forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpybind_utils.h
1128 lines (1019 loc) · 37.8 KB
/
pybind_utils.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#pragma once
#include <ATen/core/ivalue.h>
#include <ATen/core/jit_type.h>
#include <ATen/core/qualified_name.h>
#include <ATen/core/stack.h>
#include <pybind11/complex.h>
#include <pybind11/pybind11.h>
#include <pybind11/pytypes.h>
#include <torch/csrc/Device.h>
#include <torch/csrc/Dtype.h>
#include <torch/csrc/Layout.h>
#include <torch/csrc/QScheme.h>
#include <torch/csrc/Stream.h>
#include <torch/csrc/WindowsTorchApiMacro.h>
#include <torch/csrc/jit/api/module.h>
#include <torch/csrc/jit/frontend/schema_matching.h>
#include <torch/csrc/jit/frontend/tracer.h>
#include <torch/csrc/jit/python/module_python.h>
#include <torch/csrc/jit/python/python_custom_class.h>
#include <torch/csrc/jit/python/python_dict.h>
#include <torch/csrc/jit/python/python_tracer.h>
#include <torch/csrc/jit/resource_guard.h>
#include <torch/csrc/jit/runtime/operator.h>
#include <torch/csrc/utils/auto_gil.h>
#include <torch/csrc/utils/pybind.h>
#include <torch/csrc/utils/python_arg_parser.h>
#include <torch/csrc/utils/six.h>
#ifdef USE_DISTRIBUTED
#include <torch/csrc/distributed/rpc/py_rref.h>
#include <torch/csrc/distributed/rpc/rref_impl.h>
#endif
#include <ATen/core/function_schema.h>
#include <c10/core/Stream.h>
#ifdef USE_C10D_NCCL
#include <c10/cuda/CUDACachingAllocator.h>
#include <c10/cuda/CUDAStream.h>
#endif
#include <c10/util/Exception.h>
#include <c10/util/Optional.h>
#include <algorithm>
#include <cstddef>
#include <string>
#include <utility>
#include <vector>
// The visibility attribute is to avoid a warning about storing a field in the
// struct that has a different visibility (from pybind) than the struct.
#ifdef _WIN32
#define VISIBILITY_HIDDEN
#else
#define VISIBILITY_HIDDEN __attribute__((visibility("hidden")))
#endif
namespace torch {
namespace jit {
void clear_registered_instances(void* ptr);
TORCH_API IValue toIValue(
py::handle obj,
const TypePtr& type,
c10::optional<int32_t> N = c10::nullopt);
py::object toPyObject(IValue ivalue);
// Wrap Python function to guard deref
// NB: Need VISIBILITY_HIDDEN for silencing compiler error,
// 'torch::jit::PythonFunctionGuard' declared with greater visibility than the
// type of its field 'torch::jit::PythonFunctionGuard::func_'
struct VISIBILITY_HIDDEN PythonFunctionGuard {
explicit PythonFunctionGuard(py::function func) : func_(std::move(func)) {}
~PythonFunctionGuard() {
pybind11::gil_scoped_acquire ag;
func_.dec_ref();
// explicitly setting PyObject* to nullptr to prevent py::object's dtor to
// decref on the PyObject again.
// See Note [Destructing py::object] in python_ivalue.h
func_.ptr() = nullptr;
}
py::function func_;
};
// The PythonFutureWrapper for ivalue::Future
//
// NB: VISIBILITY_HIDDEN is for silencing compiling error,
// "error: 'torch::jit::PythonFutureWrapper' declared with greater visibility
// than the type of its field 'torch::jit::PythonFutureWrapper::unwrap_func'
// [-Werror=attributes]"
//
// NB: inherit from enable_shared_from_this because then(py::function) needs to
// get a shared_ptr from this pointer.
struct VISIBILITY_HIDDEN PythonFutureWrapper
: std::enable_shared_from_this<PythonFutureWrapper> {
using UnwrapFunc = std::function<void(py::object)>;
explicit PythonFutureWrapper(
c10::intrusive_ptr<c10::ivalue::Future> fut,
c10::optional<UnwrapFunc> unwrap_func = c10::nullopt)
: fut(std::move(fut)), unwrap_func(std::move(unwrap_func)) {}
explicit PythonFutureWrapper(const PythonFutureWrapper&) = delete;
PythonFutureWrapper& operator=(const PythonFutureWrapper&) = delete;
bool done() {
return fut->completed();
}
py::object value() {
// acquiring GIL as toPyObject creates new py::object
// without grabbing the GIL.
