Skip to content

Evaluation code #2

@o0t1ng0o

Description

@o0t1ng0o

Hi @jwmao1 ,

Thank you for releasing your code.
Can you provide the evaluation code for your model?

I meet several errors when loading your model in MeDiM/evaluation/inference_t2i.py, such as missing config.json. Even i include the config file, it meets the weights mismatch problems as follows:

RuntimeError: Error(s) in loading state_dict for Embedding:
        size mismatch for weight: copying a param with shape torch.Size([40196, 3072]) from checkpoint, the shape in current model is torch.Size([264192, 3072]).

After i revising the config file to address this error, I still meet the missing parameters error like:

Some weights of the model checkpoint at /raid/home/CAMCA/hj880/wt/ckpts/huggingface/hub/models--JiaMao--medim_ckpts/snapshots/dcca20779d09e154a25d10b39eefb4f86d6f82e9 were not used when initializing GemmaForCausalLM: ['model.layers.0.adaLN_modulation.bias', 'model.layers.0.adaLN_modulation.weight', 'model.layers.1.adaLN_modulation.bias', 'model.layers.1.adaLN_modulation.weight', 'model.layers.2.adaLN_modulation.bias', 'model.layers.2.adaLN_modulation.weight', 'model.layers.3.adaLN_modulation.bias', 'model.layers.3.adaLN_modulation.weight', 'model.layers.4.adaLN_modulation.bias', 'model.layers.4.adaLN_modulation.weight', 'model.layers.5.adaLN_modulation.bias', 'model.layers.5.adaLN_modulation.weight', 'model.layers.6.adaLN_modulation.bias', 'model.layers.6.adaLN_modulation.weight', 'model.layers.7.adaLN_modulation.bias', 'model.layers.7.adaLN_modulation.weight', 'model.layers.8.adaLN_modulation.bias', 'model.layers.8.adaLN_modulation.weight', 'model.layers.9.adaLN_modulation.bias', 'model.layers.9.adaLN_modulation.weight', 'model.time_embedder.mlp.0.bias', 'model.time_embedder.mlp.0.weight', 'model.time_embedder.mlp.2.bias', 'model.time_embedder.mlp.2.weight']
- This IS expected if you are initializing GemmaForCausalLM from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).
- This IS NOT expected if you are initializing GemmaForCausalLM from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).

Could you please provide the evaluation code?

Thanks.

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions