-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathBase-RCNN-FPN-D2SA.yaml
52 lines (51 loc) · 1.53 KB
/
Base-RCNN-FPN-D2SA.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
MODEL:
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
META_ARCHITECTURE: "GeneralizedRCNN"
BACKBONE:
NAME: "build_resnet_fpn_backbone"
RESNETS:
OUT_FEATURES: ["res2", "res3", "res4", "res5"]
FPN:
IN_FEATURES: ["res2", "res3", "res4", "res5"]
ANCHOR_GENERATOR:
SIZES: [[32], [64], [128], [256], [512]] # One size for each in feature map
ASPECT_RATIOS: [[0.5, 1.0, 2.0]] # Three aspect ratios (same for all in feature maps)
RPN:
IN_FEATURES: ["p2", "p3", "p4", "p5", "p6"]
PRE_NMS_TOPK_TRAIN: 2000 # Per FPN level
PRE_NMS_TOPK_TEST: 1000 # Per FPN level
# Detectron1 uses 2000 proposals per-batch,
# (See "modeling/rpn/rpn_outputs.py" for details of this legacy issue)
# which is approximately 1000 proposals per-image since the default batch size for FPN is 2.
POST_NMS_TOPK_TRAIN: 1000
POST_NMS_TOPK_TEST: 1000
ROI_HEADS:
NAME: "StandardROIHeads"
IN_FEATURES: ["p2", "p3", "p4", "p5"]
NUM_CLASSES: 60
ROI_BOX_HEAD:
NAME: "FastRCNNConvFCHead"
NUM_FC: 2
POOLER_RESOLUTION: 7
ROI_MASK_HEAD:
NAME: "MaskRCNNConvUpsampleHead"
NUM_CONV: 4
POOLER_RESOLUTION: 14
DATASETS:
TRAIN: ("d2sa_train_aug","d2sa_train")
TEST: ("d2sa_val",)
SOLVER:
IMS_PER_BATCH: 2
BASE_LR: 0.005
STEPS: (40000, 60000)
MAX_ITER: 70000
#OPT_TYPE: "SGD"
#CHECKPOINT_PERIOD: 10000
TEST:
EVAL_PERIOD: 20000
INPUT:
MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800)
#MASK_FORMAT: "bitmask"
OUTPUT_DIR:
TRAIN_VERSION: 'mask_rcnn_amodal_d2sa_res50_1x'
SEED: 1