py::gil_scoped_acquire acquire;
py::object py_obj = toPyObject(fut->value());
// unwrap_func is a general compositional function that takes in a
// py::object and executes some python function. It is currently mostly used
// to throw python exceptions.
if (unwrap_func) {
(*unwrap_func)(py_obj);
}
return py_obj;
}
py::object wait() {
fut->wait();
if (jit::tracer::isTracing()) {
auto graph = jit::tracer::getTracingState()->graph;
Value* fut_val = jit::tracer::getValueTrace(fut);
auto output = graph->insert(aten::wait, {fut_val});
jit::tracer::setValueTrace(fut->value(), output);
}
return value();
}
// The py::function cb arg must take a std::shared_ptr<PythonFutureWrapper>
// (i.e., torch._C.Future) as the only argument. If the type mismatches, an
// error will be thrown when waiting for the value of this returned Future.
std::shared_ptr<PythonFutureWrapper> then(py::function cb) {
// We need this an additional layer of wrapper here to guard the
// destruction of the py::function object. Because, the
// Future owns a reference to the py::function in its callback
// vector, but Future does not acquire GIL on destruction.
auto pf = std::make_shared<PythonFunctionGuard>(std::move(cb));
return std::make_shared<jit::PythonFutureWrapper>(fut->then(
// Capture a copy of the ivalue::Future instead of the `this` pointer
// because the PythonFutureWrapper object could have been deleted
// when the callbacks are fired. For example, RPC only captures the
// ivalue::Future instead of PythonFutureWrapper in JitFuture's
// callback functions. Hence, if user code does not hold a reference to
// this PythonFutureWrapper object, there is no guarantee that the
// PythonFutureWrapper is still valid when running the callback.
[pyFut(this->getPtr()),
pf(std::move(pf))](c10::ivalue::Future& /* unused */) -> IValue {
try {
pybind11::gil_scoped_acquire ag;
return toIValue(pf->func_(pyFut), PyObjectType::get());
} catch (py::error_already_set& e) {
auto err = std::runtime_error(c10::str(
"Got the following error when running the callback: ",
e.what()));
{
pybind11::gil_scoped_acquire ag;
// Release ownership on py::objects and also restore Python
// Error Indicator.
e.restore();
// Clear the Python Error Indicator as we has recorded the
// exception in the response message.
PyErr_Clear();
}
throw err;
}
},
PyObjectType::get()));
}
void add_done_callback(py::function cb) {
auto pf = std::make_shared<PythonFunctionGuard>(std::move(cb));
// NOLINTNEXTLINE(modernize-avoid-bind)
fut->addCallback(std::bind(
[pyFut(this->getPtr())](std::shared_ptr<PythonFunctionGuard> pf) {
try {
pybind11::gil_scoped_acquire ag;
pf->func_(pyFut);
} catch (py::error_already_set& e) {
{
pybind11::gil_scoped_acquire ag;
// Release ownership on py::objects and also restore Python
// Error Indicator.
e.restore();
// Clear the Python Error Indicator as we has recorded the
// exception in the response message.
PyErr_Clear();
}
// Log and ignore exceptions raised through the callback
LOG(ERROR) << "Got the following error when running the callback: "
<< e.what();
} catch (const std::exception& e) {
// Log and ignore exceptions raised through the callback
LOG(ERROR) << "Got the following error when running the callback: "
<< e.what();
}
},
std::move(pf)));
}
void markCompleted(const py::object& pyValue) {
DCHECK(PyGILState_Check());
IValue value = toIValue(pyValue, PyObjectType::get());
py::gil_scoped_release release;
fut->markCompleted(std::move(value));
}
c10::intrusive_ptr<c10::ivalue::Future> fut;
// unwrap_func works like a callback for the value returned by
// PythonFutureWrapper::wait().
