forked from darklife/darkriscv
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdarksocv.v
executable file
·549 lines (436 loc) · 15.3 KB
/
darksocv.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
/*
* Copyright (c) 2018, Marcelo Samsoniuk
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* * Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
`timescale 1ns / 1ps
`include "../rtl/config.vh"
module darksocv
(
input XCLK, // external clock
input XRES, // external reset
input UART_RXD, // UART receive line
output UART_TXD, // UART transmit line
output [3:0] LED, // on-board leds
output [3:0] DEBUG // osciloscope
);
wire CLK,RES;
darkpll darkpll0(.XCLK(XCLK),.XRES(XRES),.CLK(CLK),.RES(RES));
// ro/rw memories
`ifdef __HARVARD__
reg [31:0] ROM [0:2**`MLEN/4-1]; // ro memory
reg [31:0] RAM [0:2**`MLEN/4-1]; // rw memory
// memory initialization
integer i;
initial
begin
for(i=0;i!=2**`MLEN/4;i=i+1)
begin
ROM[i] = 32'd0;
RAM[i] = 32'd0;
end
// workaround for vivado: no path in simulation and .mem extension
`ifdef XILINX_SIMULATOR
$readmemh("darksocv.rom.mem",ROM);
$readmemh("darksocv.ram.mem",RAM);
`else
$readmemh("../src/darksocv.rom.mem",ROM);
$readmemh("../src/darksocv.ram.mem",RAM);
`endif
end
`else
reg [31:0] MEM [0:2**`MLEN/4-1]; // ro memory
// memory initialization
integer i;
initial
begin
`ifdef SIMULATION
for(i=0;i!=2**`MLEN/4;i=i+1)
begin
MEM[i] = 32'd0;
end
`endif
// workaround for vivado: no path in simulation and .mem extension
`ifdef XILINX_SIMULATOR
$readmemh("darksocv.mem",MEM);
`elsif MODEL_TECH
$readmemh("../../../../src/darksocv.mem",MEM);
`else
$readmemh("../src/darksocv.mem",MEM);
`endif
end
`endif
// darkriscv bus interface
wire [31:0] IADDR;
wire [31:0] DADDR;
wire [31:0] IDATA;
wire [31:0] DATAO;
wire [31:0] DATAI;
wire WR,RD;
wire [3:0] BE;
`ifdef __FLEXBUZZ__
wire [31:0] XATAO;
wire [31:0] XATAI;
wire [ 2:0] DLEN;
wire RW;
`endif
wire [31:0] IOMUX [0:4];
reg [15:0] GPIOFF = 0;
reg [15:0] LEDFF = 0;
wire HLT;
// instruction bus
reg [31:0] ROMFF;
wire IHIT = 1;
reg [31:0] ROMFF2 = 0;
reg HLT2 = 0;
always@(posedge CLK) // stage #0.5
begin
if(HLT^HLT2)
begin
ROMFF2 <= ROMFF;
end
HLT2 <= HLT;
end
assign IDATA = HLT2 ? ROMFF2 : ROMFF;
always@(posedge CLK) // stage #0.5
begin
`ifdef __HARVARD__
ROMFF <= ROM[IADDR[`MLEN-1:2]];
`else
ROMFF <= MEM[IADDR[`MLEN-1:2]];
`endif
end
// data bus
`ifdef __FLEXBUZZ__
// must work just exactly as the default interface, since we have no
// flexbuzz devices available yet (i.e., all devices are 32-bit now)
assign XATAI = DLEN[0] ? ( DADDR[1:0]==3 ? DATAI[31:24] :
DADDR[1:0]==2 ? DATAI[23:16] :
DADDR[1:0]==1 ? DATAI[15: 8] :
DATAI[ 7: 0] ):
DLEN[1] ? ( DADDR[1]==1 ? DATAI[31:16] :
DATAI[15: 0] ):
DATAI;
assign DATAO = DLEN[0] ? ( DADDR[1:0]==3 ? { XATAO[ 7: 0], 24'hx } :
DADDR[1:0]==2 ? { 8'hx, XATAO[ 7: 0], 16'hx } :
DADDR[1:0]==1 ? { 16'hx, XATAO[ 7: 0], 8'hx } :
{ 24'hx, XATAO[ 7: 0] } ):
DLEN[1] ? ( DADDR[1]==1 ? { XATAO[15: 0], 16'hx } :
{ 16'hx, XATAO[15: 0] } ):
XATAO;
assign RD = DLEN&&RW==1;
assign WR = DLEN&&RW==0;
assign BE = DLEN[0] ? ( DADDR[1:0]==3 ? 4'b1000 : // 8-bit
DADDR[1:0]==2 ? 4'b0100 :
DADDR[1:0]==1 ? 4'b0010 :
4'b0001 ) :
DLEN[1] ? ( DADDR[1]==1 ? 4'b1100 : // 16-bit
4'b0011 ) :
4'b1111; // 32-bit
`endif
reg [31:0] RAMFF;
// for single phase clock: 1 wait state in read op always required!
