-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerateLPParams.py
175 lines (148 loc) · 5.73 KB
/
generateLPParams.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import shortestDistances as sd
import buildNetworkX as bnx
def getNodeNeighbors(nodes, edges):
nodeNeighbors = {}
for node in range(len(nodes)):
nodeNeighbors[node] = []
for edge in range(len(edges)):
if edges[edge][0] == nodes[node]:
nodeNeighbors[node].append(edge)
if edges[edge][1] == nodes[node]:
nodeNeighbors[node].append(edge)
return nodeNeighbors
def getNodeNeighborsOptimized(nodes, edges):
nodeNeighbors = {}
for edge in range(len(edges)):
if nodes[edges[edge][0]] not in nodeNeighbors:
nodeNeighbors[nodes[edges[edge][0]]] = []
nodeNeighbors[nodes[edges[edge][0]]].append(edge)
if nodes[edges[edge][1]] not in nodeNeighbors:
nodeNeighbors[nodes[edges[edge][1]]] = []
nodeNeighbors[nodes[edges[edge][1]]].append(edge)
return nodeNeighbors
def getGroups(nodeToGender, nodes):
g1 = []
g2 = []
for node in range(len(nodes)):
if nodeToGender[nodes[node]] == '1':
g1.append(node)
else:
g2.append(node)
return g1, g2
def getGroupsEnhanced(nodeToGender, nodes, numSubgraphNodes):
g1 = []
g2 = []
for node in range(len(nodes)):
if nodeToGender[nodes[node]] == '1':
g1.append(node + numSubgraphNodes)
else:
g2.append(node + numSubgraphNodes)
return g1, g2
def getGroupsNames(nodeToGender, nodes):
g1 = []
g2 = []
for node in nodes:
if nodeToGender[node] == '1':
g1.append(node)
else:
g2.append(node)
return g1, g2
def getGroupsNX(G):
g1 = []
g2 = []
for node in list(G.nodes()):
if G.nodes()[node]['gender'] == 'male':
g1.append(node)
else:
g2.append(node)
return g1, g2
def getNoteToGenderNX(G):
nodeToGender = {}
for node in list(G.nodes()):
if G.nodes()[node]['gender'] == 'male':
nodeToGender[node] = "1"
else:
nodeToGender[node] = "2"
return nodeToGender
def edgeToNodeDistances(G, edges, sources):
res = {}
X = G.copy()
for edge in range(len(edges)):
X.add_edge(edges[edge][0], edges[edge][1])
res[edge] = sd.shortestDistancesPositions(X, sources)
X.remove_edge(edges[edge][0], edges[edge][1])
return res
def edgeToNodeDistancesUpdated(G, edges, shortestDistances):
res = {}
for edge in range(len(edges)):
if shortestDistances[edges[edge][0]] + 1 < shortestDistances[edges[edge][1]]:
G.add_edge(edges[edge][0], edges[edge][1])
res[edge] = sd.shortestDistancesNewEdges(G, [edges[edge]], shortestDistances)
G.remove_edge(edges[edge][0], edges[edge][1])
else:
res[edge] = {}
return res
def shouldRemoveEdge(edgeDistances, shortestDistances):
for node in edgeDistances:
if edgeDistances[node] < shortestDistances[node]:
return False
return True
def shortestDistanceOverAnEdge(edgeNodeDistances):
res = {}
for edge in edgeNodeDistances:
for node in edgeNodeDistances[edge]:
if node not in res:
res[node] = edgeNodeDistances[edge][node]
elif edgeNodeDistances[edge][node] < res[node]:
res[node] = edgeNodeDistances[edge][node]
return res
##Same as other method but duplicated for clear separation from previous methods of calculations
#safe
def updatedShortestDistanceOverAnEdge(edgeNodeDistances):
res = {}
for edge in edgeNodeDistances:
for node in edgeNodeDistances[edge]:
if node not in res:
res[node] = edgeNodeDistances[edge][node]
elif edgeNodeDistances[edge][node] < res[node]:
res[node] = edgeNodeDistances[edge][node]
return res
def nodePositionToXijPosition(shortestDistanceOverAnEdge, shortestDistances, nodes):
res = {}
current = 0
for node in range(len(nodes)):
if shortestDistanceOverAnEdge[node] < shortestDistances[node]:
res[node] = (current, shortestDistances[node] - shortestDistanceOverAnEdge[node], shortestDistanceOverAnEdge[node])
current = current + shortestDistances[node] - shortestDistanceOverAnEdge[node]
return res, current
#safe
def updatedNodePositionToXijPosition(updatedShortestDistanceOverAnEdge, shortestDistances, nodes):
res = {}
current = 0
for node in updatedShortestDistanceOverAnEdge:
res[nodes.index(node)] = (current, shortestDistances[node] - updatedShortestDistanceOverAnEdge[node], updatedShortestDistanceOverAnEdge[node])
current = current + shortestDistances[node] - updatedShortestDistanceOverAnEdge[node]
return res, current
def updatedNodePositionToXijPositionOptimized(updatedShortestDistanceOverAnEdge, shortestDistances, nodes):
res = {}
current = 0
for node in updatedShortestDistanceOverAnEdge:
res[nodes[node]] = (current, shortestDistances[node] - updatedShortestDistanceOverAnEdge[node], updatedShortestDistanceOverAnEdge[node])
current = current + shortestDistances[node] - updatedShortestDistanceOverAnEdge[node]
return res, current
def test():
adjacencyLists = {}
adjacencyLists['1'] = {'2', '3'}
adjacencyLists['2'] = {'1', '5'}
adjacencyLists['3'] = {'2', '4'}
G = bnx.buildNetworkXFromAM(adjacencyLists)
nodes = ['1','2','3','4','5']
edges = [('1', '4'), ('1', '5'), ('3', '5')]
sources = ['1']
result = edgeToNodeDistancesUpdated(G, edges, {'1': 0, '2': 1, '3': 1, '4': 2, '5': 2})
print(result)
# result2 = shortestDistanceOverAnEdge(result)
# print(result2)
# result3 = nodePositionToXijPosition(result2, sd.shortestDistancesPositions(G, sources), nodes)
# print(result3)
test()