c10::optional<UnwrapFunc> unwrap_func;
private:
std::shared_ptr<PythonFutureWrapper> getPtr() {
return shared_from_this();
}
};
// error reporting: when reporting user-caused errors, these functions should
// not use AT_ERROR macros, since these macros add stack trace information
// that is confusing to display to the end user since it always reports
// locations in libtorch code rather than user code.
inline std::shared_ptr<CompilationUnit> get_python_cu() {
return py::module::import("torch.jit._state")
.attr("_python_cu")
.cast<std::shared_ptr<CompilationUnit>>();
}
struct TypedIValue : public std::pair<IValue, TypePtr> {
using pair::pair;
IValue& ivalue() {
return this->first;
}
TypePtr& type() {
return this->second;
}
};
inline TypedIValue toDictKeyIValue(py::handle key) {
if (py::isinstance<py::str>(key)) {
return TypedIValue(
ConstantString::create(py::cast<std::string>(key)), StringType::get());
} else if (py::isinstance<py::int_>(key)) {
return TypedIValue(py::cast<int64_t>(key), IntType::get());
} else if (py::isinstance<py::float_>(key)) {
return TypedIValue(py::cast<double>(key), FloatType::get());
} else {
AT_ERROR("Dictionary inputs may only have string, int, or float keys");
}
}
inline c10::optional<TypePtr> unifyOrInitializeType(
const TypePtr& accum,
const TypePtr& unify) {
if (!accum) {
return unify;
}
return unifyTypes(accum, unify);
}
using InferredType = c10::InferredType;
InferredType tryToInferContainerType(py::handle input);
// Try to infer the type of a Python object
// The type cannot be inferred if:
// input is a None
// input is an empty container (list, dict)
// input is an list with element types that cannot be unified
// input is an dict with key or value types that cannot be unified
inline InferredType tryToInferType(py::handle input) {
// Try tensor types
if (THPVariable_Check(input.ptr())) {
return InferredType(TensorType::get());
}
if (input.is(py::none())) {
return InferredType(NoneType::get());
}
if (py::isinstance<StrongFunctionPtr>(input)) {
auto fn = py::cast<StrongFunctionPtr>(input).function_;
return InferredType(FunctionType::create(fn));
}
// Try basic types first
if (py::isinstance<py::bool_>(input)) {
return InferredType(BoolType::get());
// NOLINTNEXTLINE(bugprone-branch-clone)
} else if (py::isinstance<py::int_>(input)) {
return InferredType(IntType::get());
} else if (py::isinstance<py::float_>(input)) {
return InferredType(FloatType::get());
} else if (PyComplex_CheckExact(input.ptr())) {
return InferredType(ComplexType::get());
} else if (py::isinstance<py::str>(input)) {
return InferredType(StringType::get());
} else if (THPLayout_Check(input.ptr())) {
return InferredType(IntType::get());
} else if (THPDevice_Check(input.ptr())) {
return InferredType(DeviceObjType::get());
} else if (THPStream_Check(input.ptr())) {
return InferredType(StreamObjType::get());
} else if (THPDtype_Check(input.ptr())) {
return InferredType(IntType::get());
} else if (THPQScheme_Check(input.ptr())) {
return InferredType(IntType::get());
} else if (THPLayout_Check(input.ptr())) {
return InferredType(IntType::get());
}
auto enum_type = py::module::import("enum").attr("Enum");
py::bool_ isEnumValue = py::isinstance(input, enum_type);
if (py::cast<bool>(isEnumValue)) {
auto enum_class = input.attr("__class__");
auto enum_type = py::cast<TypePtr>(
py::module::import("torch.jit.annotations")
.attr("try_ann_to_type")(enum_class, SourceRange()));
return InferredType(enum_type);
}
py::bool_ isClass =
py::module::import("inspect").attr("isclass")(input.get_type());
if (py::cast<bool>(isClass)) {
// Assume that the class is compiled already or will compile. Invalidate
// this later if needed.
bool class_compiled = true;
// Check if the type is already compiled.
py::object existing_ty = py::module::import("torch.jit._state")
.attr("_get_script_class")(input.get_type());
if (existing_ty.is_none()) {
// If not, try to compile it.
py::bool_ can_compile = py::module::import("torch._jit_internal")
.attr("can_compile_class")(input.get_type());
if (py::cast<bool>(can_compile)) {
// Try to compile the class. This is wrapped in a try-catch because
// compilation of class types can raise an Exception and in that case,
// we want to defer to other attempts at type inference below rather
// than fail compilation altogether.
