-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlagrangian_vision_transformer.py
47 lines (38 loc) · 1.86 KB
/
lagrangian_vision_transformer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import torch
import torch.nn as nn
from .layers import trunc_normal_
from .vision_transformer import checkpoint_filter_fn
import lagrangian_units as lu
from .vision_transformer import Attention
class LagrangianAttention(Attention):
def __init__(self, *args, lag_drop=None, **kwargs):
super().__init__(*args, **kwargs)
print(lag_drop)
self.func_d = lu.get_lagunit(lag_drop)
def forward(self, x):
B, N, C = x.shape
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple)
attn = (q @ k.transpose(-2, -1)) * self.scale
attn, mask = self.func_d(attn)
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
attn = mask * attn
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
from .vision_transformer import Block as _Block
class Block(_Block):
def __init__(self, dim, num_heads, qkv_bias=False, drop=0., attn_drop=0., lag_drop=None, **argv):
super().__init__(dim, num_heads, qkv_bias=qkv_bias, drop=drop, attn_drop=attn_drop, **argv)
self.attn = LagrangianAttention(dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop, lag_drop=lag_drop)
from .vision_transformer import VisionTransformer as _VisionTransformer
class VisionTransformer(_VisionTransformer):
def __init__(self, *args, block_fn=Block, drop_rate=0., **kwargs):
if isinstance(drop_rate, str):
drop_opts = drop_rate.split(',')
drop_rate = float(drop_opts[0])
lag_drop = drop_opts[1]
block_fn = lambda *args, **kwargs: Block(*args, lag_drop=lag_drop, **kwargs)
super().__init__(*args, block_fn=block_fn, drop_rate=drop_rate, **kwargs)