forked from JonMcCullough/HemePure_tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhemepureDualPipeline.py
537 lines (437 loc) · 19.3 KB
/
hemepureDualPipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
import os, sys
import numpy as np
VOXELIZERPATH = "/cs/heme/HemePure_JM/HemePure_tools/voxelizer/source/voxelizer "
MAKEGMYMPIPATH = "/cs/heme/HemePure_JM/HemePure_tools/vx2gmy/make_gmy_MPI.sh"
GMY2INLETSPATH = "~/gmyTools/gmy2inlets/gmy2inlets"
INFLOWPROFILEBUILDERPATH = "~/inflow-profile-builder/inflow.py"
NUMRANKS = 2
VX2GMY_CHUNKSIZE = 2000
def execute(command):
print("Executing: " + command)
r = os.system(command)
if r != 0:
sys.exit("Command failed.")
def transform_to_lattice(pos, dx, shifts):
return pos/dx + shifts
def transform_to_physical(pos, dx, shifts):
return dx*(pos - shifts)
def write_voxelizer_xml(xmlfname, RESOLUTION, STLFNAME, inletposlist, outletposlist):
xml = '<?xml version="1.0" ?>\n<!-- the referenceDirection is used for the resolution -->\n<!-- see src/offLattice/triangularSurfaceMesh.hh -->\n<!-- 0 means x-direction, 1 means y-direction and 2 means z-direction -->\n<referenceDirection> 0 </referenceDirection>\n'
xml += "<resolution> " + str(RESOLUTION) + " </resolution>\n"
xml += "<!-- *.stl containing geometry -->\n"
xml += "<stl> " + STLFNAME + " </stl>\n"
xml += "<!-- analysis points for identification of iolets -->\n<!-- first <num_Ilets> points identify inlets -->\n<!-- last <num_Olets> points identify outlets -->\n<analysisPoints> <!-- lattice units -->\n"
xml += "<numIlets> " + str(len(inletposlist)) + " </numIlets>\n"
xml += "<numOlets> " + str(len(outletposlist)) + " </numOlets>\n"
iolet = 1
for pos in inletposlist:
xml += '<point id="'+str(iolet)+'"> '
xml += str(pos[0]) + ' ' + str(pos[1]) + ' ' + str(pos[2])
xml += ' </point>\n'
iolet += 1
for pos in outletposlist:
xml += '<point id="'+str(iolet)+'"> '
xml += str(pos[0]) + ' ' + str(pos[1]) + ' ' + str(pos[2])
xml += ' </point>\n'
iolet += 1
xml += "</analysisPoints>\n"
with open(xmlfname, "w") as outxml:
outxml.write(xml)
def write_heme_xml(hemexmlfname, gmyfname, gmy_resolution, ioletsblocktxt):
xml = "<?xml version=\"1.0\"?>\n"
xml += "<hemelbsettings version=\"3\">\n"
xml += " <simulation>\n"
xml += " <step_length units=\"s\" value=\"CHANGE\"/>\n"
xml += " <steps units=\"lattice\" value=\"CHANGE\"/>\n"
xml += " <stresstype value=\"1\"/>\n"
xml += " <voxel_size units=\"m\" value=\"" + str(gmy_resolution) + "\"/>\n"
xml += " <origin units=\"m\" value=\"(0.0,0.0,0.0)\"/>\n"
xml += " </simulation>\n"
xml += " <geometry>\n"
xml += " <datafile path=\"" + gmyfname + "\"/>\n"
xml += " </geometry>\n"
xml += " <initialconditions>\n"
xml += " <pressure>\n"
xml += " <uniform units=\"mmHg\" value=\"0.0\"/>\n"
xml += " </pressure>\n"
xml += " </initialconditions>\n"
xml += " <monitoring>\n"
xml += " <incompressibility/>\n"
xml += " </monitoring>\n\n"
xml += ioletsblocktxt + "\n"
xml += " <visualisation>\n"
xml += " <centre units=\"m\" value=\"(0.0,0.0,0.0)\" />\n"
xml += " <orientation>\n"
xml += " <longitude units=\"deg\" value=\"45.0\" />\n"
xml += " <latitude units=\"deg\" value=\"45.0\" />\n"
xml += " </orientation>\n"
xml += " <display brightness=\"0.03\" zoom=\"1.0\" />\n"
xml += " <range>\n"
xml += " <maxvelocity units=\"m/s\" value=\"0.1\" />\n"
xml += " <maxstress units=\"Pa\" value=\"0.1\" />\n"
xml += " </range>\n"
xml += " </visualisation>\n"
xml += "</hemelbsettings>\n";
with open(hemexmlfname, "w") as outxml:
outxml.write(xml)
## JM stuff...
def write_dualMap(Aout, Vin):
nI = len(Vin)
nA = len(Aout)
VinPaired = np.zeros(nI); VinPaired.fill(np.inf)
dMinPaired = np.zeros(nI)
k=[]
for o in range(nA):
dmin = 5
minID = -1
for i in range(nI):
dnow = np.linalg.norm(Aout[o] - Vin[i])
if dnow < dmin:
dmin = dnow
minID = i
if not minID in k:
VinPaired[minID] = o
dMinPaired[minID] = dmin
k.append(minID)
else:
sub = np.delete(np.arange(nI),k)
dmin = 5
minID = -1
for i in sub:
dnow = np.linalg.norm(Aout[o] - Vin[i])
if dnow < dmin:
dmin = dnow
minID = i
VinPaired[minID] = o
dMinPaired[minID] = dmin
k.append(minID)
unVI = np.delete(np.arange(nI),k)
for i in unVI:
dmin = float("+Inf")
minID = -1
for o in range(nA):
dnow = np.linalg.norm(Aout[o] - Vin[i])
if dnow < dmin:
dmin = dnow
minID = o
VinPaired[i] = minID
dMinPaired[i] = dmin
with open("outlets_radius_A.txt","r") as oletsA:
oLETSA = [line.rstrip('\n') for line in oletsA]
oLETSA = [float(i.split(',')[1]) for i in oLETSA]
oletsA.close()
with open("inlets_radius_B.txt","r") as iletsB:
iLETSB = [line.rstrip('\n') for line in iletsB]
iLETSB = [float(i.split(',')[1]) for i in iLETSB]
iletsB.close()
mapp = "Map Indices: Aout (index, radius) then Paired Vin(s) (index, distance, radius) \n"
for o in range(nA):
mapp += "(" + str(o+1) + "," + str(oLETSA[o]) + ")"
for i in range(nI):
if VinPaired[i] == o: mapp += ", ( " + str(i+1) + "," + str(dMinPaired[i]) + "," + str(iLETSB[i]) + ")"
mapp += "\n"
with open("mapAtoB.txt", "w") as outMap:
outMap.write(mapp)
def NetworkCalc(r0,r1,L,ratio,scale):
# Computation of network of vessels between outlet and an inlet
# r0 = radius of outlet
# r1 = radius of inlet being connected
# ratio = rate at which daughter branches are narrowed compared to parent
# scale = length of each branch segment - L = scale*radius_atlevel
if L>scale*(r0+r1)/(1-ratio):
print("Length check failed")
exit()
Lrem = L - scale*(r0+r1)
branches_a = [r0]
branches_v = [r1]
d=0
while Lrem >= 0.0:
d = d+1
dA = ratio*branches_a[-1]
dV = ratio*branches_v[-1]
print( "daughter level", d)
print( "dA = ", dA, "; dV = ", dV)
Lrem = Lrem - scale*(dA+dV)
print( Lrem)
if Lrem < 0.0:
Lrem = Lrem + scale*(dA+dV)
d = d-1
print( "Extra straight connection of ", Lrem, "at daughter layer", d)
break
if (max(dA,dV)<1e-6):
print( "Effective Connection Reached")
break
branches_a.append(dA)
branches_v.append(dV)
print( branches_a)
print( branches_v)
rla = 0; la = 0;
j=0
for i in branches_a:
rla = rla + scale*i*i*2**j
la = la + scale*i*2**j
j = j+1
rla = rla+Lrem*ratio*(branches_a[-1] + branches_v[-1])*2**(j-1)
la = la+ratio*Lrem*2**(j-1)
print( "average artery radius = ", rla/la)
rlv = 0; lv = 0; j=0
for i in branches_v:
rlv = rlv + scale*i*i*2**j
lv = lv + scale*i*2**j
j = j+1
rlv = rlv+Lrem*ratio*(branches_a[-1] + branches_v[-1])*2**(j-1)
lv = lv+ratio*Lrem*2**(j-1)
print( "average vein radius = ", rlv/lv)
effR = (rla + rlv)/(la + lv)
effL = la + lv
if d == 0:
effR = 0.5*(branches_a[0] + branches_v[0])
effL = L
print( "average vessel radius = ", effR)
print( "effective length = ", effL)
print( "effective volume = ", np.pi*effR*effR*effL)
print( "\n")
return [effR, effL, np.pi*effR*effR*effL]
#
if len(sys.argv) != 12:
sys.exit("Usage: python3 hemepureDualpipeline.py STLFNAME_A STLUNITS_A(e.g 1e-3 for mm) INLETPOSITIONS_A(X1,Y1,Z1;X2,Y2,Z2;..., (in quotes)) NUMINLETS_A NUMOUTLETS_A STLFNAME_B STLUNITS_B(e.g 1e-3 for mm) INLETPOSITIONS_B(X1,Y1,Z1;X2,Y2,Z2;... (in quotes)) NUMINLETS_B NUMOUTLETS_B RESOLUTION(stupid palabos units e.g. 150)")
STLFNAME_A = sys.argv[1]
STLUNITS_A = float(sys.argv[2])
INLETS_A = [np.float_(iolet.split(",")) for iolet in (sys.argv[3]).split(";")]
NUMINLETS_A = int(sys.argv[4])
NUMOUTLETS_A = int(sys.argv[5])
STLFNAME_B = sys.argv[6]
STLUNITS_B = float(sys.argv[7])
INLETS_B = [np.float_(iolet.split(",")) for iolet in (sys.argv[8]).split(";")]
NUMINLETS_B = int(sys.argv[9])
NUMOUTLETS_B = int(sys.argv[10])
RESOLUTION = int(sys.argv[11])
ROOTNAME_A = os.path.splitext(os.path.basename(STLFNAME_A))[0]
ROOTNAME_B = os.path.splitext(os.path.basename(STLFNAME_B))[0]
print("Arterial Tree Values")
print("STLFNAME = ", STLFNAME_A)
print("STLUNITS = ", STLUNITS_A)
print("INLETS = ", INLETS_A)
print("NUMINLETS = ", NUMINLETS_A)
print("NUMOUTLETS = ", NUMOUTLETS_A)
print("RESOLUTION = ", RESOLUTION)
print("ROOTNAME = ", ROOTNAME_A)
print("Venous Tree Values")
print("STLFNAME = ", STLFNAME_B)
print("STLUNITS = ", STLUNITS_B)
print("INLETS = ", INLETS_B)
print("NUMINLETS = ", NUMINLETS_B)
print("NUMOUTLETS = ", NUMOUTLETS_B)
print("RESOLUTION = ", RESOLUTION)
print("ROOTNAME = ", ROOTNAME_B)
print("Writing initial xml...")
xmlfname_A = ROOTNAME_A + ".xml"
xmlfname_B = ROOTNAME_B + ".xml"
inletpos0 = [np.array([0.0,0.0,0.0]) for i in range(NUMINLETS_A)]
outletpos0 = [np.array([0.0,0.0,0.0]) for i in range(NUMOUTLETS_A)]
write_voxelizer_xml(xmlfname_A, RESOLUTION, STLFNAME_A, inletpos0, outletpos0)
inletpos1 = [np.array([0.0,0.0,0.0]) for i in range(NUMINLETS_B)]
outletpos1 = [np.array([0.0,0.0,0.0]) for i in range(NUMOUTLETS_B)]
write_voxelizer_xml(xmlfname_B, RESOLUTION, STLFNAME_B, inletpos1, outletpos1)
# Run voxelizer but end early, dumping only the ioletpositions
execute("mpirun -np " + str(NUMRANKS) + " " + VOXELIZERPATH + " " + xmlfname_A + " ENDEARLY\n")
execute("mv ioletpositions.txt ioletpositions_A.txt")
execute("mpirun -np " + str(NUMRANKS) + " " + VOXELIZERPATH + " " + xmlfname_B + " ENDEARLY\n")
execute("mv ioletpositions.txt ioletpositions_B.txt")
### MESH A
print("\n IOlets for Mesh A...")
iolet_list = []
dx = None
shifts = None
with open("ioletpositions_A.txt", "r") as ioletpos:
lines = ioletpos.readlines()
# Get the real resolution
if not lines[0].startswith('DX:'):
sys.exit("ioletpositions.txt output from voxelizer does not have DX: line where expected (first line)")
dx = float(lines[0].split()[1])
print("dx = ", dx)
# Get the shift the voxelizer is applying to the STL
if not lines[1].startswith('SHIFTS:'):
sys.exit("ioletpositions.txt output from voxelizer does not have DX: line where expected (first line)")
shifts = np.array([float(i) for i in lines[1].split()[1:]])
print("shifts = ", shifts)
# Get the iolet positions
for line in lines[2:]:
ioletpos = [float(i) for i in line.split()]
iolet_list.append(np.array(ioletpos))
# Work out the inlet positions (provided to this script) in lattice units
INLETS_LATTICE = [transform_to_lattice(inletpos, dx, shifts) for inletpos in INLETS_A]
# Identify the closest iolets to the iolet positions passed to this script
inlets_list = []
for inletpos in INLETS_LATTICE:
min_dist = float("+Inf")
favoured_ioindex = -1
for ioindex, ioletpos in enumerate(iolet_list):
dist = np.linalg.norm(ioletpos - inletpos)
if dist < min_dist:
min_dist = dist
favoured_ioindex = ioindex
# Check that the closest inlet is not already in the list (for a different inlet)
# This would suggest that the user has entered wrong positions (or two openings are
# ridiculously close to each other)
if favoured_ioindex in inlets_list:
sys.exit("inletpos " + str(inletpos) + " corresponds to more than one 'nearest' opening")
inlets_list.append(favoured_ioindex)
print("Identified inlet(s) by index:")
print(inlets_list)
inletposlist = []
outletposlist = []
for ioindex, ioletpos in enumerate(iolet_list):
# If index is not in list of inlet indices then it's an outlet
if ioindex not in inlets_list:
outletposlist.append(ioletpos)
else:
inletposlist.append(ioletpos)
#outletsA = outletposlist
outletsA = [i-shifts for i in outletposlist];
# Write the second version of the voxelizer's xml, in which the inlet and outlet positions are correctly identified and ordered
write_voxelizer_xml(xmlfname_A, RESOLUTION, STLFNAME_A, inletposlist, outletposlist)
### MESH B
print("\n IOlets for Mesh B...")