reg [1:0] DACK = 0;
wire WHIT = 1;
wire DHIT = !((RD
`ifdef __RMW_CYCLE__
||WR // worst code ever! but it is 3:12am...
`endif
) && DACK!=1); // the WR operatio does not need ws. in this config.
always@(posedge CLK) // stage #1.0
begin
DACK <= RES ? 0 : DACK ? DACK-1 : (RD
`ifdef __RMW_CYCLE__
||WR // 2nd worst code ever!
`endif
) ? 1 : 0; // wait-states
end
always@(posedge CLK) // stage #1.5
begin
`ifdef __HARVARD__
RAMFF <= RAM[DADDR[`MLEN-1:2]];
`else
RAMFF <= MEM[DADDR[`MLEN-1:2]];
`endif
end
//assign DATAI = DADDR[31] ? IOMUX : RAM[DADDR[`MLEN-1:2]];
reg [31:0] IOMUXFF = 0;
reg [31:0] XADDR = 0;
//individual byte/word/long selection, thanks to HYF!
always@(posedge CLK)
begin
`ifdef __RMW_CYCLE__
// read-modify-write operation w/ 1 wait-state:
if(!HLT&&WR&&DADDR[31]==0/*&&DADDR[`MLEN-1]==1*/)
begin
`ifdef __HARVARD__
RAM[DADDR[`MLEN-1:2]] <=
`else
MEM[DADDR[`MLEN-1:2]] <=
`endif
{
BE[3] ? DATAO[3 * 8 + 7: 3 * 8] : RAMFF[3 * 8 + 7: 3 * 8],
BE[2] ? DATAO[2 * 8 + 7: 2 * 8] : RAMFF[2 * 8 + 7: 2 * 8],
BE[1] ? DATAO[1 * 8 + 7: 1 * 8] : RAMFF[1 * 8 + 7: 1 * 8],
BE[0] ? DATAO[0 * 8 + 7: 0 * 8] : RAMFF[0 * 8 + 7: 0 * 8]
};
end
`else
// write-only operation w/ 0 wait-states:
`ifdef __HARVARD__
if(!HLT&&WR&&DADDR[31]==0&&/*DADDR[`MLEN-1]==1&&*/BE[3]) RAM[DADDR[`MLEN-1:2]][3 * 8 + 7: 3 * 8] <= DATAO[3 * 8 + 7: 3 * 8];
if(!HLT&&WR&&DADDR[31]==0&&/*DADDR[`MLEN-1]==1&&*/BE[2]) RAM[DADDR[`MLEN-1:2]][2 * 8 + 7: 2 * 8] <= DATAO[2 * 8 + 7: 2 * 8];
if(!HLT&&WR&&DADDR[31]==0&&/*DADDR[`MLEN-1]==1&&*/BE[1]) RAM[DADDR[`MLEN-1:2]][1 * 8 + 7: 1 * 8] <= DATAO[1 * 8 + 7: 1 * 8];
if(!HLT&&WR&&DADDR[31]==0&&/*DADDR[`MLEN-1]==1&&*/BE[0]) RAM[DADDR[`MLEN-1:2]][0 * 8 + 7: 0 * 8] <= DATAO[0 * 8 + 7: 0 * 8];
`else
if(!HLT&&WR&&DADDR[31]==0&&/*DADDR[`MLEN-1]==1&&*/BE[3]) MEM[DADDR[`MLEN-1:2]][3 * 8 + 7: 3 * 8] <= DATAO[3 * 8 + 7: 3 * 8];
if(!HLT&&WR&&DADDR[31]==0&&/*DADDR[`MLEN-1]==1&&*/BE[2]) MEM[DADDR[`MLEN-1:2]][2 * 8 + 7: 2 * 8] <= DATAO[2 * 8 + 7: 2 * 8];
if(!HLT&&WR&&DADDR[31]==0&&/*DADDR[`MLEN-1]==1&&*/BE[1]) MEM[DADDR[`MLEN-1:2]][1 * 8 + 7: 1 * 8] <= DATAO[1 * 8 + 7: 1 * 8];
if(!HLT&&WR&&DADDR[31]==0&&/*DADDR[`MLEN-1]==1&&*/BE[0]) MEM[DADDR[`MLEN-1:2]][0 * 8 + 7: 0 * 8] <= DATAO[0 * 8 + 7: 0 * 8];
`endif
`endif
XADDR <= DADDR; // 1 clock delayed
IOMUXFF <= IOMUX[DADDR[4:2]==3'b100 ? 3'b100 : DADDR[3:2]]; // read w/ 2 wait-states
end
//assign DATAI = DADDR[31] ? IOMUX[DADDR[3:2]] : RAMFF;
//assign DATAI = DADDR[31] ? IOMUXFF : RAMFF;
assign DATAI = XADDR[31] ? IOMUX[XADDR[4:2]==3'b100 ? 3'b100 : XADDR[3:2]] : RAMFF;
// io for debug
reg [7:0] IREQ = 0;
reg [7:0] IACK = 0;
reg [31:0] TIMERFF = 0;
reg [31:0] TIMEUS = 0;
wire [7:0] BOARD_IRQ;
wire [7:0] BOARD_ID = `BOARD_ID; // board id
wire [7:0] BOARD_CM = (`BOARD_CK/2000000); // board clock (MHz)
`ifdef __THREADS__
wire [`__THREADS__-1:0] TPTR;
wire [7:0] CORE_ID = TPTR; // core id
`else
wire [7:0] CORE_ID = 0; // core id
`endif
assign IOMUX[0] = { BOARD_IRQ, CORE_ID, BOARD_CM, BOARD_ID };
//assign IOMUX[1] = from UART!
assign IOMUX[2] = { GPIOFF, LEDFF };
assign IOMUX[3] = TIMERFF;
assign IOMUX[4] = TIMEUS;
reg [31:0] TIMER = 0;
reg XTIMER = 0;
always@(posedge CLK)
begin
if(WR&&DADDR[31]&&DADDR[3:0]==4'b1000)
begin
LEDFF <= DATAO[15:0];
end
if(WR&&DADDR[31]&&DADDR[3:0]==4'b1010)
begin
GPIOFF <= DATAO[31:16];
end
if(RES)
TIMERFF <= (`BOARD_CK/1000000)-1; // timer set to 1MHz by default
else
if(WR&&DADDR[31]&&DADDR[3:0]==4'b1100)
begin
TIMERFF <= DATAO[31:0];
end
if(RES)
IACK <= 0;
else
if(WR&&DADDR[31]&&DADDR[3:0]==4'b0011)
begin
//$display("clear io.irq = %x (ireq=%x, iack=%x)",DATAO[32:24],IREQ,IACK);
IACK[7] <= DATAO[7+24] ? IREQ[7] : IACK[7];
IACK[6] <= DATAO[6+24] ? IREQ[6] : IACK[6];
IACK[5] <= DATAO[5+24] ? IREQ[5] : IACK[5];
IACK[4] <= DATAO[4+24] ? IREQ[4] : IACK[4];
IACK[3] <= DATAO[3+24] ? IREQ[3] : IACK[3];
IACK[2] <= DATAO[2+24] ? IREQ[2] : IACK[2];
IACK[1] <= DATAO[1+24] ? IREQ[1] : IACK[1];
IACK[0] <= DATAO[0+24] ? IREQ[0] : IACK[0];
end
if(RES)
IREQ <= 0;
else
if(TIMERFF)
begin
TIMER <= TIMER ? TIMER-1 : TIMERFF;
if(TIMER==0 && IREQ==IACK)
begin
IREQ[7] <= !IACK[7];
//$display("timr0 set");
end
XTIMER <= XTIMER+(TIMER==0);
TIMEUS <= (TIMER == TIMERFF) ? TIMEUS + 1'b1 : TIMEUS;
end
end
assign BOARD_IRQ = IREQ^IACK;
assign HLT = !IHIT||!DHIT||!WHIT;
// darkuart
wire [3:0] UDEBUG;
wire FINISH_REQ;
darkuart
// #(
// .BAUD((`BOARD_CK/115200))
// )
uart0
(
.CLK(CLK),
.RES(RES),
.RD(!HLT&&RD&&DADDR[31]&&DADDR[3:2]==1),
.WR(!HLT&&WR&&DADDR[31]&&DADDR[3:2]==1),
.BE(BE),
.DATAI(DATAO),
.DATAO(IOMUX[1]),
//.IRQ(UART_IRQ),
`ifndef TESTMODE
.RXD(UART_RXD),
.TXD(UART_TXD),
`endif
`ifdef SIMULATION
.FINISH_REQ(FINISH_REQ),
`endif
.DEBUG(UDEBUG)
);
// darkriscv
wire [3:0] KDEBUG;
wire IDLE;
darkriscv
// #(
// .RESET_PC(32'h00000000),
// .RESET_SP(32'h00002000)
// )
core0
(