try {
py::module::import("torch.jit._script")
.attr("_recursive_compile_class")(
input.get_type(), SourceRange());
} catch (...) {
// Invalidate the assumption that the class compiled so that we don't
// look up and return its JIT type as the type for the input.
class_compiled = false;
}
}
}
// If the class compiled successfully, look up the existing JIT type by
// qualified name and return it.
if (class_compiled) {
auto script_class = py::module::import("torch.jit._state")
.attr("_get_script_class")(input.get_type());
if (!script_class.is_none()) {
auto class_type = py::cast<ClassTypePtr>(script_class);
if (class_type && !class_type->is_module()) {
return InferredType(class_type);
}
}
}
}
if (py::isinstance<Object>(input)) {
auto object = py::cast<Object>(input);
return InferredType(object.type());
#ifdef USE_RPC
} else if (py::isinstance<torch::distributed::rpc::PyRRef>(input)) {
auto rref_ivalue = input.cast<torch::distributed::rpc::PyRRef>().toIValue();
return InferredType(rref_ivalue.type());
#endif
}
if (as_module(py::cast<py::object>(input))) {
return InferredType("Cannot infer type of ScriptModule");
}
auto module_type = py::module::import("torch.nn").attr("Module");
py::bool_ is_module = py::isinstance(input, module_type);
if (py::cast<bool>(is_module)) {
return InferredType("Cannot infer concrete type of torch.nn.Module");
}
// Try container types
return tryToInferContainerType(input);
}
inline InferredType tryToInferContainerType(py::handle input) {
if (six::isTuple(input)) {
py::tuple tuple = py::cast<py::tuple>(input);
std::vector<TypePtr> element_types;
element_types.reserve(tuple.size());
for (py::handle elem : tuple) {
auto type_match = tryToInferType(elem);
if (type_match.success()) {
element_types.push_back(type_match.type());
} else {
// Forward error message along
return type_match.reason();
}
}
return InferredType(TupleType::create(element_types));
} else if (PyDict_Check(input.ptr())) {
// Check to make sure we can generate useful input/output types
auto dict = py::cast<py::dict>(input);
size_t len = py::len(dict);
if (!len) {
return InferredType("Dictionary inputs must have entries");
}
TypePtr key_type = nullptr;
TypePtr value_type = nullptr;
for (auto entry : dict) {
// Try to infer the key type and unify it with the existing one
auto entry_key_type_match = tryToInferType(entry.first);
if (!entry_key_type_match.success()) {
return entry_key_type_match.reason();
}
auto unified_key =
unifyOrInitializeType(key_type, entry_key_type_match.type());
if (!unified_key) {
return InferredType(c10::str(
"Dictionary inputs to traced functions must have consistent type. Found ",
key_type->repr_str(),
" and ",
(entry_key_type_match.type())->repr_str()));
}
// Try to infer the value type and unify it with the existing one
auto entry_value_type_match = tryToInferType(entry.second);
if (!entry_value_type_match.success()) {
return entry_value_type_match.reason();
}
auto unified_value =
unifyOrInitializeType(value_type, entry_value_type_match.type());
if (!unified_value) {
return InferredType(c10::str(
"Dictionary inputs to traced functions must have consistent type. Found ",
value_type->repr_str(),
" and ",
(entry_value_type_match.type())->repr_str()));
}
key_type = *unified_key;
value_type = *unified_value;
}
return InferredType(DictType::create(key_type, value_type));
} else if (PyList_Check(input.ptr())) {
auto list = py::cast<py::list>(input);
size_t len = py::len(list);
if (!len) {
return InferredType("List trace inputs must have elements");
}
TypePtr element_type = nullptr;
for (auto elem : list) {
auto element_type_match = tryToInferType(elem);
if (!element_type_match.success()) {
return InferredType(c10::str(
"Could not infer type of list element: ",