iolet_list = []
dx = None
shifts = None
with open("ioletpositions_B.txt", "r") as ioletpos:
lines = ioletpos.readlines()
# Get the real resolution
if not lines[0].startswith('DX:'):
sys.exit("ioletpositions.txt output from voxelizer does not have DX: line where expected (first line)")
dx = float(lines[0].split()[1])
print("dx = ", dx)
# Get the shift the voxelizer is applying to the STL
if not lines[1].startswith('SHIFTS:'):
sys.exit("ioletpositions.txt output from voxelizer does not have DX: line where expected (first line)")
shifts = np.array([float(i) for i in lines[1].split()[1:]])
print("shifts = ", shifts)
# Get the iolet positions
for line in lines[2:]:
ioletpos = [float(i) for i in line.split()]
iolet_list.append(np.array(ioletpos))
# Work out the inlet positions (provided to this script) in lattice units
INLETS_LATTICE = [transform_to_lattice(inletpos, dx, shifts) for inletpos in INLETS_B]
# Identify the closest iolets to the iolet positions passed to this script
inlets_list = []
for inletpos in INLETS_LATTICE:
min_dist = float("+Inf")
favoured_ioindex = -1
for ioindex, ioletpos in enumerate(iolet_list):
dist = np.linalg.norm(ioletpos - inletpos)
print("checking")
print(ioindex,dist)
if dist < min_dist:
min_dist = dist
favoured_ioindex = ioindex
# Check that the closest inlet is not already in the list (for a different inlet)
# This would suggest that the user has entered wrong positions (or two openings are
# ridiculously close to each other)
if favoured_ioindex in inlets_list:
sys.exit("inletpos " + str(inletpos) + " corresponds to more than one 'nearest' opening")
inlets_list.append(favoured_ioindex)
print("Identified inlet(s) by index:")
print(inlets_list)
inletposlist = []
outletposlist = []
for ioindex, ioletpos in enumerate(iolet_list):
# If index is not in list of inlet indices then it's an outlet
if ioindex not in inlets_list:
outletposlist.append(ioletpos)
else:
inletposlist.append(ioletpos)
#inletsB = inletposlist;
inletsB = [i-shifts for i in inletposlist];
# Write the second version of the voxelizer's xml, in which the inlet and outlet positions are correctly identified and ordered
write_voxelizer_xml(xmlfname_B, RESOLUTION, STLFNAME_B, inletposlist, outletposlist)
print("outlets A", outletsA)
print("inlets B", inletsB)
# Run voxelizer to completion this time
execute("mpirun -np " + str(NUMRANKS) + " " + VOXELIZERPATH + " " + xmlfname_A + "\n")
execute("cat fluidAndLinks_*.dat > fluidAndLinksA.dat && rm fluidAndLinks_*.plb && rm fluidAndLinks_*.dat")
execute("mv iolets_block_inputxml.txt iolets_block_inputxml_A.txt")
execute("mv inlets_radius.txt inlets_radius_A.txt")
execute("mv outlets_radius.txt outlets_radius_A.txt")
execute("mpirun -np " + str(NUMRANKS) + " " + VOXELIZERPATH + " " + xmlfname_B + "\n")
execute("cat fluidAndLinks_*.dat > fluidAndLinksB.dat && rm fluidAndLinks_*.plb && rm fluidAndLinks_*.dat")
execute("mv iolets_block_inputxml.txt iolets_block_inputxml_B.txt")
execute("mv inlets_radius.txt inlets_radius_B.txt")
execute("mv outlets_radius.txt outlets_radius_B.txt")
### MESH A
# Get the inlets and outlets xml blocks (for the hemelb input xml) output by the voxelizer
with open("iolets_block_inputxml_A.txt", "r") as ioletsblockfile:
ioletsblocktxt = ioletsblockfile.read()
# Write the hemelb input.xml file
hemexmlfname_A = "input_A.xml"
gmyfname_A = ROOTNAME_A + ".gmy"
gmy_resolution = dx * STLUNITS_A
write_heme_xml(hemexmlfname_A, gmyfname_A, gmy_resolution, ioletsblocktxt)
# Convert the voxelizer output into a hemelb gmy file
execute("bash " + MAKEGMYMPIPATH + " fluidAndLinksA.dat " + gmyfname_A + " " + str(NUMRANKS) + " " + str(VX2GMY_CHUNKSIZE) + "\n")
### MESH B
# Get the inlets and outlets xml blocks (for the hemelb input xml) output by the voxelizer
with open("iolets_block_inputxml_B.txt", "r") as ioletsblockfile:
ioletsblocktxt = ioletsblockfile.read()
# Write the hemelb input.xml file
hemexmlfname_B = "input_B.xml"
gmyfname_B = ROOTNAME_B + ".gmy"
gmy_resolution = dx * STLUNITS_B
write_heme_xml(hemexmlfname_B, gmyfname_B, gmy_resolution, ioletsblocktxt)
# Convert the voxelizer output into a hemelb gmy file
execute("bash " + MAKEGMYMPIPATH + " fluidAndLinksB.dat " + gmyfname_B + " " + str(NUMRANKS) + " " + str(VX2GMY_CHUNKSIZE) + "\n")
# write mapping of outlets to inlets
print("Calculating and writing outlet/inlet mapping")
write_dualMap(outletsA,inletsB)
# compute boundary relationship values based on geometric values and outlet pressure (P0) and flow rate (Q0)
mu = 0.1666666 #3.5e-3 = Physical units, lattice units = 0.1666666(?)
frict = 1.3 #1.5 for turbulent, 1.0 for laminar
scale = 50 #typical value
ratio = 0.5 # Murray Law splitting
flow = "Flow Rate scale factors: \n"
pressure = "dP scale factors: \n"
with open("mapAtoB.txt") as theMap:
next(theMap)
for line in theMap:
line = line.strip("\n").strip("(").strip(")").split("), (")
outletData = [float(x) for x in line[0].split(",")]
r0 = outletData[1]
outletIDX = outletData[0]
rInlets = np.zeros(len(line)-1)
L_Inlets = np.zeros(len(line)-1)
inletIDX = np.zeros(len(line)-1)
for out in range(1,len(line)):
inletData = [float(x) for x in line[out].split(",")]
rInlets[out-1] = inletData[2]
L_Inlets[out-1] = inletData[1]
inletIDX[out-1] = inletData[0]
A = np.zeros(len(rInlets))
k = np.zeros(len(rInlets))
v = np.zeros(len(rInlets))
for i in range(len(rInlets)):
print("Branch from outlet", outletIDX, "to inlet", inletIDX[i])
r,e1,vol = NetworkCalc(r0,rInlets[i], L_Inlets[i],ratio,scale)
A[i] = np.pi*r*r
k[i] = (8*np.pi * mu)/(A[i]*A[i])
v[i] = vol
q = np.divide(v,np.sum(v))
dP = frict*np.multiply(np.multiply(q,L_Inlets),k)
print("WARNING - will need to run dP check in hemeLB to ensure ok")
print( "Factors")
print( "Q = ",q,"*Q0 ")
print( "dP = ", dP,"*Q0 [L.U.]")
for i in range(len(rInlets)):
flow += str(int(outletIDX)) + "," + str(int(inletIDX[i])) + "," + str(q[i]) + "\n"
pressure += str(int(outletIDX)) + "," + str(int(inletIDX[i])) + "," + str(dP[i]) + "\n"
with open("flowFactors.txt", "w") as factors:
factors.write(flow)
factors.close()
with open("dPFactors.txt", "w") as factors:
factors.write(pressure)
factors.close()
## Create the velocity weights file - WARNING: CURRENTLY ASSUMES ONLY 1 INLET (not easy to fix...)
#inletsfname = ROOTNAME + ".inlets"
#execute(GMY2INLETSPATH + " " + gmyfname + " " + inletsfname + "\n")
#execute("python " + INFLOWPROFILEBUILDERPATH + " " + inletsfname + "\n")
#execute("cp out.weights.txt INLET0_VELOCITY.txt.weights.txt\n")