.CLK(CLK),
.RES(RES),
.HLT(HLT),
`ifdef __THREADS__
.TPTR(TPTR),
`endif
`ifdef __INTERRUPT__
.INT(|BOARD_IRQ),
`endif
.IDATA(IDATA),
.IADDR(IADDR),
.DADDR(DADDR),
`ifdef __FLEXBUZZ__
.DATAI(XATAI),
.DATAO(XATAO),
.DLEN(DLEN),
.RW(RW),
`else
.DATAI(DATAI),
.DATAO(DATAO),
.BE(BE),
.WR(WR),
.RD(RD),
`endif
.IDLE(IDLE),
.DEBUG(KDEBUG)
);
`ifdef TESTMODE
// tips to port darkriscv for a new target:
//
// - 1st of all, test the blink code to confirms the reset
// polarity, i.e. the LEDs must blink at startup when
// the reset button *is not pressed*
// - 2nd check the blink rate: the 31-bit counter that starts
// with BOARD_CK value and counts to zero, blinking w/
// 50% of this period
reg [31:0] BLINK = 0;
always@(posedge CLK)
begin
BLINK <= RES ? 0 : BLINK ? BLINK-1 : `BOARD_CK;
end
assign LED = (BLINK < (`BOARD_CK/2)) ? -1 : 0;
assign UART_TXD = UART_RXD;
`else
assign LED = LEDFF[3:0];
`endif
assign DEBUG = { XTIMER, KDEBUG[2:0] }; // UDEBUG;
`ifdef SIMULATION
`ifdef __PERFMETER__
integer clocks=0, running=0, load=0, store=0, flush=0, halt=0;
`ifdef __THREADS__
integer thread[0:(2**`__THREADS__)-1],curtptr=0,cnttptr=0;
integer j;
initial for(j=0;j!=(2**`__THREADS__);j=j+1) thread[j] = 0;
`endif
always@(posedge CLK)
begin
if(!RES)
begin
clocks = clocks+1;
if(HLT)
begin
if(WR) store = store+1;
else if(RD) load = load +1;
else halt = halt +1;
end
else
if(IDLE)
begin
flush=flush+1;
end
else
begin
`ifdef __THREADS__
for(j=0;j!=(2**`__THREADS__);j=j+1)
thread[j] = thread[j]+(j==TPTR?1:0);
if(TPTR!=curtptr)
begin
curtptr = TPTR;
cnttptr = cnttptr+1;
end
`endif
running = running +1;
end
if(FINISH_REQ)
begin
$display("****************************************************************************");
$display("DarkRISCV Pipeline Report (%0d clocks):",clocks);
$display("core0: %0d%% run, %0d%% wait (%0d%% i-bus, %0d%% d-bus/rd, %0d%% d-bus/wr), %0d%% idle",
100.0*running/clocks,
100.0*(load+store+halt)/clocks,
100.0*halt/clocks,
100.0*load/clocks,
100.0*store/clocks,
100.0*flush/clocks);
`ifdef __THREADS__
for(j=0;j!=(2**`__THREADS__);j=j+1) $display(" thread%0d: %0d%% running",j,100.0*thread[j]/clocks);
$display("%0d thread switches, %0d clocks/threads",cnttptr,clocks/cnttptr);
`endif
$display("****************************************************************************");
$finish();
end
end
end
`else
always@(posedge CLK) if(FINISH_REQ) $finish();
`endif
`endif
endmodule