-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathtransformer.py
297 lines (250 loc) · 10.4 KB
/
transformer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import gc; import os
import torch
from torch.nn import *
import torch.nn as nn
import torch.nn.functional as F
import warnings
warnings.filterwarnings('ignore')
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import gc
import os
from tqdm.notebook import tqdm
from fastai.tabular import *
from enc_and_utils import *
from palsoftmax import *
from attention import *
from logsampler import *
from decoders import *
class Transformer(torch.nn.Module):
def __init__(self, n_token, n_layer, n_head, d_model, d_head, d_inner,
dropout, dropatt, dtype, attention_dropout_prob, output_dropout_prob,
init_method, bi_data, tie_weight=True, d_embed=None,
div_val=1, tie_projs=[False], pre_lnorm=False,
tgt_len=384, ext_len=10, mem_len=384,
cutoffs=[], adapt_inp=False,
same_length=False, attn_type=2, clamp_len=-1,
sample_softmax=-1):
super(Transformer, self).__init__()
self.n_token = n_token
d_embed = d_model if d_embed is None else d_embed
self.d_embed = d_embed
self.d_model = d_model
self.n_head = n_head
self.d_head = d_head
self.drop = nn.Dropout(dropout)
self.tie_weight = tie_weight
self.tie_projs = tie_projs
self.div_val = div_val
self.n_layer = n_layer
self.tgt_len = tgt_len
self.mem_len = mem_len
self.ext_len = ext_len
self.max_klen = tgt_len + ext_len + mem_len
self.attn_type = attn_type
self.word_emb = PositionalEmbedding(d_model)
self.layers = nn.ModuleList()
self.layers.append(
TransformerXLHybridEncoder(
n_token,
n_layer,
d_model,
n_head,
d_head,
d_inner,
dropout,
dropatt,
bi_data,
attn_type,
is_training=True,
initializer=torch.optim.SGD,
)
)
self.layers.append(
TransformerXLHybridEncoder(
n_token,
n_layer,
d_model,
n_head,
d_head,
d_inner,
dropout,
dropatt,
bi_data,
attn_type,
is_training=True,
initializer=torch.optim.SGD,
)
)
# the default attention
if attn_type == 0:
for i in range(n_layer):
self.layers.append(
RelPartialLearnableDecoderLayer(
n_head, d_model, d_head, d_inner, dropout,
tgt_len=tgt_len, ext_len=ext_len, mem_len=mem_len,
dropatt=dropatt, pre_lnorm=pre_lnorm)
)
# learnable embeddings
elif attn_type == 1:
for i in range(n_layer):
self.layers.append(
RelLearnableDecoderLayer(
n_head, d_model, d_head, d_inner, dropout,
tgt_len=tgt_len, ext_len=ext_len, mem_len=mem_len,
dropatt=dropatt, pre_lnorm=pre_lnorm)
)
# absolute embeddings
elif attn_type in [2, 3]:
for i in range(n_layer):
self.layers.append(
GPT2OptimizedDecoderLayer(
n_head, d_model, d_head, d_inner, dropout,
dropatt=dropatt, pre_lnorm=pre_lnorm, hidden_size=16)
)
self.layers.append (
GPT2OptimizedDecoderLayer(
n_head, d_model, d_head, d_inner, dropout,
dropatt=dropatt, pre_lnorm=pre_lnorm, hidden_size=16)
)
self.sample_softmax = sample_softmax
self.out_layer = nn.Linear(d_model, n_token)
self.sampler = LogUniformSampler(n_token, 1)
# use sampled softmax
if sample_softmax > 0:
self.out_layer = nn.Linear(d_model, n_token)
self.tie_weight = tie_weight
self.sampler = LogUniformSampler(n_token, sample_softmax)
# use adaptive softmax (including standard softmax)
emb_layers = [i.weight for i in AdaptiveEmbedding(d_model, d_head, d_inner, n_head).emb_layers]
emb_projs = AdaptiveEmbedding(d_model, d_head, d_inner, n_head).emb_projs
self.crit = ProjectedAdaptiveLogSoftmax(n_token, d_embed, d_model,
cutoffs, div_val=div_val,
tie_projs=tie_projs,
out_projs=emb_projs,
out_layers_weights=emb_layers)
emb_projs = AdaptiveEmbedding(d_model, d_head, d_inner, n_head).emb_projs
self.same_length = same_length
self.clamp_len = clamp_len
self._create_params()
def backward_compatible(self):
self.sample_softmax = -1
cutoffs=[]
def _create_params(self):
# default attention
cutoffs=[]
if self.attn_type == 0:
self.pos_emb = AdaptiveEmbedding(self.n_token, self.d_embed, self.d_model, cutoffs,
div_val=self.div_val)
self.r_w_bias = nn.Parameter(torch.Tensor(self.n_head, self.d_head))
self.r_r_bias = nn.Parameter(torch.Tensor(self.n_head, self.d_head))
# learnable
elif self.attn_type == 1:
self.r_emb = nn.Parameter(torch.Tensor(
self.n_layer, self.max_klen, self.n_head, self.d_head))
self.r_w_bias = nn.Parameter(torch.Tensor(
self.n_layer, self.n_head, self.d_head))
self.r_bias = nn.Parameter(torch.Tensor(
self.n_layer, self.max_klen, self.n_head))
# absolute standard
elif self.attn_type == 2:
self.pos_emb = PositionalEmbedding(self.d_model)
# absolute deeper SA
elif self.attn_type == 3:
self.r_emb = nn.Parameter(torch.Tensor(
self.n_layer, self.max_klen, self.d_model))
def reset_length(self, tgt_len, ext_len, mem_len):
self.tgt_len = tgt_len
self.mem_len = mem_len
self.ext_len = ext_len
def init_mems(self):
if self.mem_len > 0:
mems = []
param = next(self.parameters())
for i in range(self.n_layer+1):
empty = torch.empty(0, dtype=param.dtype, device=param.device)
mems.append(empty)
return mems
else:
return None
def _update_mems(self, hids, mems, qlen, mlen):
# does not deal with None
if mems is None:
return None
# mems is not None
assert len(hids) == len(mems), 'len(hids) != len(mems)'
# There are `mlen + qlen` steps that can be cached into mems
# For the next step, the last `ext_len` of the `qlen` tokens
# will be used as the extended context. Hence, we only cache
# the tokens from `mlen + qlen - self.ext_len - self.mem_len`
# to `mlen + qlen - self.ext_len`.
with torch.no_grad():
new_mems = []
end_idx = mlen + max(0, qlen - 0 - self.ext_len)
beg_idx = max(0, end_idx - self.mem_len)
for i in range(len(hids)):
cat = torch.cat([mems[i], hids[i]], dim=0)
new_mems.append(cat[beg_idx:end_idx].detach())
return new_mems
def _forward(self, dec_inp, mems=None):
qlen, bsz = dec_inp.size()
true_size = 7
word_emb = PositionalEmbedding(dec_inp)
mlen = mems[0].size(0) if mems is not None else 0
klen = mlen + qlen
# absolute
if self.attn_type == 2:
pos_seq = torch.LongTensor(torch.arange(klen - 1, -1, -1.0, dtype=torch.long))
if self.clamp_len > 0:
pos_seq.clamp_(max=self.clamp_len)
pos_emb = self.pos_emb(pos_seq, 64)
core_out = self.drop(pos_emb[-qlen:])
hids = []
hids.append(core_out)
for i, layer in enumerate(self.layers):
mems_i = None if mems is None else mems[i]
if mems_i is not None and len(mems_i) and i == 0:
mems_i += pos_emb[:mlen]
core_out = core_out
hids.append(core_out)
elif self.attn_type == 3:
core_out = self.drop(word_emb)
hids.append(core_out)
for i, layer in enumerate(self.layers):
mems_i = None if mems is None else mems[i]
if mems_i is not None and len(mems_i) and mlen > 0:
cur_emb = self.r_emb[i][:-qlen]
cur_size = cur_emb.size(0)
if cur_size < mlen:
cur_emb_pad = cur_emb[0:1].expand(mlen-cur_size, -1, -1)
cur_emb = torch.cat([cur_emb_pad, cur_emb], 0)
else:
cur_emb = cur_emb[-mlen:]
mems_i += cur_emb.view(mlen, 1, -1)
core_out += self.r_emb[i][-qlen:].view(qlen, 1, -1)
core_out = layer(core_out, dec_attn_mask=dec_attn_mask,
mems=mems_i)
hids.append(core_out)
core_out = self.drop(core_out)
new_mems = self._update_mems(hids, mems, qlen, mlen)
return core_out, new_mems
def forward(self, data, target, crit, mems):
# nn.DataParallel does not allow size(0) tensors to be broadcasted.
# So, have to initialize size(0) mems inside the model forward.
# Moreover, have to return new_mems to allow nn.DataParallel to piece
# them together.
self.criter = crit
if mems is None:
mems = self.init_mems()
tgt_len = target.size(0)
hidden, new_mems = self._forward(data, mems=None)
pred_hid = hidden[-tgt_len:]
assert self.tie_weight
criter = torch.nn.MSELoss()
loss = criter(pred_hid.view(-1).reshape(512, 54292), target.view(-1))
loss = loss.view(1, -1)
return torch.Tensor(pred_hid)