-
Notifications
You must be signed in to change notification settings - Fork 0
/
ogm.py
87 lines (69 loc) · 3.91 KB
/
ogm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import scipy.io
import scipy.stats
import numpy as np
import matplotlib.pyplot as plt
from tqdm import tqdm
class Map():
def __init__(self, xsize, ysize, grid_size):
self.xsize = xsize+2 # Add extra cells for the borders
self.ysize = ysize+2
self.grid_size = grid_size # save this off for future use
self.log_prob_map = np.zeros((self.xsize, self.ysize)) # set all to zero
self.alpha = 1.0 # The assumed thickness of obstacles
self.beta = 5.0*np.pi/180.0 # The assumed width of the laser beam
self.z_max = 150.0 # The max reading from the laser
# Pre-allocate the x and y positions of all grid positions into a 3D tensor
# (pre-allocation = faster)
self.grid_position_m = np.array([np.tile(np.arange(0, self.xsize*self.grid_size, self.grid_size)[:,None], (1, self.ysize)),
np.tile(np.arange(0, self.ysize*self.grid_size, self.grid_size)[:,None].T, (self.xsize, 1))])
# Log-Probabilities to add or remove from the map
self.l_occ = np.log(0.65/0.35)
self.l_free = np.log(0.35/0.65)
def update_map(self, pose, z):
dx = self.grid_position_m.copy() # A tensor of coordinates of all cells
dx[0, :, :] -= pose[0] # A matrix of all the x coordinates of the cell
dx[1, :, :] -= pose[1] # A matrix of all the y coordinates of the cell
theta_to_grid = np.arctan2(dx[1, :, :], dx[0, :, :]) - pose[2] # matrix of all bearings from robot to cell
# Wrap to +pi / - pi
theta_to_grid[theta_to_grid > np.pi] -= 2. * np.pi
theta_to_grid[theta_to_grid < -np.pi] += 2. * np.pi
dist_to_grid = scipy.linalg.norm(dx, axis=0) # matrix of L2 distance to all cells from robot
# For each laser beam
for z_i in z:
r = z_i[0] # range measured
b = z_i[1] # bearing measured
# Calculate which cells are measured free or occupied, so we know which cells to update
# Doing it this way is like a billion times faster than looping through each cell (because vectorized numpy is the only way to numpy)
free_mask = (np.abs(theta_to_grid - b) <= self.beta/2.0) & (dist_to_grid < (r - self.alpha/2.0))
occ_mask = (np.abs(theta_to_grid - b) <= self.beta/2.0) & (np.abs(dist_to_grid - r) <= self.alpha/2.0)
# Adjust the cells appropriately
self.log_prob_map[occ_mask] += self.l_occ
self.log_prob_map[free_mask] += self.l_free
if __name__ == '__main__':
# load matlab generated data (located at http://jamessjackson.com/files/index.php/s/sdKzy9nnqaVlKUe)
data = scipy.io.loadmat('state_meas_data.mat')
state = data['X']
meas = data['z']
# Define the parameters for the map. (This is a 100x100m map with grid size 1x1m)
grid_size = 1.0
map = Map(int(100/grid_size), int(100/grid_size), grid_size)
plt.ion() # enable real-time plotting
plt.figure(1) # create a plot
for i in tqdm(range(len(state.T))):
map.update_map(state[:,i], meas[:,:,i].T) # update the map
# Real-Time Plotting
# (comment out these next lines to make it run super fast, matplotlib is painfully slow)
plt.clf()
pose = state[:,i]
circle = plt.Circle((pose[1], pose[0]), radius=3.0, fc='y')
plt.gca().add_patch(circle)
arrow = pose[0:2] + np.array([3.5, 0]).dot(np.array([[np.cos(pose[2]), np.sin(pose[2])], [-np.sin(pose[2]), np.cos(pose[2])]]))
plt.plot([pose[1], arrow[1]], [pose[0], arrow[0]])
plt.imshow(1.0 - 1./(1.+np.exp(map.log_prob_map)), 'Greys')
plt.pause(0.005)
# Final Plotting
plt.ioff()
plt.clf()
plt.imshow(1.0 - 1./(1.+np.exp(map.log_prob_map)), 'Greys') # This is probability
plt.imshow(map.log_prob_map, 'Greys') # log probabilities (looks really cool)
plt.show()