element_type_match.reason()));
}
auto unified_type =
unifyOrInitializeType(element_type, element_type_match.type());
if (!unified_type) {
return InferredType(c10::str(
"List inputs to traced functions must have consistent element type. Found ",
element_type->repr_str(),
" and ",
(element_type_match.type())->repr_str()));
}
element_type = *unified_type;
}
return InferredType(ListType::create(element_type));
} else {
// TODO: this message is not correct anymore, since this InferredType is
// used from a bunch of circumstances unrelated to tracing. We can re-use
// this instead of the attribute_failure stuff in concreteType
return InferredType(c10::str(
"Only tensors and (possibly nested) tuples of tensors, lists, or dicts",
"are supported ",
"as inputs or outputs of traced functions",
", but instead got value of type ",
py::str(input.get_type().attr("__name__")),
"."));
}
}
inline bool isTraceableType(const TypePtr& type) {
if (type->isSubtypeOf(TensorType::get())) {
return true;
}
if (auto list_type = type->cast<ListType>()) {
return isTraceableType(list_type->getElementType());
}
if (auto tuple_type = type->cast<TupleType>()) {
return std::all_of(
tuple_type->elements().begin(),
tuple_type->elements().end(),
[](const TypePtr& element_type) {
return isTraceableType(element_type);
});
}
if (auto dict_type = type->cast<DictType>()) {
return isTraceableType(dict_type->getValueType());
}
return false;
}
inline IValue toTypeInferredIValue(py::handle input) {
auto match = tryToInferType(input);
if (!match.success()) {
AT_ERROR(
"Tracer cannot infer type of ", py::str(input), "\n:", match.reason());
}
return toIValue(input, match.type());
}
inline Stack toTraceableStack(const py::tuple& inputs) {
auto info = toTypeInferredIValue(inputs);
TORCH_CHECK(
isTraceableType(info.type()),
"Type '",
info.type()->repr_str(),
"' cannot be traced. Only Tensors and (possibly nested) Lists, Dicts, and"
" Tuples of Tensors can be traced");
return info.toTuple()->elements();
}
inline IValue createGenericList(py::handle obj, const TypePtr& elem_type) {
auto elems = c10::impl::GenericList(elem_type);
for (auto elem : obj) {
elems.push_back(toIValue(elem, elem_type));
}
return IValue(std::move(elems));
}
inline IValue createGenericDict(
const py::dict& obj,
const TypePtr& key_type,
const TypePtr& value_type) {
c10::impl::GenericDict elems(key_type, value_type);
elems.reserve(py::len(obj));
for (auto& entry : obj) {
elems.insert(
toIValue(entry.first, key_type), toIValue(entry.second, value_type));
}
return IValue(std::move(elems));
}
template <class T>
inline void guardAgainstNamedTensor(const T& var) {
TORCH_CHECK(
!var.has_names(),
"NYI: Named tensors are currently unsupported in TorchScript. As a "
"workaround please drop names via `tensor = tensor.rename(None)`.");
}
// Defined in pybind_utils.cpp to break a circular dependency with
// python_ivalue.h
IValue toIValue(py::handle obj, const TypePtr& type, c10::optional<int32_t> N);
// Small wrapper around getting the type name string from Python to make
// types easier to interpret, e.g. give the structural type for a NamedTuple
inline std::string friendlyTypeName(py::handle obj) {
if (py::isinstance<py::tuple>(obj) && py::hasattr(obj, "_fields")) {
auto field_names =
py::cast<std::vector<std::string>>(py::getattr(obj, "_fields"));
std::stringstream ss;
ss << py::str(obj.get_type().attr("__name__"));
ss << " (aka NamedTuple(";
bool first = true;
for (auto& field_name : field_names) {
if (!first) {
ss << ", ";
}
ss << field_name;
first = false;
}
ss << "))";
return ss.str();
} else {
return py::str(obj.get_type().attr("__name__"));
}
}
// Thrown when trying to create a schema for a list of python
// arguments that cannot be converted.
