-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathrun.py
130 lines (113 loc) · 4.49 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import torch
import numpy as np
import os
import random
import argparse
import dsdh
from loguru import logger
from data.data_loader import load_data
def run():
args = load_config()
logger.add(
os.path.join('logs', '{}_model_{}_codelength_{}_mu_{}_nu_{}_eta_{}_topk_{}.log'.format(
args.dataset,
args.arch,
','.join([str(c) for c in args.code_length]),
args.mu,
args.nu,
args.eta,
args.topk,
)),
rotation='500 MB',
level='INFO',
)
logger.info(args)
torch.backends.cudnn.benchmark = True
random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
np.random.seed(args.seed)
# Load dataset
query_dataloader, train_dataloader, retrieval_dataloader = load_data(
args.dataset,
args.root,
args.num_query,
args.num_train,
args.batch_size,
args.num_workers,
)
# Training
for code_length in args.code_length:
logger.info('[code length:{}]'.format(code_length))
checkpoint = dsdh.train(
train_dataloader,
query_dataloader,
retrieval_dataloader,
args.arch,
code_length,
args.device,
args.lr,
args.max_iter,
args.mu,
args.nu,
args.eta,
args.topk,
args.evaluate_interval,
)
# Save checkpoint
torch.save(checkpoint, os.path.join('checkpoints', '{}_model_{}_codelength_{}_mu_{}_nu_{}_eta_{}_topk_{}_map_{:.4f}.pt'.format(args.dataset, args.arch, code_length, args.mu, args.nu, args.eta, args.topk, checkpoint['map'])))
logger.info('[code_length:{}][map:{:.4f}]'.format(code_length, checkpoint['map']))
def load_config():
"""
Load configuration.
Args
None
Returns
args(argparse.ArgumentParser): Configuration.
"""
parser = argparse.ArgumentParser(description='DSDH_PyTorch')
parser.add_argument('--dataset',
help='Dataset name.')
parser.add_argument('--root',
help='Path of dataset')
parser.add_argument('--batch-size', default=128, type=int,
help='Batch size.(default: 128)')
parser.add_argument('--arch', default='alexnet', type=str,
help='CNN model name.(default: alexnet)')
parser.add_argument('--lr', default=1e-5, type=float,
help='Learning rate.(default: 1e-5)')
parser.add_argument('--code-length', default='12,24,32,48', type=str,
help='Binary hash code length.(default: 12,24,32,48)')
parser.add_argument('--max-iter', default=150, type=int,
help='Number of iterations.(default: 150)')
parser.add_argument('--num-query', default=1000, type=int,
help='Number of query data points.(default: 1000)')
parser.add_argument('--num-train', default=5000, type=int,
help='Number of training data points.(default: 5000)')
parser.add_argument('--num-workers', default=6, type=int,
help='Number of loading data threads.(default: 6)')
parser.add_argument('--topk', default=-1, type=int,
help='Calculate map of top k.(default: all)')
parser.add_argument('--gpu', default=None, type=int,
help='Using gpu.(default: False)')
parser.add_argument('--mu', default=1e-2, type=float,
help='Hyper-parameter.(default: 1e-2)')
parser.add_argument('--nu', default=1, type=float,
help='Hyper-parameter.(default: 1)')
parser.add_argument('--eta', default=1e-2, type=float,
help='Hyper-parameter.(default: 1e-2)')
parser.add_argument('--evaluate-interval', default=10, type=int,
help='Evaluation interval.(default: 10)')
parser.add_argument('--seed', default=3367, type=int,
help='Random seed.(default: 3367)')
args = parser.parse_args()
# GPU
if args.gpu is None:
args.device = torch.device("cpu")
else:
args.device = torch.device("cuda:%d" % args.gpu)
# Hash code length
args.code_length = list(map(int, args.code_length.split(',')))
return args
if __name__ == '__main__':
run()