forked from facebookresearch/faiss
-
Notifications
You must be signed in to change notification settings - Fork 0
/
neighbor_codec.py
executable file
·241 lines (201 loc) · 7.88 KB
/
neighbor_codec.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
"""
This is the training code for the link and code. Especially the
neighbors_kmeans function implements the EM-algorithm to find the
appropriate weightings and cluster them.
"""
from __future__ import print_function
import time
import numpy as np
import faiss
#----------------------------------------------------------
# Utils
#----------------------------------------------------------
def sanitize(x):
return np.ascontiguousarray(x, dtype='float32')
def train_kmeans(x, k, ngpu, max_points_per_centroid=256):
"Runs kmeans on one or several GPUs"
d = x.shape[1]
clus = faiss.Clustering(d, k)
clus.verbose = True
clus.niter = 20
clus.max_points_per_centroid = max_points_per_centroid
if ngpu == 0:
index = faiss.IndexFlatL2(d)
else:
res = [faiss.StandardGpuResources() for i in range(ngpu)]
flat_config = []
for i in range(ngpu):
cfg = faiss.GpuIndexFlatConfig()
cfg.useFloat16 = False
cfg.device = i
flat_config.append(cfg)
if ngpu == 1:
index = faiss.GpuIndexFlatL2(res[0], d, flat_config[0])
else:
indexes = [faiss.GpuIndexFlatL2(res[i], d, flat_config[i])
for i in range(ngpu)]
index = faiss.IndexReplicas()
for sub_index in indexes:
index.addIndex(sub_index)
# perform the training
clus.train(x, index)
centroids = faiss.vector_float_to_array(clus.centroids)
stats = clus.iteration_stats
stats = [stats.at(i) for i in range(stats.size())]
obj = np.array([st.obj for st in stats])
print("final objective: %.4g" % obj[-1])
return centroids.reshape(k, d)
#----------------------------------------------------------
# Learning the codebook from neighbors
#----------------------------------------------------------
# works with both a full Inn table and dynamically generated neighbors
def get_Inn_shape(Inn):
if type(Inn) != tuple:
return Inn.shape
return Inn[:2]
def get_neighbor_table(x_coded, Inn, i):
if type(Inn) != tuple:
return x_coded[Inn[i,:],:]
rfn = x_coded
M, d = rfn.M, rfn.index.d
out = np.zeros((M + 1, d), dtype='float32')
int_i = int(i)
rfn.get_neighbor_table(int_i, faiss.swig_ptr(out))
_, _, sq = Inn
return out[:, sq * rfn.dsub : (sq + 1) * rfn.dsub]
# Function that produces the best regression values from the vector
# and its neighbors
def regress_from_neighbors (x, x_coded, Inn):
(N, knn) = get_Inn_shape(Inn)
betas = np.zeros((N,knn))
t0 = time.time()
for i in range (N):
xi = x[i,:]
NNi = get_neighbor_table(x_coded, Inn, i)
betas[i,:] = np.linalg.lstsq(NNi.transpose(), xi, rcond=0.01)[0]
if i % (N / 10) == 0:
print ("[%d:%d] %6.3fs" % (i, i + N / 10, time.time() - t0))
return betas
# find the best beta minimizing ||x-x_coded[Inn,:]*beta||^2
def regress_opt_beta (x, x_coded, Inn):
(N, knn) = get_Inn_shape(Inn)
d = x.shape[1]
# construct the linear system to be solved
X = np.zeros ((d*N))
Y = np.zeros ((d*N, knn))
for i in range (N):
X[i*d:(i+1)*d] = x[i,:]
neighbor_table = get_neighbor_table(x_coded, Inn, i)
Y[i*d:(i+1)*d, :] = neighbor_table.transpose()
beta_opt = np.linalg.lstsq(Y, X, rcond=0.01)[0]
return beta_opt
# Find the best encoding by minimizing the reconstruction error using
# a set of pre-computed beta values
def assign_beta (beta_centroids, x, x_coded, Inn, verbose=True):
if type(Inn) == tuple:
return assign_beta_2(beta_centroids, x, x_coded, Inn)
(N, knn) = Inn.shape