// Can be caught by the caller to attempt to use other schema
// when there is an overloaded operator.
struct schema_match_error : public std::runtime_error {
using std::runtime_error::runtime_error;
};
inline IValue argumentToIValue(
const FunctionSchema& schema,
size_t argumentPosition,
py::handle object) {
const auto& argument = schema.arguments().at(argumentPosition);
try {
return toIValue(object, argument.type(), argument.N());
} catch (const py::cast_error& error) {
throw schema_match_error(c10::str(
schema.formatTypeMismatchMsg(
argument,
friendlyTypeName(object),
argumentPosition,
py::repr(object)),
"\nCast error details: ",
error.what()));
} catch (const py::error_already_set& error) {
throw schema_match_error(c10::str(
schema.formatTypeMismatchMsg(
argument,
friendlyTypeName(object),
argumentPosition,
py::repr(object)),
"\n Python error details: ",
error.what()));
}
}
inline IValue returnToIValue(const TypePtr& type, py::handle object) {
try {
return toIValue(object, type);
} catch (const py::cast_error& error) {
throw std::runtime_error(c10::str(
" expected value of type ",
type->str(),
" for return value but instead got value of type ",
py::str(object.get_type().attr("__name__")),
".",
"\nValue: ",
py::repr(object),
"\nCast error details: ",
error.what()));
}
}
inline py::object getScriptedClassOrError(const c10::NamedTypePtr& classType) {
auto py_class =
py::module::import("torch.jit._state")
.attr("_get_python_class")(classType->name()->qualifiedName());
if (py_class.is_none()) {
std::stringstream err;
err << "Unknown reference to ScriptClass ";
err << classType->name()->qualifiedName();
err << ". (Did you forget to import it?)";
throw std::runtime_error(err.str());
}
return py_class;
}
inline py::object toPyObject(IValue ivalue) {
if (ivalue.isNone()) {
return py::none();
} else if (ivalue.isTensor()) {
auto tensor = std::move(ivalue).toTensor();
if (tensor.is_sparse()) {
TORCH_WARN_ONCE(
"Using sparse tensors in TorchScript is experimental. Many optimization "
"pathways have not been thoroughly tested with sparse tensors. Please "
"include the fact that the network is running sparse tensors in any bug "
"reports submitted.");
}
guardAgainstNamedTensor<at::Tensor>(tensor);
return py::cast(autograd::Variable(std::move(tensor)));
} else if (ivalue.isDouble()) {
return py::cast(std::move(ivalue).toDouble());
} else if (ivalue.isComplexDouble()) {
return py::cast(
static_cast<std::complex<double>>(std::move(ivalue).toComplexDouble()));
} else if (ivalue.isInt()) {
return py::cast(std::move(ivalue).toInt());
} else if (ivalue.isBool()) {
return py::cast(std::move(ivalue).toBool());
} else if (ivalue.isString()) {
return py::cast(std::move(ivalue).toStringRef());
} else if (ivalue.isList()) {
auto list = std::move(ivalue).toList();
py::list t{list.size()};
for (size_t i = 0; i < list.size(); ++i) {
t[i] = toPyObject(IValue{list.get(i)});
}
return std::move(t);
} else if (ivalue.isTuple()) {
auto tuple = std::move(ivalue).toTuple();
const auto& elements = tuple->elements();
py::tuple t{elements.size()};
for (size_t i = 0; i < elements.size(); ++i) {
t[i] = toPyObject(IValue{elements.at(i)});
}
if (tuple->type() && tuple->type()->schema() &&
tuple->type()->schema()->name() != "") {
auto unqualName = tuple->type()->name()->name();
auto fieldNames = fmap(
tuple->type()->schema()->arguments(),
[](const Argument& arg) { return arg.name(); });
return py::module::import("torch._jit_internal")
.attr("_create_named_tuple")(t, unqualName, fieldNames);
} else {
return std::move(t);
}
} else if (ivalue.isDevice()) {
return py::cast<py::object>(THPDevice_New(std::move(ivalue).toDevice()));
} else if (ivalue.isGenericDict()) {
auto dict = std::move(ivalue).toGenericDict();
