class Solution {
int height(TreeNode root) {
return root == null ? -1 : 1 + height(root.left);
}
public int countNodes(TreeNode root) {
int nodes = 0, h = height(root);
while (root != null) {
if (height(root.right) == h - 1) {
nodes += 1 << h;
root = root.right;
} else {
nodes += 1 << h-1;
root = root.left;
}
h--;
}
return nodes;
}
}
-
time O(log(n)^2) space O(log(n)^2)
-
The height of a tree can be found by just going left. Let a single node tree have height 0. Find the height h of the whole tree. If the whole tree is empty, i.e., has height -1, there are 0 nodes. Otherwise check whether the height of the right subtree is just one less than that of the whole tree, meaning left and right subtree have the same height.
If yes, then the last node on the last tree row is in the right subtree and the left subtree is a full tree of height h-1. So we take the 2^h-1 nodes of the left subtree plus the 1 root node plus recursively the number of nodes in the right subtree. If no, then the last node on the last tree row is in the left subtree and the right subtree is a full tree of height h-2. So we take the 2^(h-1)-1 nodes of the right subtree plus the 1 root node plus recursively the number of nodes in the left subtree -
For the iterative solution, we decrement h by 1 for each iteration, so we don't have to recompute h each time.
class Solution {
int height(TreeNode root) {
return root == null ? -1 : 1 + height(root.left);
}
public int countNodes(TreeNode root) {
int h = height(root);
return h < 0 ? 0 :
height(root.right) == h-1 ? (1 << h) + countNodes(root.right)
: (1 << h-1) + countNodes(root.left);
}
}
- time O(log(n)^2) space O(log(n)^2)