forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_public_bindings.py
195 lines (188 loc) · 6.05 KB
/
test_public_bindings.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
from torch.testing._internal.common_utils import run_tests
import torch
import unittest
class TestPublicBindings(unittest.TestCase):
def test_no_new_bindings(self):
"""
This test aims to stop the introduction of new JIT bindings into torch._C
whose names do not start with _. Such bindings are made available as
torch.XXX, which may not be desirable.
If your change causes this test to fail, add your new binding to a relevant
submodule of torch._C, such as torch._C._jit (or other relevant submodule of
torch._C). If your binding really needs to be available as torch.XXX, add it
to torch._C and add it to the allowlist below.
If you have removed a binding, remove it from the allowlist as well.
"""
# This allowlist contains every binding in torch._C that is copied into torch at
# the time of writing. It was generated with
#
# {elem for elem in dir(torch._C) if not elem.startswith("_")}
#
torch_C_allowlist = {
"AVG",
"AggregationType",
"AnyType",
"Argument",
"ArgumentSpec",
"BFloat16StorageBase",
"BenchmarkConfig",
"BenchmarkExecutionStats",
"Block",
"BoolStorageBase",
"BoolType",
"BufferDict",
"ByteStorageBase",
"CONV_BN_FUSION",
"CallStack",
"Capsule",
"CharStorageBase",
"ClassType",
"Code",
"CompilationUnit",
"CompleteArgumentSpec",
"ComplexDoubleStorageBase",
"ComplexFloatStorageBase",
"ComplexType",
"ConcreteModuleType",
"ConcreteModuleTypeBuilder",
"CudaBFloat16StorageBase",
"CudaBFloat16TensorBase",
"CudaBoolStorageBase",
"CudaBoolTensorBase",
"CudaByteStorageBase",
"CudaByteTensorBase",
"CudaCharStorageBase",
"CudaCharTensorBase",
"CudaComplexDoubleStorageBase",
"CudaComplexDoubleTensorBase",
"CudaComplexFloatStorageBase",
"CudaComplexFloatTensorBase",
"CudaDoubleStorageBase",
"CudaDoubleTensorBase",
"CudaFloatStorageBase",
"CudaFloatTensorBase",
"CudaHalfStorageBase",
"CudaHalfTensorBase",
"CudaIntStorageBase",
"CudaIntTensorBase",
"CudaLongStorageBase",
"CudaLongTensorBase",
"CudaShortStorageBase",
"CudaShortTensorBase",
"DeepCopyMemoTable",
"DeviceObjType",
"DictType",
"DisableTorchFunction",
"DoubleStorageBase",
"EnumType",
"ErrorReport",
"ExecutionPlan",
"FUSE_ADD_RELU",
"FatalError",
"FileCheck",
"FloatStorageBase",
"FloatType",
"FunctionSchema",
"Future",
"FutureType",
"Generator",
"Gradient",
"Graph",
"GraphExecutorState",
"HOIST_CONV_PACKED_PARAMS",
"HalfStorageBase",
"INSERT_FOLD_PREPACK_OPS",
"IODescriptor",
"InferredType",
"IntStorageBase",
"IntType",
"InterfaceType",
"JITException",
"ListType",
"LiteScriptModule",
"LockingLogger",
"LoggerBase",
"LongStorageBase",
"MobileOptimizerType",
"ModuleDict",
"Node",
"NoneType",
"NoopLogger",
"NumberType",
"OptionalType",
"ParameterDict",
"PyObjectType",
"PyTorchFileReader",
"PyTorchFileWriter",
"QInt32StorageBase",
"QInt8StorageBase",
"QUInt4x2StorageBase",
"QUInt8StorageBase",
"REMOVE_DROPOUT",
"RRefType",
"SUM",
"ScriptClass",
"ScriptClassFunction",
"ScriptFunction",
"ScriptMethod",
"ScriptModule",
"ScriptObject",
"ShortStorageBase",
"Size",
"StaticRuntime",
"Stream",
"StreamObjType",
"StringType",
"TensorType",
"ThroughputBenchmark",
"TracingState",
"TupleType",
"Type",
"Use",
"Value",
"autocast_decrement_nesting",
"autocast_increment_nesting",
"clear_autocast_cache",
"cpp",
"default_generator",
"device",
"dtype",
"finfo",
"fork",
"get_default_dtype",
"get_num_interop_threads",
"get_num_threads",
"has_cuda",
"has_cudnn",
"has_lapack",
"has_mkl",
"has_mkldnn",
"has_mlc",
"has_openmp",
"iinfo",
"import_ir_module",
"import_ir_module_from_buffer",
"init_num_threads",
"is_anomaly_enabled",
"is_autocast_enabled",
"is_grad_enabled",
"layout",
"memory_format",
"merge_type_from_type_comment",
"parse_ir",
"parse_schema",
"parse_type_comment",
"qscheme",
"set_anomaly_enabled",
"set_autocast_enabled",
"set_flush_denormal",
"set_num_interop_threads",
"set_num_threads",
"unify_type_list",
"wait",
}
torch_C_bindings = {elem for elem in dir(torch._C) if not elem.startswith("_")}
# Check that both sets above have the same elements as each other.
self.assertSetEqual(torch_C_bindings.symmetric_difference(torch_C_bindings), set())
if __name__ == '__main__':
run_tests()