py::dict py_dict;
for (auto& pair : dict) {
py_dict[toPyObject(IValue{pair.key()})] =
toPyObject(IValue{pair.value()});
}
return std::move(py_dict);
} else if (ivalue.isRRef()) {
#ifdef USE_RPC
auto RRefPtr =
c10::dynamic_intrusive_pointer_cast<torch::distributed::rpc::RRef>(
std::move(ivalue).toRRef());
return py::cast(torch::distributed::rpc::PyRRef(RRefPtr));
#else
AT_ERROR("RRef is only supported with the distributed package");
#endif
} else if (ivalue.isObject()) {
const auto obj = std::move(ivalue).toObject();
if (obj->type()->is_module()) {
return py::cast(Module(obj));
}
auto pyCu = get_python_cu();
if (obj->name().find("__torch__.torch.classes") == 0) {
return py::cast(Object(obj));
}
const auto classType = pyCu->get_class(c10::QualifiedName(obj->name()));
AT_ASSERT(classType);
auto pyClass = getScriptedClassOrError(obj->type());
auto pyObj = pyClass.attr("__new__")(pyClass);
const auto numAttrs = classType->numAttributes();
for (size_t slot = 0; slot < numAttrs; slot++) {
const auto& attrName = classType->getAttributeName(slot);
IValue v = obj->getSlot(slot);
py::setattr(pyObj, attrName.c_str(), toPyObject(std::move(v)));
}
return pyObj;
} else if (ivalue.isPyObject()) {
// return borrowed reference to ensure it correctly incref the underlying
// PyObject
return py::reinterpret_borrow<py::object>(ivalue.toPyObject());
} else if (ivalue.isCapsule()) {
return py::cast(c10::Capsule(ivalue.toCapsule()));
} else if (ivalue.isFuture()) {
return py::cast(std::make_shared<PythonFutureWrapper>(ivalue.toFuture()));
} else if (ivalue.isEnum()) {
auto enum_holder = ivalue.toEnumHolder();
auto py_class = getScriptedClassOrError(enum_holder->type());
return py_class.attr(enum_holder->name().c_str());
} else if (ivalue.isRRef()) {
#ifdef USE_RPC
return py::cast(torch::distributed::rpc::PyRRef(
c10::static_intrusive_pointer_cast<distributed::rpc::RRef>(
ivalue.toRRef())));
#else
TORCH_CHECK(false, "RRef is only supported with the distributed package");
#endif
} else {
AT_ERROR(
"Missing cases in 'toPyObject'! Can't convert ",
ivalue.tagKind(),
" to a Python object");
}
}
struct VISIBILITY_HIDDEN tuple_slice {
/*implicit*/ tuple_slice(py::tuple tup_)
: tup(std::move(tup_)), b(0), e(tup.size()) {}
tuple_slice(py::tuple tup_, int64_t b_)
: tup(std::move(tup_)), b(b_), e(tup.size()) {}
tuple_slice(py::tuple tup_, int64_t b_, int64_t e_)
: tup(std::move(tup_)), b(b_), e(e_) {}
py::detail::tuple_iterator begin() const {
return {tup, static_cast<pybind11::ssize_t>(b)};
}
py::detail::tuple_iterator end() const {
return {tup, static_cast<pybind11::ssize_t>(e)};
}
size_t size() const {
return e - b;
}
py::detail::tuple_accessor operator[](size_t index) const {
return {tup, static_cast<size_t>(b + index)};
}
private:
py::tuple tup;
int64_t b;
int64_t e;
};
inline Stack createStackForSchema(
const FunctionSchema& schema,
const tuple_slice& args,
const py::kwargs& kwargs,
c10::optional<IValue> self) {
size_t all_arguments = (self ? 1 : 0) + args.size() + kwargs.size();
if (all_arguments > schema.arguments().size()) {
throw schema_match_error(c10::str(
schema.name(),
"() expected at most ",
schema.arguments().size(),
" argument(s) but received ",
all_arguments,
" argument(s). Declaration: ",
schema));
}
Stack stack;
stack.reserve(schema.arguments().size());
if (self) {
push(stack, std::move(*self));
}
// First push all positional args.
for (const auto& arg : args) {
// Use the type information from the schema to convert the PyObject.
push(stack, argumentToIValue(schema, stack.size(), arg));
}
// Now for every remaining non-positional argument in the schema, look for it
// in the kwargs dict and push it if found, or use its default value if it
// has one.