x_ibeta = np.zeros ((N), dtype='int32')
t0= time.time()
for i in range (N):
NNi = x_coded[Inn[i,:]]
# Consider all possible betas for the encoding and compute the
# encoding error
x_reg_all = np.dot (beta_centroids, NNi)
err = ((x_reg_all - x[i,:]) ** 2).sum(axis=1)
x_ibeta[i] = err.argmin()
if verbose:
if i % (N / 10) == 0:
print ("[%d:%d] %6.3fs" % (i, i + N / 10, time.time() - t0))
return x_ibeta
# Reconstruct a set of vectors using the beta_centroids, the
# assignment, the encoded neighbors identified by the list Inn (which
# includes the vector itself)
def recons_from_neighbors (beta_centroids, x_ibeta, x_coded, Inn):
(N, knn) = Inn.shape
x_rec = np.zeros(x_coded.shape)
t0= time.time()
for i in range (N):
NNi = x_coded[Inn[i,:]]
x_rec[i, :] = np.dot (beta_centroids[x_ibeta[i]], NNi)
if i % (N / 10) == 0:
print ("[%d:%d] %6.3fs" % (i, i + N / 10, time.time() - t0))
return x_rec
# Compute a EM-like algorithm trying at optimizing the beta such as they
# minimize the reconstruction error from the neighbors
def neighbors_kmeans (x, x_coded, Inn, K, ngpus=1, niter=5):
# First compute centroids using a regular k-means algorithm
betas = regress_from_neighbors (x, x_coded, Inn)
beta_centroids = train_kmeans(
sanitize(betas), K, ngpus, max_points_per_centroid=1000000)
_, knn = get_Inn_shape(Inn)
d = x.shape[1]
rs = np.random.RandomState()
for iter in range(niter):
print('iter', iter)
idx = assign_beta (beta_centroids, x, x_coded, Inn, verbose=False)
hist = np.bincount(idx)
for cl0 in np.where(hist == 0)[0]:
print(" cluster %d empty, split" % cl0, end=' ')
cl1 = idx[np.random.randint(idx.size)]
pos = np.nonzero (idx == cl1)[0]
pos = rs.choice(pos, pos.size / 2)
print(" cl %d -> %d + %d" % (cl1, len(pos), hist[cl1] - len(pos)))
idx[pos] = cl0
hist = np.bincount(idx)
tot_err = 0
for k in range (K):
pos = np.nonzero (idx == k)[0]
npos = pos.shape[0]
X = np.zeros (d*npos)
Y = np.zeros ((d*npos, knn))
for i in range(npos):
X[i*d:(i+1)*d] = x[pos[i],:]
neighbor_table = get_neighbor_table(x_coded, Inn, pos[i])
Y[i*d:(i+1)*d, :] = neighbor_table.transpose()
sol, residuals, _, _ = np.linalg.lstsq(Y, X, rcond=0.01)
if residuals.size > 0:
tot_err += residuals.sum()
beta_centroids[k, :] = sol
print(' err=%g' % tot_err)
return beta_centroids
# assign the betas in C++
def assign_beta_2(beta_centroids, x, rfn, Inn):
_, _, sq = Inn
if rfn.k == 1:
return np.zeros(x.shape[0], dtype=int)
# add dummy dimensions to beta_centroids and x
all_beta_centroids = np.zeros(
(rfn.nsq, rfn.k, rfn.M + 1), dtype='float32')
all_beta_centroids[sq] = beta_centroids
all_x = np.zeros((len(x), rfn.d), dtype='float32')
all_x[:, sq * rfn.dsub : (sq + 1) * rfn.dsub] = x
rfn.codes.clear()
rfn.ntotal = 0
faiss.copy_array_to_vector(
all_beta_centroids.ravel(), rfn.codebook)
rfn.add_codes(len(x), faiss.swig_ptr(all_x))
codes = faiss.vector_to_array(rfn.codes)
codes = codes.reshape(-1, rfn.nsq)
return codes[:, sq]
#######################################################
# For usage from bench_storages.py
def train_beta_codebook(rfn, xb_full, niter=10):
beta_centroids = []
for sq in range(rfn.nsq):
d0, d1 = sq * rfn.dsub, (sq + 1) * rfn.dsub
print("training subquantizer %d/%d on dimensions %d:%d" % (
sq, rfn.nsq, d0, d1))
beta_centroids_i = neighbors_kmeans(
xb_full[:, d0:d1], rfn, (xb_full.shape[0], rfn.M + 1, sq),
rfn.k,
ngpus=0, niter=niter)
beta_centroids.append(beta_centroids_i)
rfn.ntotal = 0
rfn.codes.clear()
rfn.codebook.clear()
return np.stack(beta_centroids)