-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.py
219 lines (178 loc) · 6.62 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
from PIL import Image
from torchvision import transforms
from torchvision.datasets import CIFAR100
import os
import os.path
import copy
import hashlib
import errno
import numpy as np
from numpy.testing import assert_array_almost_equal
import torch
import torch.nn.functional as F
def check_integrity(fpath, md5):
if not os.path.isfile(fpath):
return False
md5o = hashlib.md5()
with open(fpath, 'rb') as f:
# read in 1MB chunks
for chunk in iter(lambda: f.read(1024 * 1024), b''):
md5o.update(chunk)
md5c = md5o.hexdigest()
if md5c != md5:
return False
return True
def download_url(url, root, filename, md5):
from six.moves import urllib
root = os.path.expanduser(root)
fpath = os.path.join(root, filename)
try:
os.makedirs(root)
except OSError as e:
if e.errno == errno.EEXIST:
pass
else:
raise
# downloads file
if os.path.isfile(fpath) and check_integrity(fpath, md5):
print('Using downloaded and verified file: ' + fpath)
else:
try:
print('Downloading ' + url + ' to ' + fpath)
urllib.request.urlretrieve(url, fpath)
except:
if url[:5] == 'https':
url = url.replace('https:', 'http:')
print('Failed download. Trying https -> http instead.'
' Downloading ' + url + ' to ' + fpath)
urllib.request.urlretrieve(url, fpath)
def list_dir(root, prefix=False):
"""List all directories at a given root
Args:
root (str): Path to directory whose folders need to be listed
prefix (bool, optional): If true, prepends the path to each result, otherwise
only returns the name of the directories found
"""
root = os.path.expanduser(root)
directories = list(
filter(
lambda p: os.path.isdir(os.path.join(root, p)),
os.listdir(root)
)
)
if prefix is True:
directories = [os.path.join(root, d) for d in directories]
return directories
def list_files(root, suffix, prefix=False):
"""List all files ending with a suffix at a given root
Args:
root (str): Path to directory whose folders need to be listed
suffix (str or tuple): Suffix of the files to match, e.g. '.png' or ('.jpg', '.png').
It uses the Python "str.endswith" method and is passed directly
prefix (bool, optional): If true, prepends the path to each result, otherwise
only returns the name of the files found
"""
root = os.path.expanduser(root)
files = list(
filter(
lambda p: os.path.isfile(os.path.join(root, p)) and p.endswith(suffix),
os.listdir(root)
)
)
if prefix is True:
files = [os.path.join(root, d) for d in files]
return files
# basic function#
def multiclass_noisify(y, P, random_state=0):
""" Flip classes according to transition probability matrix T.
It expects a number between 0 and the number of classes - 1.
"""
#print np.max(y), P.shape[0]
assert P.shape[0] == P.shape[1]
assert np.max(y) < P.shape[0]
# row stochastic matrix
assert_array_almost_equal(P.sum(axis=1), np.ones(P.shape[1]))
assert (P >= 0.0).all()
m = y.shape[0]
#print m
new_y = y.copy()
flipper = np.random.RandomState(random_state)
for idx in np.arange(m):
i = y[idx]
# draw a vector with only an 1
flipped = flipper.multinomial(1, P[i, :][0], 1)[0]
new_y[idx] = np.where(flipped == 1)[0]
return new_y
# noisify_pairflip call the function "multiclass_noisify"
def noisify_pairflip(y_train, noise, random_state=None, nb_classes=10):
"""mistakes:
flip in the pair
"""
P = np.eye(nb_classes)
n = noise
if n > 0.0:
# 0 -> 1
P[0, 0], P[0, 1] = 1. - n, n
for i in range(1, nb_classes-1):
P[i, i], P[i, i + 1] = 1. - n, n
P[nb_classes-1, nb_classes-1], P[nb_classes-1, 0] = 1. - n, n
y_train_noisy = multiclass_noisify(y_train, P=P,
random_state=random_state)
actual_noise = (y_train_noisy != y_train).mean()
assert actual_noise > 0.0
print('Actual noise %.2f' % actual_noise)
y_train = y_train_noisy
#print P
return y_train, actual_noise
def noisify_multiclass_symmetric(y_train, noise, random_state=None, nb_classes=10):
"""mistakes:
flip in the symmetric way
"""
P = np.ones((nb_classes, nb_classes))
n = noise
P = (n / (nb_classes - 1)) * P
if n > 0.0:
# 0 -> 1
P[0, 0] = 1. - n
for i in range(1, nb_classes-1):
P[i, i] = 1. - n
P[nb_classes-1, nb_classes-1] = 1. - n
y_train_noisy = multiclass_noisify(y_train, P=P,
random_state=random_state)
actual_noise = (y_train_noisy != y_train).mean()
assert actual_noise > 0.0
print('Actual noise %.2f' % actual_noise)
y_train = y_train_noisy
#print P
return y_train, actual_noise
def noisify(dataset='mnist', nb_classes=10, train_labels=None, noise_type=None, noise_rate=0, random_state=0):
if noise_type == 'pairflip':
train_noisy_labels, actual_noise_rate = noisify_pairflip(train_labels, noise_rate, random_state=0, nb_classes=nb_classes)
if noise_type == 'symmetric':
train_noisy_labels, actual_noise_rate = noisify_multiclass_symmetric(train_labels, noise_rate, random_state=0, nb_classes=nb_classes)
return train_noisy_labels, actual_noise_rate
def noisify_instance(train_data,train_labels,noise_rate):
if max(train_labels)>10:
num_class = 100
else:
num_class = 10
np.random.seed(0)
q_ = np.random.normal(loc=noise_rate,scale=0.1,size=1000000)
q = []
for pro in q_:
if 0 < pro < 1:
q.append(pro)
if len(q)==50000:
break
w = torch.tensor(np.random.normal(loc=0,scale=1,size=(32*32*3,num_class))).float().cuda()
noisy_labels = []
for i, sample in enumerate(train_data):
sample = Image.fromarray(sample)
sample = transforms.ToTensor()(sample).cuda()
p_all = sample.reshape(1,-1).mm(w).squeeze(0)
p_all[train_labels[i]] = -1000000
p_all = q[i]*F.softmax(p_all,dim=0).cpu().numpy()
p_all[train_labels[i]] = 1 - q[i]
noisy_labels.append(np.random.choice(np.arange(num_class),p=p_all/sum(p_all)))
over_all_noise_rate = 1 - float(torch.tensor(train_labels).eq(torch.tensor(noisy_labels)).sum())/50000
return noisy_labels, over_all_noise_rate