size_t consumed_kwargs = 0;
for (size_t i = stack.size(); i < schema.arguments().size(); ++i) {
const auto& arg = schema.arguments()[i];
if (kwargs.contains(arg.name().c_str())) {
push(stack, argumentToIValue(schema, i, kwargs[arg.name().c_str()]));
consumed_kwargs += 1;
} else if (arg.default_value()) {
push(stack, *arg.default_value());
} else {
throw schema_match_error(c10::str(
schema.name(),
"() is missing value for argument '",
arg.name(),
"'. Declaration: ",
schema));
}
}
if (consumed_kwargs != kwargs.size()) {
std::vector<std::string> names;
for (const auto& kwarg : kwargs) {
names.emplace_back(py::cast<std::string>(kwarg.first));
}
throw schema_match_error(schema.findErrorInKwargs(names));
}
return stack;
}
inline py::object createPyObjectForStack(Stack&& stack) {
if (stack.empty()) {
return py::none();
}
// Return a simple value and not a single-element tuple if there is only one
// return value.
if (stack.size() == 1) {
return toPyObject(std::move(stack[0]));
}
// If there is more than one return value, pop them into a py::tuple.
py::tuple return_values(stack.size());
for (size_t ret = 0; ret < return_values.size(); ++ret) {
return_values[ret] = toPyObject(std::move(stack[ret]));
}
return std::move(return_values);
}
// TODO: Remove once we clean up the GraphExecutor usage.
inline Stack evilDeprecatedBadCreateStackDoNotUse(
const py::tuple& tuple,
at::ArrayRef<Value*> inputs,
size_t reserve_extra_space = 0) {
if (tuple.size() != inputs.size()) {
AT_ERROR(
"expected " + std::to_string(inputs.size()) + " inputs, but got " +
std::to_string(tuple.size()));
}
Stack result;
result.reserve(tuple.size() + reserve_extra_space);
for (size_t i = 0; i < inputs.size(); ++i) {
result.push_back(toIValue(std::move(tuple[i]), inputs[i]->type()));
}
return result;
}
// Run `callee`, potentially inserting a CallFunction/CallMethod node into the
// tracing graph.
inline py::object runAndInsertCall(
Function& callee,
const tuple_slice& args,
const py::kwargs& kwargs,
c10::optional<IValue> self,
// Lambda that tells this function how to insert `callee` into the graph if
// we're tracing.
const std::function<Value*(Graph&, const MatchedSchema& match)>&
callInserter) {
auto stack =
createStackForSchema(callee.getSchema(), args, kwargs, std::move(self));
const auto& tracing_state = tracer::getTracingState();
if (!tracing_state) {
pybind11::gil_scoped_release no_gil_guard;
// If we're not tracing, just run the callee as normal.
callee.run(stack);
} else {
// If we are tracing, insert the appropriate CallFunction or CallMethod node
// and then run the callee with tracing disabled.
// Get the graph `Value`s that represent the input IValues
auto inputs = last(stack, callee.graph()->inputs().size());
auto input_values =
fmap(inputs, [](const IValue& v) { return tracer::getValueTrace(v); });
TORCH_INTERNAL_ASSERT(callee.getSchema().returns().size() == 1)
auto return_type = callee.getSchema().returns().at(0).type();
auto graph = tracing_state->graph;
std::vector<NamedValue> named_values;
for (Value* v : input_values) {
// NOLINTNEXTLINE(performance-inefficient-vector-operation)
named_values.emplace_back(v);
}
// Add a call node.
MatchedSchema match = matchSchema(
callee.getSchema(),
tracer::getPythonInterpreterSourceRange(),
*graph,
named_values,
{});
auto output_value = callInserter(*graph, match);
// Actually run the callee. Pause the tracer so that we don't double-add the
// callee nodes.
{
pybind11::gil_scoped_release no_gil_guard;
ResourceGuard guard(tracer::pauseTracing());
callee.run(stack);
}
// Associate the output IValues with the output `Value`s in the graph
tracer::setValueTrace(stack.back(), output_value);
}
TORCH_CHECK(
stack.size() > 0,
"Expected values in the stack after execution but found none");
return toPyObject(std::move(stack.back()));
}
inline c10::optional<py::object> maybeTorchFunctionDispatch(
const py::object& callee,
const tuple_slice& args_no_self,
const py::kwargs& kwargs,
const c10::QualifiedName qualname) {
std::vector<py::handle> args_vec;
for (const auto& arg : args_no_self) {
args_vec.push_back(arg);
}
py::tuple args = py::cast(args_vec);
// Handle __torch_function__ dispatch
std::vector<py::handle> overloaded_args;