[name],
transforms.Lambda(lambda x: _permutate_image_pixels(x, permutation)),
])
# load data-set
dataset = dataset_class('{dir}/{name}'.format(dir=dir, name=data_name), train=False if type=='test' else True,
download=download, transform=dataset_transform, target_transform=target_transform)
# print information about dataset on the screen
if verbose:
print(" --> {}: '{}'-dataset consisting of {} samples".format(name, type, len(dataset)))
# if dataset is (possibly) not large enough, create copies until it is.
if capacity is not None and len(dataset) < capacity:
dataset = ConcatDataset([copy.deepcopy(dataset) for _ in range(int(np.ceil(capacity / len(dataset))))])
return dataset
#----------------------------------------------------------------------------------------------------------#
class SubDataset(Dataset):
'''To sub-sample a dataset, taking only those samples with label in [sub_labels].
After this selection of samples has been made, it is possible to transform the target-labels,
which can be useful when doing continual learning with fixed number of output units.'''
def __init__(self, original_dataset, sub_labels, target_transform=None):
super().__init__()
self.dataset = original_dataset
self.sub_indeces = []
for index in range(len(self.dataset)):
if hasattr(original_dataset, "train_labels"):
if self.dataset.target_transform is None:
label = self.dataset.train_labels[index]
else:
label = self.dataset.target_transform(self.dataset.train_labels[index])
elif hasattr(self.dataset, "test_labels"):
if self.dataset.target_transform is None:
label = self.dataset.test_labels[index]
else:
label = self.dataset.target_transform(self.dataset.test_labels[index])
else:
label = self.dataset[index][1]
if label in sub_labels:
self.sub_indeces.append(index)
self.target_transform = target_transform
def __len__(self):
return len(self.sub_indeces)
def __getitem__(self, index):
sample = self.dataset[self.sub_indeces[index]]
if self.target_transform:
target = self.target_transform(sample[1])
sample = (sample[0], target)
return sample
class ExemplarDataset(Dataset):
'''Create dataset from list of <np.arrays> with shape (N, C, H, W) (i.e., with N images each).
The images at the i-th entry of [exemplar_sets] belong to class [i], unless a [target_transform] is specified'''
def __init__(self, exemplar_sets, target_transform=None):
super().__init__()
self.exemplar_sets = exemplar_sets
self.target_transform = target_transform
def __len__(self):
total = 0
for class_id in range(len(self.exemplar_sets)):
total += len(self.exemplar_sets[class_id])
return total
def __getitem__(self, index):
total = 0
for class_id in range(len(self.exemplar_sets)):
exemplars_in_this_class = len(self.exemplar_sets[class_id])
if index < (total + exemplars_in_this_class):
class_id_to_return = class_id if self.target_transform is None else self.target_transform(class_id)
exemplar_id = index - total
break
else:
total += exemplars_in_this_class
image = torch.from_numpy(self.exemplar_sets[class_id][exemplar_id])
return (image, class_id_to_return)
#----------------------------------------------------------------------------------------------------------#
# specify available data-sets.
AVAILABLE_DATASETS = {
'mnist': datasets.MNIST,
}
# specify available transforms.
AVAILABLE_TRANSFORMS = {
'mnist': [
transforms.Pad(2),
transforms.ToTensor(),
],
'mnist28': [
transforms.ToTensor(),
],
}
# specify configurations of available data-sets.
DATASET_CONFIGS = {
'mnist': {'size': 32, 'channels': 1, 'classes': 10},
'mnist28': {'size': 28, 'channels': 1, 'classes': 10},
}
#----------------------------------------------------------------------------------------------------------#
def get_multitask_experiment(name, scenario, tasks, data_dir="./datasets", only_config=False, verbose=False,
exception=False):
'''Load, organize and return train- and test-dataset for requested experiment.
[exception]: <bool>; if True, for visualization no permutation is applied to first task (permMNIST) or digits
are not shuffled before being distributed over the tasks (splitMNIST)'''
# depending on experiment, get and organize the datasets
if name == 'permMNIST':
# configurations
config = DATASET_CONFIGS['mnist']
classes_per_task = 10
if not only_config:
# generate permutations
if exception:
permutations = [None] + [np.random.permutation(config['size']**2) for _ in range(tasks-1)]
else:
permutations = [np.random.permutation(config['size']**2) for _ in range(tasks)]
# prepare datasets
train_datasets = []
test_datasets = []
for task_id, p in enumerate(permutations):
target_transform = transforms.Lambda(
lambda y, x=task_id: y + x*classes_per_task
) if scenario in ('task', 'class') else None
train_datasets.append(get_dataset('mnist', type="train", permutation=p, dir=data_dir,
target_transform=target_transform, verbose=verbose))
test_datasets.append(get_dataset('mnist', type="test", permutation=p, dir=data_dir,
target_transform=target_transform, verbose=verbose))
elif name == 'splitMNIST':
# check for number of tasks
if tasks>10:
raise ValueError("Experiment 'splitMNIST' cannot have more than 10 tasks!")
# configurations
config = DATASET_CONFIGS['mnist28']
classes_per_task = int(np.floor(10 / tasks))
if not only_config:
# prepare permutation to shuffle label-ids (to create different class batches for each random seed)
permutation = np.array(list(range(10))) if exception else np.random.permutation(list(range(10)))
target_transform = transforms.Lambda(lambda y, x=permutation: int(permutation[y]))
# prepare train and test datasets with all classes
mnist_train = get_dataset('mnist28', type="train", dir=data_dir, target_transform=target_transform,
verbose=verbose)
mnist_test = get_dataset('mnist28', type="test", dir=data_dir, target_transform=target_transform,
verbose=verbose)
# generate labels-per-task
labels_per_task = [
list(np.array(range(classes_per_task)) + classes_per_task * task_id) for task_id in range(tasks)
]
# split them up into sub-tasks
train_datasets = []
test_datasets = []
for labels in labels_per_task:
target_transform = transforms.Lambda(
lambda y, x=labels[0]: y - x
) if scenario=='domain' else None
train_datasets.append(SubDataset(mnist_train, labels, target_transform=target_transform))
test_datasets.append(SubDataset(mnist_test, labels, target_transform=target_transform))
else:
raise RuntimeError('Given undefined experiment: {}'.format(name))
# If needed, update number of (total) classes in the config-dictionary
config['classes'] = classes_per_task if scenario=='domain' else classes_per_task*tasks
# Return tuple of train-, validation- and test-dataset, config-dictionary and number of classes per task
return config if only_config else ((train_datasets, test_datasets), config, classes_per_task)